
ML-Supported Identification and Prioritization
of Threats in the OVVL Threat Modelling Tool

Andreas Schaad(B) and Dominik Binder

Department of Media and Information, University of Applied Sciences Offenburg, Badstraße 24,
77652 Offenburg, Germany

{andreas.schaad,dbinder}@hs-offenburg.de

Abstract. Threat Modelling is an accepted technique to identify general threats
as early as possible in the software development lifecycle. Previous work of ours
did present an open-source framework and web-based tool (OVVL) for automat-
ing threat analysis on software architectures using STRIDE. However, one open
problem is that available threat catalogues are either too general or proprietary
with respect to a certain domain (e.g. .Net). Another problem is that a threat ana-
lyst should not only be presented (repeatedly) with a list of all possible threats, but
already with some automated support for prioritizing these. This paper presents
an approach to dynamically generate individual threat catalogues on basis of the
established CWE as well as related CVE databases. Roughly 60% of this threat
catalogue generation can be done by identifying and matching certain key val-
ues. To map the remaining 40% of our data (~50.000 CVE entries) we train a
text classification model by using the already mapped 60% of our dataset to per-
form a supervisedmachine-learning based text classification. The generated entire
dataset allows us to identify possible threats for each individual architectural ele-
ment and automatically provide an initial prioritization. Our dataset as well as a
supporting Jupyter notebook are openly available.

Keywords: Threat analysis · Vulnerability management · Risk assessment

1 Introduction

STRIDE [1] allows to determine possible threats as part of a secure system design
activity [2, 3]. It is an accepted industrial-strength technique within the overall secure
software development lifecycle [4]. The basic idea of STRIDE is to model a system as a
data flow diagram (DFD) and then apply the STRIDE mnemonic on the elements of the
DFD. Table 1 summarizes this general mapping. Various tools have been proposed that
implement this technique [5–9], including our recently introduced OVVL (https://ovvl.
org/) tool [10, 11]. In essence, all of them allow an architect to sketch a data flow diagram
of a system and the tools will provide him with a list of possible threats. However, there
are several problems with this approach.

A core problem is that the identified threats (the underlying threat catalogue) are
often too abstract and vague (“Process could be subject to Tampering”) [12] or too

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Singhal and J. Vaidya (Eds.): DBSec 2020, LNCS 12122, pp. 274–285, 2020.
https://doi.org/10.1007/978-3-030-49669-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49669-2_16&domain=pdf
https://ovvl.org/
https://doi.org/10.1007/978-3-030-49669-2_16


ML-Supported Identification and Prioritization of Threats 275

domain specific and proprietary to the tool that is used (“An adversary having access to
Microsoft Azure Cosmos DB may read sensitive clear-text data”) [5].

Table 1. Static mapping of STRIDE threats to DFD elements

Spoofing Tampering Repudiation Information
disclosure

Denial of
service

Elevation of
privilege

Interactors X X

Processes X X X X X X

Data stores X X X

Data flows X X X

Another problem is that a threat analyst will be presented repeatedly with the same
information and not with selected subsets of threats individually generated for each
architectural element [13].

A third problem is that existing threat modelling tools generate too many “false
positives” as they bluntly apply the STRIDE technique over the DFD. Earlier work of
ours [6] has reported that an experienced security architect may only deem ~20% of
automatically reported threats as relevant enough to push them to an issue management
system as part of the later secure software lifecycle.

While many different factors (e.g. professional experience, internal/external guide-
lines, tacit knowledge) do influence the decisions about automatically reported vs. real-
istically applicable threats, we believe that a threat modelling tool should provide some
support for automated identification and prioritization of “potential” threats as well as
individual assignments to each architectural element.

Our approach thus aims at replacing static and proprietary threat catalogues with
dynamic threat catalogues that are generated based on additional information about
the designed system and information from current external weakness and vulnerability
databases such as CWE and CVE. This approach also supports an initial prioritization
of identified threats. However, this reconciliation can only be done for ~60% of the CVE
entries by means of standard database key matching. For the remaining 40% (~50.000
entries) we suggest a different automated matching technique using machine-learning
based text classification.

