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Abstract. With ever increasing capacity for collecting, storing, and pro-
cessing of data, there is also a high demand for intelligent knowledge
discovery and data analysis methods. While there have been impressive
advances in machine learning and similar domains in recent years, this
also gives rise to concerns regarding the protection of personal and oth-
erwise sensitive data, especially if it is to be analysed by third parties,
e.g. in collaborative settings, where it shall be exchanged for the benefit
of training more powerful models. One scenario is anomaly detection,
which aims at identifying rare items, events or observations, differing
from the majority of the data. Such anomalous items, also referred to
as outliers, often correspond to problematic cases, e.g. bank fraud, rare
medical diseases, or intrusions, e.g. attacks on IT systems.

Besides anonymisation, which becomes difficult to achieve especially
with high dimensional data, one approach for privacy-preserving data
mining lies in the usage of synthetic data. Synthetic data comes with the
promise of protecting the users’ data and producing analysis results close
to those achieved by using real data. However, since most synthetisation
methods aim at preserving rather global properties and not character-
istics of individual records to protect sensitive data, this form of data
might be inadequate due to a lack of realistic outliers.

In this paper, we therefore analyse a number of different approaches
for creating synthetic data. We study the utility of the created datasets
for anomaly detection in supervised, semi-supervised and unsupervised
settings, and compare it to the baseline of the original data.
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1 Introduction

The demand for and practice of data sharing and exchange between different
data collecting parties is increasing, often because different data sets comple-
ment each other, or because the processing and analysis of data is outsourced.
Many interesting knowledge discovery tasks are dependent on large, high qual-
ity amounts of data being available. However, when data is sensitive, e.g. when
it concerns individuals or is business related, there are certain regulatory and
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other barriers for data sharing. Still, collaborative analysis of data can be very
beneficial, e.g. when learning from misuse patterns that other parties have been
exposed to, such as network intrusions or fraud. Thus, means to enable such
data exchange are required. In some cases, anonymisation techniques such as
k-anonymity [20] or Differential Privacy [6] can be successfully employed. For a
detailed overview on privacy-preserving data publishing methods, see [5]. How-
ever, k-anonymity has been shown to be still prone to linkage attacks when
adversaries have background knowledge and access to other data sources. Dif-
ferential privacy, when applied to the model or the output of the model, on the
other hand is not applicable for all types of analysis techniques. Both approaches
distort the data records to some extend, which, due to the information loss, has
potentially negative effects on the utility of the data and the models subsequently
trained upon.

Synthetic data is generally considered as data obtained not from direct mea-
surement. In the context of data analysis efforts, it is often considered to be data
generated (or synthesised) from a real dataset that, e.g. for privacy considera-
tions, can not be shared. Its aim is to provide a dataset containing records that
are similar to the original ones, and that preserve the high-level relationships
within the data, without actually disclosing real, single data points. While pre-
serving global properties is often possible, there is generally still a certain loss in
data utility, albeit for many settings, this might be acceptable – and potentially
be of higher utility than anonymisation techniques.

Approaches can be distinguished on how the model for generating data is
obtained. If the original data is not directly used, synthetic data can be generated
based on rules and constraints describing the characteristics, requiring an in-
depth knowledge on the original data and expert knowledge on the domain.
Approaches that can access the original data can learn models from that data,
and use these models to generate new data. These methods have the advantage
of being applicable to virtually any kind of domain and being scalable to large
amounts of attributes. They can also capture correlations that are not easily
understood by human experts and for which rule-based methods would fail.
The complexity of the employed models for representing the original data is of
varying degree, which has implications on how well the synthetic data resembles
the original. In this paper, we focus on approaches that utilise the original data.

Another differentiation is whether the dataset is partially or fully synthetic.
The former means that only a subset of the available attributes (or sometimes a
subset of the samples), especially those identified to be sensitive, are replaced by
synthetically generated ones. For partially synthetic data, data utility is expected
to be higher, even though disclosure risks may be higher as well.

Anomaly detection methods typically utilise general outlier detection tech-
niques, but differ when there is a need to distinguish harmless noise from mali-
cious intentions, actions or attacks. Many sub-types of anomaly detection can be
distinguished, depending on the type of data, the required output, and whether
labels that distinguish between normal and abnormal cases are available [4].
The latter decides whether the detection is to be performed in a supervised,
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unsupervised or semi-supervised setting. The general settings is that the anomaly
(or outlier, minority) type of data points are very few compared to the “normal”
data points – sometimes well below 1% of the whole dataset.

