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Abstract. RDF dataset profiles provide a formal representation of a
dataset’s characteristics (features). These profiles may cover various
aspects of the data represented in the dataset as well as statistical descrip-
tors of the data distribution. In this work, we focus on the characteris-
tic sets profile feature summarizing the characteristic sets contained in an
RDF graph. As this type of feature provides detailed information on both
the structure and semantics of RDF graphs, they can be very beneficial in
query optimization. However, in decentralized query processing, comput-
ing them is challenging as it is difficult and/or costly to access and process
all datasets. To overcome this shortcoming, we propose the concept of a
profile feature estimation. We present sampling methods and projection
functions to generate estimations which aim to be as similar as possible to
the original characteristic sets profile feature. In our evaluation, we inves-
tigate the feasibility of the proposed methods on four RDF graphs. Our
results show that samples containing 0.5% of the entities in the graph allow
for good estimations and may be used by downstream tasks such as query
plan optimization in decentralized querying.

1 Introduction

The characteristics of an RDF dataset can be formally represented as a set of fea-
tures that compose a dataset profile. They support various applications such as
entity linking, entity retrieval, distributed search and federated queries [5]. The
features in a dataset profile can range from information on licensing, provenance
to statistical characteristics of the dataset. Depending on the granularity of the
statistics in a profile feature, the computation can be costly and require access to
the entire dataset. For instance, characteristic sets are fine-grained statistic that
is difficult to compute as it represents the set of predicates associated with each
entity in a graph. Yet, several centralized and decentralized query engines rely on
fine-grained dataset profiles for finding efficient query plans [7,11,13]. For exam-
ple, Odyssey [13] leverages statistics on the characteristic sets of the datasets in
the federation to estimate intermediate results when optimizing query plans.
In this work, we focus on the Characteristic Sets Profile Feature (CSPF), a
statistical feature of RDF graphs that include the characteristic sets, their counts
and the multiplicity of their predicates. There are three major reasons why we
focus on the CSPF as a representative statistical characterization of RDF graphs.
First, it implicitly captures structural features of the underlying graph, such as
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the average out-degree, distinct number of subjects, and the set of predicates and
their counts. Second, the characteristic sets contain semantic information on the
entities represented in the graph and, thus, also implicitly reflect its schema.
Lastly, the CSPF provides detailed insights into the predicate co-occurrences
and, hence, it is well suited to be used by (decentralized) query engines for
cardinality estimations and other downstream tasks. While the CSPF's are very
beneficial for applications, their computation can be a challenging task. First,
obtaining the entire dataset to compute this feature can be too difficult or costly.
For example, in federated querying, data dumps are not always available and
datasets can only be partially accessed via SPARQL endpoint or Triple Pattern
Fragment servers. Second, the complexity of computing the characteristic sets
for n triples is in O(n-log(n) +n) [11]. This may be an additional restriction for
very large and constantly evolving datasets.

To overcome these limitations, we propose an approach that estimates accu-
rate statistical profile features based on characteristic sets and that relies only
on a sample of the original dataset. Given an RDF graph, we sample entities
and compute their characteristic sets to build the CSPF of the sample. Then,
we apply a projection function to extrapolate the feature observed in the sam-
ple to estimate the original graph’s CSPF. It is important to consider that the
estimations for the CSPF are very sensitive to the structure of the graph and
the sample. Assume, for example, the following characteristic sets S, So and S5
from YAGO and the number of associated subjects (count):

S1 = {rdfs:label, skos:preflabel}, count(S;) = 783, 686,
Sy = {rdfs:label, skos:preflabel, yago:isCitizenOf }, count(Se) = 7,823,
S3 = {rdfs:label, skos:preflabel, yago:isLocatedIn}, count(Ss) = 188, 529.

Even though S; differs only by a single predicate from S; and Ss, S7 occurs
over 100 times more often than Ss, but only about 4 times more often than Ss.
Hence, the main objective of our approach is avoiding misestimations when minor
differences in characteristic sets lead to major changes in their count values. In
summary, our contributions are

— a definition of statistical profile feature estimation and the associated prob-
lem,

— a formalization of Characteristic Sets Profile Feature (CSPF),

— an approach for generating profile feature estimations for CSPF, and

— an extensive experimental study examining the effectiveness of our approach
on four well-known RDF datasets.

The remainder of this work is organized as follows. We present related work
in Sect.2 and introduce preliminaries in Sect.3. We provide a formal problem
definition in Sect.4 and present our approach in Sect.5. We evaluate our app-
roach and discuss the results in Sect. 6. In Sect. 7, we draw our conclusions and
point to future work.
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2 Related Work

RDF Dataset Profiling. Capturing the characteristics of RDF datasets in
dataset profiles has been studied in previous works. Ellefi et al. [5] present
a taxonomy for dataset features represented in such profiles, which includes
the categories general, qualitative, provenance, links, licensing, statistical, and
dynamics. Regarding statistical features, different approaches have been pro-
posed. Ferndndez et al. [6] aim to enable efficient RDF data structures, indexes,
and compression techniques. To this end, the authors propose various metrics
to characterize RDF datasets incorporating the particularities of RDF graphs.
LODStats [3] is statement-stream-based approach that comprises 32 schema-
level statistical criteria ranging from out-degree to the number of used classes.
The ProLOD++ tool [1] supports profiling, mining and cleansing functionali-
ties for RDF datasets. It enables a browser-based visualizations of domain level,
schema level, and data level characteristics. ExpLOD [8] is a tool for gener-
ating summaries of RDF datasets combining textual labels and bisimulation
contractions. These summaries include statistical information such as the class,
predicate, and interlinking usage.