This paperwill thus provide amore detailed discussion of the required technical back-
ground regarding STRIDE-based threat modelling automation and our existing OVVL
tool (Sect. 2).We then suggest a design and implementation ofmapping STRIDE against
the establishedCWEandCVEdatabases (Sect. 3). In particular, we explain ourmachine-
learning based text classification approach to support a substantial part of this mapping
as part of Sect. 4. Section 5 will address integration and usage of the obtained dataset
(threat catalogue) in the OVVL framework. Section 6 will provide a summary and dis-
cussion about the validity of our approach as well as its limitations. Our dataset as well
as a supporting Jupyter notebook are openly available in the OVVL project repository
[14].



276 A. Schaad and D. Binder

2 Background Work

2.1 STRIDE-Based Threat Modelling

STRIDE [1] is a method to determine possible threats as part of a secure system design
activity. It is an accepted industrial-strength technique within the overall secure software
development lifecycle.

Microsoft’s Threat Modelling tool [5], though not supported anymore, is an openly
available tool that allows a threat analyst to depict a complex system as a set of data
flow diagrams. The STRIDEmnemonic is applied onmodel-elements (compare Table 1)
and the analyst is presented with a list of possible threats. However, this toolset is not
open-source and the threat catalogue is proprietary with respect to .Net and Microsoft
Azure architectures. The OWASP Threat Dragon is another openly available tool [7]
that uses STRIDE on DFDs as its primary technique.

Similar commercial tools do exist such as IriusRisk [8] and ThreatModeler [9]. Irius-
Risk does promote that threat modelling should have an impact on the later stages of
a secure development lifecycle. ThreatModeler is based on the VAST method which
explicitly distinguishes between application threat models and operational or infrastruc-
ture threat models. We will now discuss how these approaches are addressed in our
OVVL tool.

2.2 Weakness and Vulnerability Databases

The core idea of this paper is that we can use existing weakness and vulnerability
databases in combination with the STRIDE approach and our OVVL data model to
dynamically generate threat catalogues for each model element, including already a
system suggested prioritization.

CWE is a community-developed list of common software security weaknesses [15].
It contains 808 common weaknesses and 295 categories (i.e. sets of CWEs that share a
common characteristic). As part of the CWE data model, the “Common Consequences”
attribute already provides a link to technical impacts that can result from each weakness
in CWE. For example, CWE-20: “Improper Input Validation” belongs to the category
“Validate Inputs” and one of the possible common consequences may be “ModifyMem-
ory; Execute Unauthorized Code or Commands”. This common consequence applies to
the scope of Confidentiality, Integrity and Availability and is attributed with a generally
“High” Impact. CWE-20 then points to more detailed CWEs such as CWE-129 “Im-
proper Validation of Array Index”, each with more specific consequences, scope and
impact.

CVE is a list of publicly known technical vulnerabilities that exploit weaknesses
[16]. CVEs point to none, one or more related CWEs. This allows common static code
analysis tools such as [17] to scan code for weakness or vulnerabilities such as the
mentioned input validation. Interestingly, only 60% of all existing CVEs will directly
map to a unique CWE, i.e. without any indirection via a category. In total, this mapping
will yield a subset of 170 CWEs (out of 808). The remaining 40% of all CVEs (~51,489)
can not be mapped directly to a unique CWE, however 30% of these (~15,280) will only
point to a CWE category instead. This is an important observation as we can only use



ML-Supported Identification and Prioritization of Threats 277

the “Common Consequences” data structure of a CWE to determine suitable keys for
an automated mapping of CWEs to the STRIDE elements. In contrast, a CWE category
does not offer any data structure similar to these “Common Consequences” and as such
we require a different approach to map CWEs to STRIDE.

An immediate question may now be why we do not just directly map STRIDE to a
CWE. The short answer is that we will need to analyse the association between CWEs
and CVEs to determine a possible priority of a CWE-based threat when presented to the
security architect.

2.3 The OVVL Approach and Tool

As part of our ongoing research we developed a method and supporting tool called
OVVL (Open Weakness and Vulnerability Modeler) [4, 5]. Similar to Microsoft’s SDL
tool [5] and TAM2 [6] that was developed at SAP, we support the graphical definition
of data flow diagrams consisting of processes, interactors, data stores and data flows.
Once such a diagram has been established, the STRIDE mnemonic is applied over all
model elements resulting in a list of possible threats per element. Where deployment
information is already known for an element, we support the search for a CPE identifier
(a unique serial number for a software component) and can thus already identify all
existing CVE entries for that CPE.