Anomaly detection can be considered a rather peculiar use case for employ-
ing synthetic data, as this approach tries to specifically preserve the global
characteristics, but not of single data points – which could result in informa-
tion leakage. Anomaly detection techniques, however, try to specifically find the
unusual data points among a large amount, and the synthetically created dataset
is not expected to produce outlier data points similar to the original ones, as
they do not represent global properties. In this paper, we thus evaluate the
utility of synthetic data for this task. We consider multiple scenarios, utilising
three different approaches for generating synthetic data, and address supervised,
semi-supervised and unsupervised methods for anomaly detection based on the
generated data. We compare the results to a baseline of methods run on the
original dataset.

Section 2 describes related work in synthetic data and anomaly detection.
Section 3 describes the setup for our experiments, before we present our evalua-
tion in Sect. 4. Finally, we present conclusions and future work in Sect. 5.

2 Related Work

One of the earliest applications of generic synthetic data generation in a data
mining context is described by Rubin in [17], where multiple imputation is used
to synthetically generate certain columns of datasets. This is thus a setting
for partially synthetic data. Specific applications include e.g. the generation of
time-series or log data, as they would be encountered for intrusion-detection sce-
narios [3,11]. More recently, several efforts have been made to generate synthetic
images, e.g. in the medical domain for MR images [8].

In general, most approaches to synthetic data generation that are based on
existing data, and not (only) on rules, consist of the following steps:

– Learning a representation (model) of the original data, with a certain sta-
tistical approach (such as estimating a probability density function)

– Synthesising the data, i.e. generating new data based on the model
– Optionally, a module to ensure privacy of the generated, synthetic data

samples, e.g. by means of applying Differential Privacy

A major difference in existing approaches lies in the complexity of the learned
model from the data. This can range from relative simple models learning (inde-
pendent) probability density functions for each attribute, and more sophisticated
models that preserve the correlation between attributes e.g. via co-variances,
to models that capture very complex correlations e.g. via auto-encoders, or
approaches utilising generative adversarial networks (GANs) [7]. In the syn-
thetisation step, some approaches apply further methods for data protection,
e.g. by applying Differential Privacy before publishing the synthetic dataset.
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While synthetic data has shown to be of utility for multiple data analysis
tasks including regression or classification (see e.g. [9]), another major aspect is
whether it is actually able to fulfil the promises towards preserving the privacy
of the individuals in the original dataset. Regarding disclosure risks for syn-
thetic data, usually a distinction is made between fully and partially synthetic
data. Reiter and Mitra [16] proposed identification disclosure risk estimations
for partially synthetic data. They also note that the notion of identification dis-
closure is not meaningful for fully synthetic data, since fully synthetic records
do not relate to original records in terms of a 1-to-1 correspondence. From an
intruder’s perspective, the approach to gain information by linking certain syn-
thetic records to individuals is thus not promising, as such links generally do not
exist, and matches that have been established with real individuals are only spu-
rious, and not real. Other disclosure risks exist, e.g. attribute disclosure, where
it is assumed that the intruder knows the values of certain attributes of their
victim and wants to learn the value of some sensitive attribute (called the target
variable). For a detailed discussion of the latter, see e.g. [10].

For our evaluation in this paper, we employ the following three data synthe-
sizers: The Synthetic Data Vault (DV) [14] builds a model based on estimates
for the distributions of each column. In order to preserve the correlation between
attributes, the synthesizer applies a multivariate version of the Gaussian copula
and computes the covariance matrix. The DataSynthesizer (DS) [15] provides,
among simpler techniques, the ‘correlated attribute mode’, in which dependen-
cies between attributes are represented by a Bayesian network, learned on the
original data. The DataSynthesizer further uses the framework of Differential
Privacy, and offers the possibility to inject noise in the model and thus the gen-
erated data, by a parameter controlling the magnitude. Finally, synthpop (SP)
[13] uses as the default method a CART (Classification and Regression Trees)
algorithm. The user is able to specify a large number of parameters and may
apply a built-in function for disclosure control to the resulting synthetic dataset.

When preparing a dataset for publishing via anonymisation, synthetisation
or similar approaches, some information at the level of individual records is
invariably removed [5] in order to achieve the desired level of protecting the
sensitive information that cannot be shared. Utility evaluation of such datasets
can generally be done by two methods. One is to measure certain properties on
the sanitised dataset and compare it to the original dataset, such as mean or
standard deviation or the data distributions. This evaluation has the advantage
of being independent of the final task being carried out on the dataset, but is also
generally more difficult to put into an application context. Another approach is
to measure the utility on a task, e.g. a supervised classification task, or outlier
detection. In this approach, the metric measures the differences in effectiveness of
the models on the original dataset compared to the sanitised one. In this paper,
we focus on the second approach, as it is more suited for anomaly detection.