In addition to the existing statistical dataset profile feature covered in the
literature, we propose and formalize a novel feature based on characteristic sets
capturing both structural and semantic properties of the graph.

RDF Graph Sampling. The concept of sampling data from RDF graphs has
been proposed for and applied to different problems. Debattista et al. [4] pro-
pose approximating specific quality metrics for large, evolving datasets based
on samples. They argue that the exact computation of some quality metrics is
too time-consuming and expensive and that an approximation of the quality is
usually sufficient. They apply reservoir sampling and use the sampled triples
to estimate the dereferenceability of URIs and links to external data providers.
Rietveld et al. [16] aim to obtain samples that entail as many of the original
answers to typical SPARQL queries. They rewrite the RDF graph to compute
the network metrics PageRank, in-degree, and out-degree for the nodes. Based
on the metrics, the top-k percent of all triples are selected as the sample of
the graph. Soulet et al. [17] focus on analytical queries, which are typically too
expensive to be executed directly over SPARQL endpoints. They propose sepa-
rating the computation of such queries by executing them over random samples
of the datasets. Due to the properties of the queries, the aggregation values
converge with an increasing number of samples.

While in the first work sampling is applied to reduce the computational effort
for quality metrics, they do not require the sampling method to capture the
semantics of the dataset. The second approach aims to obtain a relevant sample
which allows answering common queries and not a representative sample. Fur-
thermore, the first two approaches require local access to the entire dataset for
generating the sample. However, our work, similar to Soulet et al., is motivated
by the restrictions that occur especially in decentralized scenarios with large,
evolving datasets where it is not feasible to have local access to every dataset.
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Different to the work by Soulet et al., we aim to sample the data in such a fash-
ion that a single sample can be used to estimate the statistical profile feature
and do not rely on the convergence properties induced by repeated sampling.

Network Sampling. Approaches for sampling large non-RDF graphs have also
been proposed. Leskovec et al. [9] provide an overview of methods suitable for
obtaining representative samples from large networks, considering three major
categories for sampling: by selecting random nodes, by selecting random edges or
by exploration. To assess the representativeness of the samples, static graph pat-
terns are used, i.e., the distribution of structural network properties. The agree-
ment for the graph pattern between the original graph and the samples is mea-
sured by the Kolmogorov-Smirnov D-statistic. No single best method emerges
from their experimental study, but their performance depends on the specific
application. Ribeiro et al. [15] focus on directed graphs and propose a directed
unbiased random walk (DURW) algorithm. They model directed graphs as undi-
rected graphs such that edges can also be traversed backwards when performing
random walks. They incorporate random jumps to nodes with a probability that
depends on the out-degree of the node as well as the weights of the edges. Ahmed
et al. [2] identify two relevant models of computation when sampling from large
networks. The static model randomly accesses any location in the graph. The
streaming model merely allows for accessing edges in a sequential stream of edges.
For the two models of computation, they propose methods based on the concept
of graph induction and show that they preserve key network statistics of the
graph, while achieving low space complexity and linear runtime complexity with
respect to the edges in the sample.

In contrast to these methods, our approach aims to generate representative
samples that allow for estimating statistic profile features of RDF datasets and
therefore, the sampling methods need to be tailored to this task and the partic-
ularities of RDF graphs.

3 Preliminaries

The Resource Description Framework (RDF) defines a graph-based data model,
where statements are represented as tuples (s,p,0) such that a subject s and
an object o are connected nodes via a directed labeled edge by predicate p. The
terms of the tuples can be Internationalized Resource Identifiers (IRIs), blank
nodes, or literals. Assume the pairwise disjoint sets of IRIs I, blank nodes B,
and literals L. A tuple (s,p,0) € (I UB) x I x (IUBUL) is an RDF triple.
A set of RDF triples is denominated an RDF graph. The set of subjects in an
RDF graph is often referred to as its entities.

The characteristics of RDF graphs can be summarized in statistic profiles. In
traditional database theory, a statistic profile is a “complex object composed of
quantitative descriptors” [10]. The quantitative descriptors cover different data
characteristics: (i) central tendency (ii) dispersion, (iii) size, and (iv) frequency
distribution. Such statistic profiles are used by query optimizers to devise an
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efficient query plan. Similarly, in RDF, statistic profiles are also commonly used
by centralized triple stores and federated query engines for query optimization
[7,11,13]. Typically, the query optimizer uses the statistic profiles to estimate the
join cardinalities of subqueries. In the following, we consider statistical profile
features and follow the terminology by Ellefi et al. [5], denoting an RDF dataset
profile as a formal representation of a set of dataset profile features.

Definition 1 (Profile Feature). Given a RDF graph G, a profile feature F(G)
s defined as a characteristic describing a statistical feature F of the graph G.

An example statistical profile feature of an RDF graph could be derived
from its characteristic sets. The concept of characteristic sets for RDF graphs
was presented by Neumann et al. [14] and captures the correlations between
join predicates in an RDF graph. The idea of characteristic sets is describing
semantically similar entities by grouping them according to the set of predicates
the entities share. As a result, such a profile feature incorporates both statisti-
cal information on the data distribution as well as semantic information of the
entities contained within an RDF graph.