3 Design and Technical Approach

Overall, we first build a new database of threats (a threat catalogue) and then use this
in combination with information from the system model to identify threats for each
architectural element. Our data mapping approach to support the first activity consists
of three steps:

1. We build a dataset out of the CVE and CWE database by using the already existing
database key that points from a CVE to a CWE (bearing in mind that such a key
either does not exist or is not suitable for 40% of the CVEs because it only points to
a CWE category).

2. We then map elements of this new dataset against STRIDE using the “Common
Consequences” data structure we obtained from the previously mapped CWEs.

3. We use a text classification approach which will eventually allow us to map the
remaining 40% of our new dataset to STRIDE. The training set for this is based on
the results of the previous step 2.

The remainder of this section will now discuss the preparatory steps 1 and 2, while
we will address the problem of machine-learning based text classification as part of the
dedicated Sect. 4.

3.1 Step 1: CWE and CVE Mapping

Both datasets, though in parts heavily segmented, are publicly available as JSON (CVE)
or XML (CWE) structures. For CVE we worked with all available data (2002–2019)
(730 MB size) and for CWE we equally use data up until December 2019 (9 MB size).



278 A. Schaad and D. Binder

In the case of theCVEdataset, this information includes a unique identifier, a descrip-
tion of the vulnerability, which is later used for our text classification process (Sect. 4),
and the input values and metrics for the calculation of the CVSS score (Common Vul-
nerability Scoring System), which will be used for the OVVL framework integration
(Sect. 5). Additionally, in most cases, a reference to one or more CWEs is included,
indicating the weakness a vulnerability may exploit.

As part of the CWE record, each weakness also contains a unique identifier that
matches the identifier of the CVE record so that it can be used to merge the two datasets
in form of pandas DataFrames. However, since the CVE record can have mul-
tiple CWE-IDs per entry, these entries are extended (a CVE entry with two CWE-IDs
becomes two entries with one CWE-ID each). From the CWE dataset we also get further
information about the circumstances in which a weakness occurs, which are also used in
the attribute selection as part of the threat modelling process (Sect. 5). Additionally, the
dataset contains the already mentioned “Common Consequences” field, which is used
for the STRIDE mapping in the following step (Sect. 3.2).

3.2 Step 2: STRIDE Mapping

Our new dataset contains the “Common Consequences” data structure which consists of
a “Scope” and an “Impact”. We can use these to map each STRIDE category as shown
in Tables 2 and 3.

As some information is redundant, we initially perform our mapping on basis of
Table 2 (Scope) and if additionally required using Table 3 (Impact).

The scope indicates which protection target is affected by a certain weakness. As the
threats used in the STRIDEmethodology are also designed to cover a specific protection
target, this allows us to map our dataset directly to the related STRIDE threats based on
the given scope.

Table 2. Mapping STRIDE threats based on the Scope

Scope Affected entries (STRIDE) threat

Availability 55,240 Denial of service

Confidentiality 70,996 Information disclosure

Non-Repudiation 6,378 Repudiation

Authentication 408 Spoofing

Accountability 76 Repudiation

Integrity 62,755 Tampering

To additionally assign the values for “Elevation of Privilege” and “Spoofing”-
Threats, two impact values were also used, which in contrast to the scope values do
not indicate which concrete protection goal is affected, but rather which effects can arise
from an attack on that protection goal.



ML-Supported Identification and Prioritization of Threats 279

Table 3. Mapping STRIDE threats based on the Impact

Impact Affected entries (STRIDE) threat

Gain Privileges or Assume Identity 10,655 Spoofing, Elevation of Privilege

Execute Unauthorized Code or
Command

50,333 Spoofing, Elevation of Privilege

However, as we already indicated earlier, this overall mapping exercise can only be
used for 60% of our dataset using available keys and the remaining 40% will now be
mapped on basis of a text classification approach (compare Fig. 2).

4 Text Classification

To map the remaining 40% of our data we train a text classification model by using
the already mapped 60% of our dataset to perform a supervised machine-learning based
classification. To accomplish this, we use the available “CVE-Description” for each entry
in the dataset, since this field exists for all entries and provides the most information
about what threat may potentially give rise to a vulnerability. Since the STRIDEmethod-
ology distinguishes six different threats, we create six separate models, each of which
performs a binary classification that uses a pre-processed description of a vulnerability
to determine if the threat may be enabling that vulnerability. Our dataset as well as a
supporting Jupyter notebook allowing to reproduce all steps is available as part of the
OVVL project repository [14].