Anomaly detection typically utilises general outlier detection techniques [2,
21], but differ when there is a need to distinguish harmless noise, fluctuations or
various forms of novelty, from malicious intentions, actions or attacks. There are
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many forms of anomaly detection depending on the nature of the input data, the
form of output and the presence or absence of data labels [4]. Point anomalies
denote individual data instances that are different from the normal data points.
In a contextual anomaly, data instances are anomalous within a specific context,
such as temporal or spatial. Collective anomalies identify a collection of instances
as anomalous with respect to the entire dataset. In this paper, we focus primarily
on point anomalies. Techniques for this type of anomalies are often the building
blocks for contextual and collective anomalies, thus some of our conclusions
transfer also to these scenarios.

Anomaly detection is used in a wide variety of contexts, such as fraud detec-
tion [1], intrusion detection [22], video surveillance systems, or forensic investiga-
tions in general. Specific techniques include unsupervised learning to find struc-
tures or patterns in data in the absence of any labels. Recent techniques include
Generative Adversarial Networks (GANs), such as f-AnoGAN [18]. When labels
are present only for the “normal” data points, a semi-supervised methods such
as a one-class support vector machine (SVM) [19] or autoencoders are employed.
Supervised methods require labels for both the normal and the anomaly cases,
and can be addressed by utilising standard classification techniques, such as
Logistic Regression, Random Forests, or Support Vector Machines.

3 Experiment Setup

In our experiments, we utilise the “credit card fraud” dataset by the ML group
at ULB, which was provided publicly on Kaggle1. It contains data based on real
samples from transactions made by credit cards in September 2013 by European
cardholders, gathered over two days. Out of the total of 284,807 transactions,
only 492 are identified as fraudulent. The dataset is thus highly unbalanced,
as frauds account for only 0.172% of all transactions. The dataset contains 30
input variables. Due to confidentiality reasons, most of the original features have
been transformed with Principal Component Analysis (PCA). A projection of
the dataset to two dimensions can be seen in Fig. 1, created using t-Distributed
Stochastic Neighbour Embedding (t-SNE) [12]. It can be observed that some
of the anomaly data points are separable, especially the ones seen towards the
top-right of the visualisation. However, also a large number of points seem to be
mixed with normal (legit) records, and thus likely difficult to separate.

For the generation of synthetic data, we used the Synthetic Data Vault, the
DataSynthesizer and the synthpop package (cf. Sect. 2). Our primary goal is an
unbiased evaluation, and not an optimisation towards a specific synthesizer or
target evaluation, but we performed a limited parameter search starting with
the standard settings of each synthesizer. We performed the following procedure
in order to synthesise and prepare the data for the utility evaluation.

1. We deleted columns in the context of standard feature cleaning, e.g. purely
identifying attributes like the ‘Time’ column in the original dataset.

1 https://www.kaggle.com/mlg-ulb/creditcardfraud.

https://www.kaggle.com/mlg-ulb/creditcardfraud
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Fig. 1. Projection of the original dataset, generated using t-SNE

2. We performed a holdout method, i.e. we randomly split the data into training
and test data, such that the size of the latter is 20% of the original table.

3. On the training data, we applied all three data synthesis methods. As output,
we generate new, synthetic training data of equal length.

To investigate different configurations regarding its Differential Privacy settings,
the DataSynthesizer is applied twice in Step 3. For each of the splits generated
in Step 2, we therefore obtain five data files: (i) the original training data, (ii)
the training data synthesised by the Synthetic Data Vault, (iii) the training data
synthesised by synthpop, (iv) the training data synthesised by the DataSynthe-
sizer without applying Differential Privacy, and (v) the training data synthesised
by the DataSynthesizer applying Differential Privacy with the parameter ε.

With this procedure, we obtain datasets that we utilise for training a super-
vised anomaly detection system (e.g. a classification algorithm). Moreover, we
want to separately investigate the behaviour of semi-supervised and unsuper-
vised methods as well. We simulate semi-supervised data by repeating the above
outlined procedure for just the data samples that are present in the training set
(i.e. after splitting the data), and are labelled as “normal” cases. Finally, for the
unsupervised approach, we simply remove the class label before synthesising the
data. We thus obtain another five datasets for each of these cases, as for the
supervised case, and therefore utilise in total 15 different synthetic training sets
for each of the splits generated in Step 2. In addition, we also utilise the test
dataset, which is used to estimate the results of the machine learning models on
all the training sets. This dataset is not modified in any way, i.e. the syntheti-
sation is performed only to generate the synthetic training sets. This setup will
be used for our experiments for anomaly detection.