Definition 2 (Characteristic Sets [14]). The characteristic set of an entity
s in an RDF graph G is given by: Sc(s) :=={p | Jo: (s,p,0) € G}. Furthermore,
for a given RDF graph G, the set of characteristic sets is given by 8¢ (G) =
{SC(S) ‘ E|p70: (Svpv 0) € G}

To obtain a statistical profile, the counts for the characteristic sets are com-
puted as well as the multiplicities of the predicates within each characteristic
set. These additional statistics is required by centralized triple stores as well as
federated query engines to determine exact cardinality estimations for distinct
queries as well as computing cardinality estimations for non-distinct queries
[7,11,13,14]. Similar to Neumann et al. [14], we define the count of a character-
istic set S = {p1,p2,...} in an RDF graph G as

count(S) :=|{s | Ip,0: (s,p,0) € G A Sc(s) =S} (1)

In addition, in this work, we focus on the occurrences of predicates in char-
acteristic sets by considering their mean multiplicity. The mean multiplicity is
given by

[{(s,pi;0) | (s,pi,0) € GASc(s) =S}
count(S) '

multiplicity(p;, S) == (2)

In other words, for a given characteristic set, the multiplicity specifies how often
each predicate occurs on average. For example, consider the characteristic set S =
{rdf:type, rdfs:1label} with count(S1) = 10, multiplicity(rdfs:label, S1) = 1
maultiplicity(rdf :type, S1) = 2. This indicates that 10 entities belong to S; and
each of those entities has exactly one rdfs:label and on average two rdf:type
predicates.
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4 Problem Definition

As outlined in the introduction, it might be too difficult and/or costly to access
an entire dataset for computing its profile features. For example, this might be
the case for decentralized querying when the datasets may only be partially
accessed via SPARQL endpoints or Triple Pattern Fragment servers. To address
this problem, we propose the concept of Profile Feature Estimation which aims
to estimate the original profile feature using limited data of the original dataset.
The goal is generating a profile feature estimation which is as similar as possible
to the original profile feature while requiring partial data only. More precisely, in
this work, we focus on approaches that rely on a sample from the original RDF
graph and employ a projection function to estimate the true profile feature.
Hence, we define a profile feature estimation as follows.

Definition 3 (Profile Feature Estimation). Given an RDF graph G, a pro-
jection function ¢, a subgraph H C G, and the profile feature F(), a profile
feature estimation F(-) for G is defined as

F(G) = ¢(F(H))

Ideally, a profile feature estimation is identical to the true profile feature. How-
ever, the similarity of such estimations to the original feature is influenced by the
type of feature to be estimated, the subgraph H and the projection function ¢.
For example, given just a small subgraph, the estimation might be less accurate
than for a larger subgraph, as it may cover more characteristics of the original
graph. Therefore, the problem is finding an estimation based on a subgraph H
and a projection function ¢ for the profile feature which maximizes the similarity
to the profile feature of the original RDF graph.

Original Graph G Sample H F(H) o(F(H))
Sampling Feature Projection
(] Method S Creation Function
q

e e e _@ﬁ_m_

Fig. 1. Overview of the approach to estimate characteristic sets profile features.

Definition 4 (Profile Feature Estimation Problem). Given an RDF
graph G and a profile feature F(-), the problem of profile feature estimation
is defined as follows. Determine a profile feature estimation F(), such that
F(G) = (F(H)) and

max 0(F(G), F(G))

with |H| < |G| and § a function assessing the similarity of two statistic profile
features.
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The method for determining this similarity needs to be defined according to
the profile feature. Consider for example a profile feature F(G) counting the
literals in a dataset and F’ (@) estimating this value based on a sample. Then the
similarity between them may be calculated as the absolute difference between
the true count and the estimated value. In network theory, the similarity of a
sample is commonly assessed by how well it captures the structural properties of
the original graph [2,9,15]. However, since the labels of the edges and nodes in
an RDF graph hold semantic information on the entities and concepts described
in the graph, merely considering structural features may not be sufficient to
assess how representative a sample of an RDF graph is. Hence, we propose a
more comprehensive profile feature based on the characteristic sets capturing
structural and semantic features of the graph’s entities, which we present in the
following.

5 Characteristic Sets Profile Feature Estimation

In this work, we present a comprehensive profile feature based on character-
istic sets that captures both structural and semantic aspects of RDF graphs.
This Characteristic sets profile feature (CSPF) can formally be defined as the
following.

Definition 5 (Characteristic Sets Profile Feature (CSPF)). Given a
RDF graph G, the characteristic sets profile feature F(Q) is a 3-tuple (8,¢c,m)
with:

- 8 = 8¢(G), the set of characteristic sets in G,
- ¢:8 — N a function for count as defined in Eq. 1, and
—m:Ix8— RY a function for multiplicity as defined in Eq. 2.

Our approach addressing the profile feature estimation problem for CSPF's is
shown in Fig.1. Given a graph G, we create a sample H C G using one of
the RDF graph sampling methods presented in Sect.5.1. Then, we build the
CSPF F(H) for the sample H. Finally, we apply one of the projection functions
presented in Sect. 5.2, to extrapolate the feature observed in H to estimate those
of the original graph as ¢(F(H)). We apply a set of similarity measures for
characteristic sets defined in Sect.5.3 to determine the similarity between the
original CSPF F(G) and its estimation F(G).

5.1 RDF Graph Sampling

The first component of our approach is the sampling method. When design-
ing sampling methods, it is crucial to determine the kind of characteristic that
should be captured before the collection of data. In this work, we collect samples
to estimate the characteristic sets profile feature. Since each entity is associated
with one characteristic set, we define the population as the set of entities in the
graph: F := {s | (s,p,0) € G}. Each observation in the sample corresponds to
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one entity. The input of a sampling method is an RDF graph G and a sam-
ple size n’. The output of the sampling method is a subgraph H induced by
n' entities of G. Let E’ be the set of sampled entities with |E’'| = n’, then
H := {(s,p,0) | (s,p,0) € GAs € E'}. We present three sampling methods
differing in the probabilities of an entity being sampled. Thus, they allow for
exploring different parts of the search space of possible characteristic sets during
sampling.