4.1 Pre-processing

We transform the gathered data (CVE-Description) into a machine interpretable format.
This activity mainly includes performing a word-tokenization, removing stop words as
they have no meaning in our application scenario, perform a lemmatisation and finally
vectorize the data.

With the word-tokenization, the textual representation of the CVE description, in the
form of a string, is broken down into individual words and converted to lower case.

Stop words are then removed from these individual words, as they contain hardly
any useful information for our classification process and are frequently found in natu-
ral language. We therefore use a predefined list of 179 words from the python library
“Natural Language Tool Kit” (NLTK).

By performing a lemmatization these different inflections are reduced to the lemmata
of the word, so that all the inflections are treated equally in the following steps.

To be able to use a set of words for the machine-learning process, they must be
transformed into a vector in a suitable form. Therefore, we used the (frequently used)
method of “term frequency–inverse document frequency” (tf-idf) vectorization. This
allows us to vectorize existing unigrams and bigrams from all vulnerability descriptions
by calculating the relation of a term-frequency divided by the document frequency of
each term. For the practical implementation the TfidfVectorizer of the scikit-
learn library with a maximum of 5000 features was used.



280 A. Schaad and D. Binder

Fig. 1. Precision-Recall-Curve for each threat with corresponding area under the curve (AUC)

4.2 Model Selection

This step involves deciding about which machine-learning model may be most suitable
for the intended text classification. Due to the sparseness of the vectorized features, not
every type of model is suitable for our classification task. Therefore, we test and evaluate
a selection of several models (which are listed in Table 4). For the evaluation it has to
be considered that the classes to be calculated are partially heavily unbalanced, which
is why an f1-score metric is used for the evaluation. A k-fold cross-validation method
with k = 3 is also used for the comparison (Table 4).

Table 4. Model comparison, average f1-score for each threat

Model S T R I D E Avg.

Naive Bayes 0.932 0.938 0.699 0.966 0.932 0.932 0.9

Logistic Regression 0.952 0.96 0.755 0.978 0.953 0.952 0.925

Decision Tree 0.933 0.946 0.733 0.97 0.935 0.933 0.908

Random Forest 0.954 0.962 0.778 0.979 0.955 0.954 0.93

LightGBM 0.954 0.963 0.799 0.98 0.956 0.954 0.934

4.3 Hyper-parameter Optimization

In this step, we sought suitable hyper-parameters to further improve the results of the
LightGBMmodel [18]. For this purpose, a set of parameterswere defined fromwhich the
best combination was determined by grid-search. To avoid overfitting, the pre-processed
data was divided into a training and a validation dataset. The training dataset was again
used for a k-fold training process with k = 3. The best parameters were then tested on
the validation dataset. Since we use a single model for each threat, this process is run



ML-Supported Identification and Prioritization of Threats 281

Fig. 2. Complete dataset (60% through key mapping/40% textual classification)

six times separately and the models are stored for further use. However, the achieved
optimization appeared to be negligible in our application context.

4.4 Evaluation

In Sect. 4.2, the quality of the model was already measured by calculating the f1-score.
In this section, the obtained results will be examined in more detail and based on these
evaluations, decisions will be made for practical use, i.e. analysing the PRC curves and
determining thresholds by means of the ROC curves (which are excluded for reasons of
space but are included in the Jupyter notebook [14]).

Precision-Recall-Curve (PRC). The f1-score (Table 4) is calculated from the precision
and the recall score of the model. This calculation takes place independently of the used
threshold, which indicates the value at which a calculation (in our case a threat) should
be considered positive. However, it is extremely important to observe the threshold,
especially in the case of unbalanced data, as in this case. The precision-recall-curve
indicates the ratio between precision and recall for the respective threshold. The area
under the curve can be used to measure the general quality of the model.

It can be seen from Fig. 1 that our models are highly suitable for identifying the
STRIDE threats using the CVE description. The area under the curve for five of the
models is nearly (rounded) 1, indicating an extremely effective model. Only the calcu-
lation of the “Repudiation” threat performs worse, which we assume is due to the fact
that this class is severely underrepresented in the training dataset.