In Fig. 2, we show the same projection as in Fig. 1, but for the synthetic data
generated by the DataSynthesizer and synthpop. We observe that DataSynthe-
sizer is generating the fraudulent records much closer to the legit ones, while for
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Fig. 2. Projection of the synthetic datasets generated by DataSynthesizer (left) and
synthpop (right), generated using t-SNE

synthpop separate clusters of fraudulent data appear. This can be an indication
for the utility of the datasets for the anomaly detection task.

For the anomaly detection, we utilise the implementation provided in the
Python scikit-learn framework2. We specifically use these methods, a detailed
description of which can be found at the scikit-learn documentation3:

– Supervised: Logistic Regression, k-nearest Neighbours, Random Forests, Sup-
port Vector Machines (SVMs), Näıve Bayes

– Semi-supervised: One-Class SVMs, Gaussian Mixture Models, Auto Encoder
– Unsupervised: Isolation Forests, Local Outlier Factors

4 Evaluation

Following the generation of synthetic training data, the final step of our experi-
ment is to train machine learning models on the real and the synthesised training
datasets and to evaluate these models by comparing their prediction scores on
the test data. For a binary task like anomaly detection, which either detects an
anomaly or normal behaviour, there can be four different outcomes, depending
on the label associated to the data point and the prediction of the machine learn-
ing model. Assuming that the fraudulent class is considered the “positive” class,
we can distinguish two successful outcomes: true positives are data points that
are frauds and detected as such, while true negatives are data points that are
normal (legit) behaviour and identified as such. Two types of errors can occur:
false positives are legit cases that the model predicts as frauds, while false neg-
atives are fraud cases that have not been detected as such, but are considered
legit. These are depicted in so-called confusion matrices, which for a binary clas-
sification task are 2 × 2 matrices, where the columns represent the two classes
0 (‘legit’) and 1 (‘fraud’). The first row shows the number of elements in the
class that have been predicted to be legit, the second row shows the number of
elements that have been predicted to be fraudulent.
2 Specifically, version 0.22, available at https://scikit-learn.org/0.22.
3 https://scikit-learn.org/stable/modules/outlier detection.html.

https://scikit-learn.org/0.22
https://scikit-learn.org/stable/modules/outlier_detection.html
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Table 1. Supervised anomaly detection: confusion matrix