Unweighted Sampling. It selects n’ entities with equal probability from the
population E. Thus, the probability Pr(e) of e € E being a part of the sample
is Pr(e) = 1/|E|.

Weighted Sampling. We present a biased sampling method which considers
the out-degree of each entity e given by d(e) := |{(e,p,0) | (e,p,0) € G}|. The
weighted sampling method selects n’ subjects where the probability of a subject
to be chosen is proportional to its out-degree. In this way, entities that appear as
subjects of many triples in the graph have a higher probability of being selected.
Formally, the probability Pr(e) of e € E being a part of the sample is given by
Pr(e) = d(e)/|GI-

Hybrid Sampling. This sampling method combines the previous approaches
where (- n' entities are selected using the unweighted method and (1 — 3) - n/
entities using the weighted method. Accordingly, the probability Pr(e) of entity
e being selected is

d(e)

Pr(e) = 8 i+<1—ﬁ)-ﬁ

|E| 7ﬁ€[051]'

The ( parameter allows for favoring either the weighted or the unweighted
method.

5.2 Profile Feature Projection Functions

Next, the characteristic sets in the sample H are computed to create the cor-
responding CSPF F'(H). This can be done by first sorting the triples in H by
subjects and then iterating all subjects determining the characteristic set for
each subject. Given a profile feature F(H) = (8, ¢, m), the goal of a projection
function is to extrapolate the statistical properties observed in sample H to the
entire population as F(G) = ¢(F(H)). In the following, we propose two classes
of projection functions for the count values of the characteristic sets in the sam-
ple. The multiplicity statistic is not affected by the projection functions as it
is a relative measure (the average occurrence of a predicate in a characteristic
set) that does not require to be extrapolated. The first class, which we denote
basic projection functions, only rely on information contained within the sample.
The second class of projection functions rely on the information contained in the
sample as well as additional high-level information on the dataset. We denote
the latter class of functions as statistics-enhanced projection functions.
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Basic Projection Function. This function simply extrapolates the count val-
ues for the given characteristic sets profile feature F'(H) based on the relative
size of the sample. We define the function ¢; which uses the ratio r; := % of
triples in the sample with respect to the triples in the graph:

o1 (F(H)) := (8,714 - ¢, m)

The assumption of this projection function is that the characteristic sets observed
in the sample occur proportionally more often in the original graph. However,
it neglects the fact that some characteristics sets might not have been sampled
and is affected by potentially skewed distributions of the counts as exemplified
in the introduction.

Statistics-Enhanced Projection Functions. The second class of projec-
tion functions incorporates additional high-level information about the original
graph. In this work, we consider the number of triples per predicate in the origi-
nal graph as a high-level statistic. The number of triples for predicate p’ is given
by t(p') := |{(s,p',0) | (s,p',0) € G}|. We propose the ¢o projection function
that applies a true upper bound for the counts:

¢2(F(H)) := (8,¢,m), with ¢(S¢) := min(r; - C(SC),ppégl t(p"))
C

The idea is that knowing how often a predicate occurs in the original graph
allows for limiting the estimated counts for characteristic sets containing that
predicate. This reduces the likelihood of overestimating counts without increas-
ing the likelihood of underestimating them. Due to the fact that predicates,
especially common ones such as rdf:type, may be used in several characteristic
sets of the same graph, the aforementioned upper bound may be limited in its
effectiveness. This is because it does not consider the number of characteristic
sets a given predicate is part of. Therefore, we propose a third projection func-
tion ¢3 which “distributes” the upper bound for a predicate p’ by considering
the sum of counts of the characteristic sets, the predicates occurs in:

¢s(F(H)) := (8,¢,m), with &(Sc) :=min | re-e(Sc), min | ——~—ay
S ESAD'ES

The projection function ¢ is adjusted by multiplying ¢(p’) with the ratio of the
count ¢(S¢) of S¢ and the sum of counts for all characteristic sets p’ occurs in.
In contrast to ¢-, this approach increases the likelihood of underestimating the
count of characteristic sets. However, at the same time, it applies a more realistic
upper bound by considering all characteristic sets a predicate occurs in and
adjusting the upper bound accordingly. Note that further projection functions
may be applied. For instance, the size of the characteristic sets or additional
statistics about the predicates in the sample could be considered. However, we
chose not to include them since they are likely produce projections that are
tailored to specific graphs and cannot be generalized to other datasets.
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5.3 Similarity Measures for Characteristic Sets

Finally, we define metrics that quantify the similarity between the estimated
values and the real values to measure the quality of the profile estimations. Fol-
lowing the profile feature estimation problem defined in Definition 4, the goal is
to identify an estimator F(G) = ¢(F(H)) for the characteristic F' that combines
a sample H and projection function ¢ which maximizes the similarity § between
the estimated and the original profile feature. The similarity depends on the pro-
file feature and we propose measures tailored to the characteristic sets profile fea-
ture (CSPF). Due to the diverse nature of the CSPF, there are multiple criteria
to be considered when it comes to defining the similarity §(F(G), F(G)) between
the original CSPF F(G) = (8, ¢, m) and an estimated CSPF F(G) = (8,¢,7m). In
the following, we present a selection of similarity measures which consider both
structural as well as statistical aspects captured by the CSPF. These measures
take values in [0, 1] and their interpretation is ‘higher is better’.