5 OVVL Framework Integration

In order to integrate the obtainedmappings into our existing tool we need to decide about
suitable attributes that a security architect can select when modelling a system. These
attributes will then support the querying of our dataset to generate threat catalogues for
each model element. As our dataset is rather large and feeds into a web application,
we suggest an approach to pre-compute and reduce threat catalogues based on possible
combinations of selected attributes.



282 A. Schaad and D. Binder

5.1 Attribute Selection

In the OVVL Threat Modelling Tool, an analyst can select different attributes and values
for each architectural element (e.g. a webserver is “remotely” accessible and requires
“user authentication”).

The attributes we suggest act as parameters to the queries that yield individual threats
for each element in a threat model (i.e. DFD based system description). When choosing
suitable attributes, attention was paid to the fact that these are available as completely
as possible in our dataset. They should also have a meaningful relation to the threats as
well as the environment in which a threat may give rise to vulnerability. Based on these
criteria, we were able to identify four suitable attributes (Fig. 3) within our dataset.

The “Access Vector” attribute describes whether a DFD element is accessible either
via an external network or locally, which is relevant because certain vulnerabilities and
thus weaknesses can only be exploited via one of the two access vectors.

The “Authentication” attribute specifies whether a user must authenticate to access
the element and thus also whether the vulnerabilities found can only be exploited by
authenticated users

Some more specific weaknesses from the CWE dataset can be traced back to the
used programming language. This information is of interest because certain weaknesses
are highly dependent on the programming language used. For example, weaknesses that
involvememorymanipulation aremore likely to occur in low-level languages such asCor
C++, since the correct memorymanagement must be observed during programming. For
our approach, we have assigned individual languages of the CWE dataset to meaningful
groups, based on their characteristics. These groups are low level languages (C, C++,
Assembly), interpreted languages (Python, Ruby, JavaScript, Perl and other interpreted
languages), languages with just-in-time compilation (C#, Java) and languages that are
primarily used in web development (PHP, ASP .NET).

The “Technology” Attribute allows differentiation between web and database
servers. For both variants, there are several threats that usually only occur with these
technologies, such as the frequently occurring sql injection in database systems or a
variety of web application related vulnerabilities in web servers. In addition to these
two, there are clearly other technologies (e.g. relating to virtualization) or application
types (e.g. directly communicating via sockets) which cannot be further specified on the
basis of our dataset. For these, as well as for all other attributes, it is possible to indicate
that the respective value is unknown, whereby this attribute is not taken into account
(compare Sect. 5.2).

5.2 Dataset Reduction

For an efficient practical implementation, a pre-calculation is made based on the previ-
ously defined attributes. The entire dataset contains 129,675 entries. For the implemen-
tation, however, only all possible combinations of the attribute selection are relevant,
including cases in which the value of an attribute is not known and is therefore not spec-
ified more precisely. This results in 135 combinations which can be individually applied
to each single architectural element.



ML-Supported Identification and Prioritization of Threats 283

For each of the possible combinations, the affected entries are determined from the
dataset and the values required for the implementation are extracted. This primarily
focuses on the weaknesses covered and the relative frequency of these. We assume
that weaknesses that occur frequently within the dataset are also likely to occur more
frequently in real applications, sowewill use this relative frequency as away to prioritize
weaknesses. For all vulnerabilities that are based on a weakness, we also calculate the
average values of the CVSSv2 base, impact, and exploitability metrics in order to have
another means of prioritization, which is not based on the probability of a vulnerability,
but on its impact and the resulting risks. In order to provide a simple measure of these
values, the average values were then grouped into the categories low, medium and high.

It should be noted that due to the linear relationship between the attributes and
the related threats in this type of implementation, it is possible that for some combi-
nations no entries can be found (as the specified combination does not appear in the
dataset). This is even more likely to happen if a large number of attributes of a DFD
element are specified. Currently, this restriction is especially present when specifying
the used programming language, as the CWE dataset does not necessarily list all affected
programming languages in every case.

Fig. 3. Example of attribute selection in OVVL and individually identified threats

6 Summary and Conclusion

A general problem with automated threat modelling tools is to define the underlying
threat catalogue [12]. This in turn leads to reported threats being perceived as too general
(when just using plain STRIDE) and containing unnecessary duplicates as well as having
no means of prioritizing reported threats [13].