Näıve Bayes SVM K-NN Random forest Log regression

Real
55626 1224

26 86

56840 10

33 79

56845 5

25 87

56848 2

32 80

56836 14

26 86

SDV
56838 12

100 12

56850 0

112 0

56850 0

112 0

56850 0

112 0

56845 5

102 10

DS
55243 1607

17 95

56848 2

62 50

56848 2

58 54

56843 7

49 63

56776 74

28 84

DSP
56498 352

41 71

56850 0

112 0

56850 0

112 0

56849 1

110 2

56745 105

70 42

SP
55424 1426

24 88

56848 2

51 61

56845 5

39 73

56849 1

41 71

56824 26

26 86

Table 2. Supervised anomaly detection: scores

Näıve bayes SVM K-NN Random forest Log regression

Pr Re F2 Pr Re F2 Pr Re F2 Pr Re F2 Pr Re F2

Real 6.6 76.8 24.5 88.8 70.5 73.6 94.6 77.7 80.6 97.6 71.4 75.5 86.0 76.8 78.5

SDV 50.0 10.7 12.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 8.9 10.8

DS 5.6 84.8 22.1 96.2 44.6 50.0 96.4 48.2 53.6 90.0 56.3 60.8 53.2 75.0 69.3

DSP 16.8 63.4 40.8 0.0 0.0 0.0 0.0 0.0 0.0 66.7 1.8 2.2 28.6 37.5 35.3

SP 5.8 78.6 22.4 96.8 54.5 59.7 93.6 65.2 69.4 98.6 63.4 68.3 76.8 76.8 76.8

Based on this representation, we report the following measures. Precision
is defined as the ratio of true positives (correctly identified frauds) to all data
points predicted as frauds, i.e. how many of the cases the model has predicted to
be frauds are actually such. Recall indicates how many of the frauds have been
identified by the model, given as the ratio of the true positives to all cases that
have been labelled as fraud. Each of these measures alone is not representative,
as it is rather easy to optimise one of them, but difficult to have both take high
values in conjunction. The F1 score provides a unified score, by computing the
harmonic mean. The F2 score weighs recall higher than precision, which makes
it suitable in our application, where it’s likely more important to identify most
of the anomalies, and a certain amount of false positives can be tolerated. In
the following tables, we report these scores in percent. It is important to note
that classification accuracy is less meaningful in our setting. It is defined as
the ratio of true positives and true negatives to the size of the dataset. With
highly imbalanced data, even models which trivially predict all instances as legit
(normal) cases, and do not detect frauds at all, achieve high accuracy scores.

For each of the anomaly detection methods, we performed a random grid
search over a number of parameters to optimise the results on the original train-
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ing set. We then applied these settings, without any further optimisation, also
to the models learned on the synthetically created datasets.

Table 1 shows the confusion matrices for the supervised anomaly detection
algorithms, the metrics derived thereof are shown in Table 2. We can observe
that the anomaly detection is a difficult task already on the original dataset,
where Näıve Bayes is achieving a good recall, but has very low precision, and
seems thus not usable for that task. The other algorithms perform significantly
better, with k-Nearest Neighbours scoring best on precision, recall and F2 score.

On the synthetic datasets, we can see that the Synthetic Data Vault is
not able to create datasets that can be learned by the supervised methods.
The confusion matrices show that SVMs, k-NN and Random Forest cannot iden-
tify any of the anomaly data points, but classify them all as the “non-fraud”
class, therefore achieving zero precision, recall, and F2 score. Only a very small
number of frauds are correctly identified by Näıve Bayes and Logistic Regression,
and while there are relatively few non-fraud cases wrongly predicted as fraud,
the overall F2 score stays low – it is in the range of approximately 10%, and
thus not useful. We can observe similar patterns for the DataSynthesizer when
using Differential Privacy – even though larger values of recall are achieved, the
more relevant F2 scores are still rather low, being in the range of 35% to 40%.

The models trained on the data synthesised by the DataSynthesizer without
Differential Privacy do a better job at detecting frauds than the models trained
on the data synthesised by the Synthetic Data Vault. Precision stays relatively
high for most settings, but recall drops compared to the original data. Thus, the
overall F2 scores drop by 15% to more than 20%, except for Näıve Bayes, which
drops only marginally, but from a very low baseline of 24%. This trend of lower
recall is slightly inverted for Logistic Regression, where it drops only marginally,
by 1.8%, and thus achieves the best results for this synthetic dataset.

The best results on synthetic data are achieved with synthpop. For Logistic
Regression, recall stays the same, and precision drops only marginally, and thus
the overall F2 score is very close to the original dataset, lower just by 1.8%. For
the other classifiers, the degradation is a bit larger, mostly with a lower recall,
which results in an F2 score lower by approximately 10%. In overall, however,
the scores are still relatively close to the original dataset.

In Table 3, we can see the confusion matrix for the unsupervised (Isolation
Forest, Local Outlier Factor) and semi-supervised (One-Class SVM, Gaussian
Mixture Model, Auto Encoder) methods. The scores are given in Table 4. We can
observe that the unsupervised task, and to some extent also the semi-supervised
task, is a much harder one. The major impact is on precision, where many
methods struggle to achieve high values without reducing recall too much.

For the unsupervised methods, the Isolation Forest obtains the best preci-
sion values, and also high recall values. Thus, also in regards to the F2 score,
Isolation Forest achieves by far the highest scores in the range of around 20%.
It is interesting to note that the synthetic datasets are almost on par with the
original data for Isolation Forests. Contrary to before, in this setting, the Syn-
thetic Data Vault and DataSynthesizer with Differential Privacy are not much
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Table 3. Unsupervised & semi-supervised anomaly detection: confusion matrix

Isol. Forest LOF 1-Class SVM GMM AutoEncoder

Real
55335 1515

26 86

50756 6094

77 35

53655 3195

19 93

56838 12

32 80

56591 259

50 62

SDV
55268 1582

34 78

51190 5660

13 99

51718 5132

13 99

56759 91

31 81

56582 268

52 60

DS
55185 1665

28 84

51279 5571

25 87

52465 4385

14 98

56309 541

49 63

56533 317

53 59

DSP
55445 1405

33 79

50755 6095

13 99

52126 4724

14 98

56643 207

53 59

56531 319

53 59

SP
55128 1722

29 83

54283 2567

20 92

54110 2740

21 91

56719 131

32 80

56607 243

52 60

different than the other approaches – the latter is even the best of the synthetic
datasets, achieving an F2 score of 20.4%. Results for the Local Outlier Factor
are generally not satisfying. An interesting observation, however, is that all the
synthetic datasets outperform the model on the original dataset – albeit still at
a low overall score. Only synthpop is closer to the results of the Isolation Forest.