Structural Similarity Measures. Considering the structural properties, the
mean out-degree and the predicate coverage can be considered to assess the
similarity between the estimation and the original feature. We compute the out-
degree similarity as

\dmean(F(G)) = dmean(F(G))|

5od F(G ’F G)):=1-— S
(F(G), F(@)) max(dnean(E(G)), dumean (F(G)))

, with (3)

_ G|
ZSCGS C(SC)

Note that dmean(ﬁ’ (@)) is computed analogously using H, $, and ¢é instead.
Next, we can assess the predicate coverage similarity by computing the ratio of
the number predicates covered in the estimation w.r.t. the number of predicates
in the original profile feature as

dmean(F(Q)) :

pC 7 N |{p|p€SC/\SCGS}|
G G = Ty e 5o A Be e 8

(4)

The quality of the characteristic sets that are covered in the sample can be
assessed by the following measures. First, the absolute set coverage similarity
can be computed as the ratio of characteristic sets in the estimation to those in
the original statistic profile:

5°°(F(G), F(G)) = 181/18| ()

This measure, however, does not consider the amount of triples that haven been
actually covered by the characteristic sets. The relative set coverage similarity of
a characteristic set S¢ of an RDF graph G reflects the relative amount of triples
that S¢ induces in G. The relative set coverage similarity "¢ of an estimation
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is calculated as the number of triples induced by all characteristic sets in the
estimation on the original graph G:

5(R(C), F(G)) = ZSeS Zpes(;'g'(pv Sc) - elS0) (6)

Note that the characteristic sets in the estimation $ are considered while the
number of triples they cover, i.e. ZPESC m(p, Sc) - ¢(S¢), is w.r.t. the original
graph. In this way, 6"¢ reflects the relevance of the characteristic sets captured
in the sample. For example, consider an RDF graph G with two characteristic
sets S1 and Sy, where 1 covers 90% and Sy 10% of all triples in G. Now, given
an estimation with 8§ = {51}, even though the estimation only capture 50% of
the characteristic sets, the importance of S7 is very high, as it covers 90% of the
triples in the original graph.

Table 1. Overview of the similarity measures.

Structural similarity measures Statistical similarity measures

Out-degree | Predicate |Absolute set |Relative set |Count Multiplicity
coverage |coverage coverage similarity |similarity

od c ac rc count multiplicit

L ) I i O I L ©)) 6" (6) 555" () [og T (8)

Statistical Similarity Measures. Next, we focus on similarity measures which
consider the counts and the multiplicity of predicates in the feature estimation.
The degree to which counts and the multiplicities can be estimated accurately
depends on the characteristic set. There might be characteristic sets for which
these estimations may be very accurate, while for others this might not be the
case. Hence, to avoid aggregating the similarity values for all characteristic sets
to a single value, we define the similarity on the level of characteristic sets. Based
on these values, an aggregation, such as mean or the median, may be used to
obtain a single similarity value for all sets. For the similarity with respect to the
count estimations, we adopt the g-error [12] by computing the maximum of the
ratios between true and estimated count. Larger values for the g-error indicate
a higher discrepancy between the true value and the estimation, and g-error of
1 indicates that the estimation is correct. Therefore, we use the inverse of the
g-error to assess similarity

. -1
seount (B(G), B(G)) = (max <C<SC> C<SC)>) VSoed (1)
‘ 7 é(Sc)’ e(Se) 7

Note that the g-error measures the magnitude of the estimation error but does
not reveal whether values are over- or underestimated. This property avoids
that overestimated values cancel underestimated values out when the similarity
values for all characteristic sets in the sample are aggregated. Analogously, we
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compute the similarity of the multiplicities based on the g-error. We aggregate
the values for all predicates in the characteristic sets using the mean to obtain
a single value, as follows

—1

multiplicity - _ p7 SC) (p7 SC) Q
guttirticity (p(G), F(G)) = IScl Z ( mp.50)" Talp. Sc)) \VSc €8
(8)

Summarizing, a CSPF implicitly and explicitly captures various characteristics
of RDF graphs. The quality of estimating such a feature may not be assessed
by a single similarity value but requires considering various metrics which are
summarized in Table 1.

6 Experimental Evaluation

In this section, we empirically analyze the different components of our proposed
approach. The goal of the evaluation is to investigate the following core questions:

Q1 How do different sampling sizes influence the similarity measures?

Q2 What is the impact of different sampling methods on the similarity mea-
sures?

Q3 What are the effects of leveraging additional statistics in the projection
functions?

Q4 How do different characteristics of the RDF graph influence the estimation?

Next, we present the setup of our experiments and present and analyze the results
of our experiments. Based on our findings, we answer the addressed questions in
the conclusions (cf. Sect. 7). The source code and the sample results are available
online.!

Table 2. Characterization of the four RDF graphs studied in the experiments.

RDF graph |# Triples |# Subj. |# Pred.|# Obj. dmean |dstd ||8| % ‘STl‘l AUC

DBLP 88,150,324/5,125,936, 27 36,413,780(17.2 |9.38 270/0.005% 15%1(99.13%
LinkedMDB|5,444,664 (688,187 |220 1,930,703 |7.91 |5.9 8516/1.24% 62%(97.40%
Wordnet 5,558,748 647,215 64 2,483,030 [8.58 [10.26| 777/0.12% 37%98.22%
YAGO 82,233,128(6,429,347, 79 50,670,009(12.79 |15.82/29309|0.46% 49% |98.76%

Datasets. We selected four well-known RDF graphs from different domains:
publications (DBLP), movies (LinkedMDB), linguistics (Wordnet), and cross-
domain (YAGO). An overview of their characteristics is shown in Table 2. The
graphs differ with respect to their size (number of triples), the number of dis-
tinct subjects, predicates, and objects as well as the number of characteristic

! https://github.com/Lars-H/hdt_sampler, https://doi.org/10.5445/IR/1000117614.
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sets |8]. As the number of potential characteristic sets not only depends on the
distinct predicates, but it is bound by the number of distinct subjects in the
graph, we also provide the ratio |8|/# Subjects in percent as a measure of the
characteristic sets’ diversity. Furthermore, we consider ezclusive characteristic
sets defined as 8! := {S¢ | count(Sc) = 1 A Sc € 8} and provide the ratio of
exclusive characteristic sets to all characteristic sets. An exclusive characteristic
set only occurs once in the entire graph and as a result, introduces two major
difficulties when sampling and projecting the characteristic sets: (i) it is unlikely
to sample them as they occur only once, and (ii) when projecting them, it is
likely to overestimate their counts. However, because the coverage of exclusive
characteristic sets is low, it is potentially less important to correctly project
them, as they might be less relevant as other characteristic sets.