For the One-Class SVM as a semi-supervised method, the results are in
between the two unsupervised other approaches. Interestingly, also for this set-
ting, the synthetic dataset generated by synthpop performs better than the orig-
inal one. Overall, however, the One-Class SVM shows a low precision. We obtain
much better results with the Auto Encoder, which is mostly due to a much lower
false-positive rate. The number of actual frauds correctly detected is 62 (55%)
on the real data, and only marginally lower on most synthesizers, which achieve
59 or 60 correctly identified fraud cases. Precision and thus F2 score are the
highest on the dataset created with synthpop, which is overall very close to the
real dataset, with a just 0.4% lower score. Similarly to the unsupervised meth-
ods, also on this method the Synthetic Data Vault achieves better results than
the DataSynthesizer. Finally, the best results on the semi-supervised task are
achieved by the Gaussian Mixture Model. On the original dataset, 71.4% of the
fraud cases are identified, with a low false-positive rate of only 12 records. The
results on synthpop match the recall, but have a lower precision, thus resulting
in an overall rather large drop of F2 score by approximately 14%. Again, the
Synthetic Data Vault is the best of the synthesising methods, having actually
a marginally higher recall, and a still acceptable precision; thus, the overall F2
score drops only around 9% from 74.1% on the original dataset.

While these are still below the results of the supervised approach, the semi-
supervised setting is a more difficult task, as it can rely only on labels for the
“normal” cases. It is however a setting of practical application value, as it is
generally easier to obtain these labels, and more difficult to label anomaly cases.
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Table 4. Unsupervised & semi-supervised anomaly detection: scores

Isol. Forest LOF 1-Class SVM GMM AutoEncoder

Pr Re F2 Pr Re F2 Pr Re F2 Pr Re F2 Pr Re F2

Real 5.4 76.8 21.0 0.6 31.3 2.7 2.8 83.0 12.4 87.0 71.4 74.1 19.3 55.4 40.3

SDV 4.7 69.6 18.5 1.7 88.4 8.0 1.9 88.4 8.7 47.1 72.3 65.3 18.3 53.6 38.7

DS 4.8 75.0 19.1 1.5 77.7 7.1 2.2 87.5 9.9 10.4 56.3 29.9 15.7 52.7 35.8

DSP 5.3 70.5 20.4 1.6 88.4 7.5 2.0 87.5 9.3 22.2 52.7 41.3 15.6 52.7 35.7

SP 4.6 74.1 18.4 3.5 82.1 14.8 3.2 81.3 13.9 37.9 71.4 60.7 19.8 53.6 39.9

5 Conclusions and Future Work

In this paper, we evaluated the utility of synthetic data for the task of anomaly
detection, on the example of fraud detection. We considered the setting where
the data required to build the models can not easily be shared with the people
responsible for the training due to its sensitive nature. In settings where multiple
parties would like to collaborate to obtain a more powerful model, facilitating
such exchange can be crucial. Synthetic data can be used to create a counter-
part of the data that does not represent individual records, but still preserves
important characteristics. Thus, the disclosure of sensitive data can be reduced.

In our evaluation, we considered the cases of supervised, semi-supervised and
unsupervised anomaly detection. We have assumed that synthetic data might
not be usable for such a task, as anomaly detection deals with outliers, and
synthetic data generally preserves global characteristics – thus rather the ones
of the legit, normal cases. However, the evaluation showed that while anomaly
detection is generally a hard task, in specific settings, synthetic data can reach
similar effectiveness as the models trained on the original data. It can thus be a
viable alternative when the original data cannot be shared, and other forms of
data sanitisation, such as anonymisation via k-anonymity, are not feasible.

Future work will extending our evaluation to additional anomaly detection
data sets, e.g. on network intrusion, and will include additional detection meth-
ods, especially recent approaches like generative adversarial networks (GANs).
Further, we will investigate how well synthetic data compares in terms of utility
to datasets that need to be anonymised or otherwise treated before they could be
shared. We will investigate further inference attacks on synthetic data, especially
in the context of trying to infer information on the outliers.
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