For each RDF graph, we indicate the area under the curve (AUC') below
the relative cumulative coverage curve (cf. Fig.2). For the relative cumulative
coverage curve, the characteristic sets are ranked and sorted in decreasing order
according to the number of triples they cover on the x-axis (cf. Sect.5.3) and
on the y-axis, the cumulative sum of the relative number of triples they cover
is indicated. For instance, the curve for DBLP shows that the characteristic set
with the highest coverage (i.e., the start of the curve on the left), covers almost
40% of all triples and 20% of the characteristic sets cover almost all triples in
the graph (relative cumulative coverage =0.99). As a result, the shape of the
curve indicates how evenly the coverage is distributed across the characteristic
sets. A diagonal line indicates all characteristic sets covering the same number of
triples. The stronger the curve is dented towards the upper left corner the more
unevenly is the coverage of the characteristic sets distributed. This indicates that
a few sets cover many triples in the graph. Consequently, a large AUC indicates
unevenly distributed coverage.

Relative Rank . Relative Rank . Relative Rank ; Relative Rank

%
ve C()\‘(El‘ilg(
%
lative Coverage

Cumulative Coverage
Rel. Cumulative Coverage

Rel. C

0.0 0.0 0.0 0.
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0

(a) DBLP (b) LinkedMDB (c) Wordnet (d) YAGO

Fig. 2. The cumulative relative coverage curve shows the ratio of triples covered with
respect to the characteristic sets ordered by decreasing relative coverage.

Sampling Methods. We study the presented unweighted, weighted and hybrid
sampling methods. For the hybrid sampling method we chose 3 = 0.5. We study
four different sample sizes defined relative to the number of entities |E| with
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= {0.1%0 - |E|,0.5%0 - |E|,1%0 - |E|,5%0 - |E|} (Note: 10 %0 = 1%). We
generate 30 samples per dataset, sampling method, and sample size resulting in
a total of 30-4-3 -4 = 1,440 samples.

6.1 Results: Structural Similarity Measures

Table 3 presents the results for the measures out-degree §°¢, predicate coverage
0P¢ and absolute set coverage §%¢, and relative set coverage §"¢ for the different
sampling methods. Included are also the ratios of triples sampled |H|/|G] in
permille (%o).

Considering sample size (Q1), the results show an improvement on the sim-
ilarity measures as the sample size increases, with a few exceptions for §°¢. In
particular, in Wordnet and YAGO, the best similarity values §°¢ are achieved for
the highest relative sample size (5.0%0), while for DBLP and LinkedMDB the
best performance is achieved with a sample size of 1.0%o0. The predicate coverage
similarity 6P¢ also improves with increasing sample sizes. For instance, from 220
predicates in LinkedMDB the sampling methods obtain ~66 predicates with the
smallest sample size and ~154 with the largest. For all the studied graphs, a simi-
lar relation between the absolute (6%¢) and relative set coverage (0"¢) is observed.
Even if only a few characteristic sets are sampled (low §%¢), the number of triples
in the original graph covered by those sets is very high (high §"¢). For example,
in Wordnet, the unweighted sampling (5.0 %o) obtains 12% (§¢ = 0.12) of all
characteristics sets which cover 95% (6" = 0.95) of all triples in the graph.

Table 3. Mean similarity values §°¢, 67¢, §9¢, 6™ and mean sampled triples ratio
|H|/|G| in permille (%o) by sample size and sampling method (h = hybrid, u =
unweighted, w = weighted). Best values per RDF graph and similarity measure are
indicate in bold.

DBLP LinkedMDB Wordnet YAGO

AL god gpe sac gre

L sod gpe sac gre
o §od gre gac s

1] god goo gac grellH] god soe sac gre

[GT
0.17 0.59/0:67 0.01 0.32

0.10§0%98 0.60 0.01 0.31

0.25 0.40 075 0.01 0.32

0.11]
0.10
0.13

0.09J0%980.13/0172 0.32 0.00
0.08 010 0.31 0.00
0.09 016 0.34 0.00

017057046002-

0.10)0%86 0.42 0.02
0.23 0.43 0.50 0.03

0.1 %o

¢ ho:57 0.16 0. 64 0.48 0.01 0.860.57/0:62 0.06 0.87 0.57 0.02 0.37
S 10.50 0.16 0. 50 0.44 0.01 0.49[0198 0.56 0.04 0.50 0.02 0.36
S w0.65 0.16 0.79/0.62 0.46 0.01 1.22/0.42/0.66 0.07 1.25 0.400:92 0.02 0.37
¢ s 0.21 1.28/0:78 0.52 0.01 1.73/0.5910:70 0.08 1.74 0.59)0098 0.03 0.38
S u/1.00 0.20 1. 00 0.51 0.01 1.010195 0.06 1.00 0.02 0.38
~ w1.30 0.21 1. 57 0.54 0.02/0.:852.45 0.42 0.10/0:942.43 0.43 0.03 0.38
g bp74 0.31[M#0086.42/0176/072 0.040188s.45 05800188 0.17J887s.40/0.59 0.080.40
2 ul5.00 0.311.005. oo o 03/0.885. 02 0.12/0:954.99 0.060.40
B w6.49 0.311.007. 75 o 06/0-9011.9 0 420.840.21 11.7 0.4310.970.090.40
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Regarding the sampling methods (Q2), the unweighted approach performs
best for the out-degree similarity 6°¢. This relates to the fact that the hybrid and
weighted sampling methods select high out-degree entities with a higher prob-
ability. To illustrate this, consider Fig. 3 that shows the characteristic sets that
are constructed with two different sampling methods (in color) in comparison to
the characteristic sets from the original graph (in gray). The weighted sampling
methods (Fig. 3a) leads to characteristic sets with higher set size (highlighted in
the rectangle), while the unweighted sampling (Fig. 3b) captures average-sized
characteristic sets. Furthermore, a higher the dispersion of the out-degree distri-
bution (dstq/dmean) of the original graph (Q4), leads to a higher similarity for
the unweighted sampling method in comparison to the other approaches.

In general, the unweighted sampling method exhibits the lowest predicate
coverage similarity (6P¢) in comparison to the other approaches. Combining this
observation with Fig. 3, we conclude that the unweighted sampling method fails
to obtain those predicates used in characteristic sets with high degrees. The only
exception where all methods obtain every predicate is DBLP for sample sizes
1.0%0 and 5.0%0, due a high average out-degree w.r.t. the number of predicates
(cf. Table?2) in the original graph.

Considering absolute (§*¢) and relative set coverage (d7¢), the unweighted
method performs almost as well in most cases while always sampling the fewest
triples (|H|/|G|). The relation between absolute and relative set coverage is in
accordance with the AUC property of the graphs, i.e., most triples are covered
by few characteristic sets only.

6.2 Results: Statistical Similarity Measures

Next, we analyze the estimation results for the counts and multiplicity. Instead of
presenting the similarity measures 6°°*™ and §™“*Plicity e present the g-error
as it is more commonly used in the literature. For each sample, mean and median
g-error for count and multiplicity estimations across all characteristic sets S¢ € 8
are computed. Note that mean/median for each sample are computed first to
assess the performance on the sample level. We present the average of mean and
median g-errors in Table4 to get an indication of how well the average sample
per dataset, size and method performs.

Regarding the graphs (Q4), the best count estimations are observed for DBLP
and Wordnet where the best median values are between 1.27 and 1.53 indi-
cating that, for half of the characteristic sets, the counts are misestimated by
<27% and <53%. The difference in the best mean values for Wordnet (6.09) and
DBLP (3.55) reflects that in Wordnet there are higher misestimations on aver-
age. For YAGO, the best median g-error is 2.12 for the largest sample size and
the unweighted method. The corresponding mean (16.0) is almost 8 times higher
than the median indicating a strong positive skew of the g-error distribution. For
LinkedMDB the best median result 1.49 is achieved with the smallest sample size,
however, it needs to be noted that this smaller sample also covers fewer charac-
teristic sets (cf. §%¢ in Table 3). Taking the characteristics of the original graphs
into consideration, two observation may explain the differences in g-errors: (i) a
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Table 4. Mean and median for g-errors of the count estimations for the projection
functions ¢1, @2, and ¢3 as well as for the multiplicity estimation. Best values per
column are bold and values for the best projection function are highlighted in [gray .

DBLP LinkedMDB

b1 bo 3 multiplicity b1 bo 3 multiplicity

mean median mean median mean median mean median|mean median mean median mean median mean median

h| 6.31 1.61 5.11 1.57 4.16 1.49 1.04 1.02| 547 2.56 222 2.14 117 2.01 1.04 1.01
u| 16.4 1.64 10.4 1.59 9.77 1.51 1.04 1.02| 262 2.22 117 1.57 79.2 1.49 1.03 1.0

0.1 %o

w| 25.6 1.62 25.1 1.61 18.4 1.48 1.04 1.02| 600 5.07 298 3.84 155 3.03 1.05 1.01

§ h 3.9 1.51 3.89 1.49 3.54 1.48 1.04 1.02| 207 4.76 173 3.68 87.7 3.07 1.05 1.02
n u| 4.47 1.38 4.46 1.36 4.12 1.34 1.04 1.02| 130 2.44 108 1.84 74.1 1.78 1.04 1.01
© w| 5.36 1.51 5.35 1.5 4.94 1.5 1.06 1.02| 217 12.2 185 11.6 76.0 6.9 1.06 1.04
g h| 5.51 1.45 5.51 1.44 5.14 1.43 1.04 1.02| 117 6.41 106 6.14 57.1 4.45 1.06 1.04
X

o u| 6.85 1.36 6.85 1.35 6.24 1.32 1.04 1.02| 95.5 2.81 87.2 2.35 68.6 2.28 1.05 1.02
-

w| 5.89 1.43 5.88 1.43 5.33 1.43 1.05

[

.02 128 13.6 116 13.2 49.7 7.08 1.07

-

.05

h| 4.06 1.33 4.06 1.33 3.88 1.32 1.04 1.01| 39.9 8.67 39.0 8.64 21.7 5.38 1.07 1.06
u| 3.6 1.28 3.6 1.28 8.568 1.27 1.03 1.01| 85.2 4.36 34.5 4.09 30.9 3.89 1.06 1.04
w| 3.96 1.36 3.96 1.36 3.77 1.38 1.05 1.02| 37.9 10.8 37.1 10.8/16.8 5.67 1.07 1.06

5.0 %o

Wordnet YAGO

b1 2D b3 multiplicity b1 o 3 multiplicity

mean median mean median mean median mean median|mean median mean median mean median mean median

h| 43.6 2.31 12.5 2.22 9.04 2.01 1.11 1.11| 158 3.07 145 3.04 125 2.91 1.3 1.24
u| 74.6 2.42 11.6 2.11 8.98 1.72 1.1 1.08| 161 3.05 153 3.03 129 2.77 1.25 1.2
w| 53.8 3.34 23.4 2.81 17.8 2.48 1.12 1.11) 150 3.67 137 3.65 125 3.49 1.33 1.27

0.1 %o

h| 28.5 2.28 18.9 2.19 14.4 2.04 1.12 1.11) 61.2 2.74 58.3 2.74 54.6 2.68 1.29 1.24

9
X
w u| 22.6 1.85 15.1 1.75 12.2 1.57 1.1 1.08| 60.0 2.64 59.1 2.64 55.4 2.51 1.24 1.19
© w| 28.0 2.68 23.5 2.6 18.5 2.37 1.13 1.12| 56.3 3.23 52.8 3.22 48.5 3.15 1.32 1.26
g h| 244 2.18 18.9 2.17 14.6 2.0 1.12 1.1 38.2 2.51 36.7 2.5 34.6 2.47 1.29 1.24
X
o u| 20.3 1.78 15.2 1.71 12.4 1.59 1.1 1.09| 41.9 2.45 41.6 2.45 39.3 2.37 1.24 1.2
-

w| 21.2 2.7 17.1 2.68 13.7 2.36 1.13 1.12| 37.5 3.12 36.2 3.11 33.1 3.01 1.32 1.27

h| 10.0 2.14 8.72 2.13 7.26 1.95 1.12 1.1 15.5 2.43 15.5 2.43 14.1 2.39 1.29 1.25
u| 7.55 1.6 6.8 1.58 6.09 1.58 1.1 1.08/ 16.3 2.14 16.3 2.13 16.0, 2.12 1.24 1.2
w| 9.75 2.52 8.78 2.51 7.07 2.17 1.12 1.11 14.7 3.0 14.7 2.99/18.1 2.89 1.32 1.27

5.0 %o

higher characteristic set diversity (|Sc|/#Subjects) yields higher g-errors, and
(ii) a higher ratio of exclusive characteristic sets yield higher g-errors. Regarding
(i): with many possible characteristic sets to be sampled from, it is likely to
sample few entities per set. However, sampling several entities per characteristic
set allows for better estimating their overall occurrences. Considering (ii): many
exclusive characteristic sets increase the likelihood of them being sampled and
their counts to be overestimated, as the projection function cannot distinguish
them from non-exclusive characteristic sets. Inspecting the projection functions
(Q3), the statistic-enhanced functions ¢o and ¢3 slightly reduce the mean and
median g-errors for the count estimations. In all cases, ¢3 yields the best esti-
mations and should be favored over ¢, whenever the additional statistics are
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Fig. 3. Example of the sampled characteristic sets for YAGO with respect to the num-
ber of their predicates (|Sc|) and their count (count(Sc)) on a log-scale. Indicated in
gray are all sets of the original dataset and in color those, which are contained in the
sample. (Color figure online)

available. Simultaneously, the improvements over the basic projection function
¢1 diminish with an increasing sample size indicating that larger samples contain
fewer outliers which are corrected by the additional statistics in ¢o and ¢s.

For the multiplicity estimations, the mean and median g-errors are below 1.3
in all cases for all graphs. They are less affected by sampling methods and sample
sizes reflecting a uniform predicate usage within the characteristic sets with few
outliers. Regarding the sample size (Q1), in most cases, a larger sample provides
better results for count and multiplicity estimations while at the same time
estimating more characteristic sets from the original graph (cf. §¢ in Table 3). As
a result, increasing the sampling size not only improves the overall accuracy but
also the number of characteristic sets estimated. Similar to previous observations,
the unweighted sampling method (Q2) yields the best results in most cases for
count and multiplicity estimations.

7 Conclusions and Future Work

We have introduced the problem of RDF dataset profile feature based on char-
acteristic sets and proposed a solution based on sampling. The presented profile
feature estimation approach obtains a sample from the original graph, computes
the profile feature for the sample, and uses a projection function to estimate the
true profile feature. Different applications can benefit from the resulting feature
estimations. For instance, query plan optimization in decentralized querying can
benefit from the estimations to find efficient query plans, even when the entire
dataset may not accessible to compute the complete statistics. We conducted
an empirical study to evaluate the similarities between the estimations and the
true profile features. We presented and analyzed the results of our study and to
conclude our findings, we answer the questions presented in Sect. 6:
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Answer to Q1. Larger sample sizes have two major positive effects: (i) they improve
the structural and statistical similarities measures, and (ii) they capture and estimate
the statistics for more characteristic sets of the original graph. Regardless, datasets
with a high number of characteristic sets can still be challenge. In such cases it may
be beneficial to use additional information, such as query logs, to lead the sampling
method towards the most relevant characteristic sets.

Answer to Q2. The similarity of the estimated profile features depends on the cho-
sen sampling method. The unweighted sampling method yields the highest similarity
values in the majority of cases while requiring the fewest triples to be sampled.

Answer to Q3. Projection functions leveraging additional statistics (i.e., overall
counts per predicate) achieve better results for projecting the counts of characteristic
sets. The improvements over the zero-knowledge projection function diminish with
increasing sample size.

Answer to Q4. The structure of the RDF graph affects the similarity values.
Especially count values are misestimated for datasets with a large share of exclusive
characteristic sets and a larger diversity of characteristic sets. In such scenarios,

larger sample sizes can help improving the estimations.

Our future work will focus on investigating the impact of estimated Character-
istic Sets Profile Features on the performance of query plan optimizers.
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