284 A. Schaad and D. Binder

Using STRIDE [1, 2] as a mapping technique, we reconciled the CWE and CVE
databases to derive a threat catalogue that is used in the OVVL framework to address
these concerns. A substantial part of this mapping (40%, ~50.000 records) was done on
basis of a supervised machine-learning based text classification. We provided a detailed
discussion on text (pre-)processing,model selection (resulting in adoption ofLightGBM)
as well as evaluation of the trained model. Compared to plain STRIDE-based threat
modelling we demonstrated that our approach identifies more specific real-world threats
and thus facilitate that more appropriate countermeasures can be defined.

We demonstrated how this derived threat catalogue can be queried on basis of
attributes such as access vector or authentication for each single element of a threat
model within the OVVL framework. This results in individually reported threats avoid-
ing duplicates as well as the possibility to prioritize these by evaluating the associated
impact and exploitability attributes as well as observed frequency of occurrence (i.e.
related vulnerability) in the real world.

This approach also complements the already existing feature of OVVL to identify
concrete CPEs andCVEs in case it is also known at system design time how a component
is realized.

Thoughwe can now automatically prioritize threats this does not necessarily exclude
false positives (i.e. reported threats an experienced analyst will rule out on basis of
information not captured in the threat model). Future work will thus focus on conducting
user studies to understand possible correlations between prioritized threats and whether
an analyst will push these as an issue into the project management tool/product backlog.
OVVL already exhibits an OpenAPI interface to communicate with such tools in the
later stages of the development lifecycle.

We are not aware of other directly related work, though vulnerability information
extraction has been discussed in [19]. In [20, 21] a security risk analysis is performed on
formalized UML models in combination with OCL rules which is at a much lower level
of abstraction than our work. In fact, there is no indication on basis of what dataset risks
are identified and the provided examples appear to be manually constructed. Contrary
to that, [22] shows how attack trees are generated from vulnerability databases such as
CVE. However, this is only done for network related attacks and the authors do not detail
how they obtain the required environmental knowledge to analyse the CVE database.

We now want to work on further improving our approach by identifying other addi-
tional metadata a threat analyst could augment a systemmodel with. We believe this will
provide us with further capabilities to identify relevant threats, as it will allow us to prior-
itize based on actual software usage rather than the frequency of existing vulnerabilities.
We also did already experiment with using data feeds generated by Shodan. Such real-
world data also gives us much more information about the environment in use, allowing
us to (further) tailor the identification of threats to the specifics of the environment
and reconcile this with our DFD-based system model. However, the resulting increased
amount of information that goes into modelling would then become too complex to
produce a linear relationship between the input values and the threats. We therefore plan
to also use machine-learning techniques for this purpose, which we hope will allow our
model to establish a much deeper relationship between threats, vulnerabilities and the
environment and enabling circumstances in which they may occur.



ML-Supported Identification and Prioritization of Threats 285

References

1. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
2. Shevchenko, et al.: Threat modeling: a summary of available methods. Software Engineer-

ing Institute, CMU (2018). https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_
001_524597.pdf. Accessed 25 Feb 2020

3. Khan, et al.: STRIDE-based threat modeling for cyber-physical systems. In: IEEE PES:
Innovative Smart Grid Technologies Conference Europe (2017)

4. https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling. Accessed 25 Feb
2020

5. https://docs.microsoft.com/de-de/azure/security/develop/threat-modeling-tool. Accessed 25
Feb 2020

6. Schaad, A., Borozdin, M.: TAM2: Automated threat analysis. ACM SAC 2012
7. OWASP Threat Dragon. https://threatdragon.org/login. Accessed 25 Feb 2020
8. IriusRisk. https://iriusrisk.com/threat-modeling-tool/. Accessed 25 Feb 2020
9. ThreatModeler. https://threatmodeler.com/. Accessed 25 Feb 2020
10. Schaad, A., Reski, T.: Open weakness and vulnerability modeler (OVVL): an updated

approach to threat modeling. In: ICETE (2), pp. 417–424 (2019)
11. Schaad, A.: Project OVVL - Threat Modeling Support for the entire secure development

lifecycle. In: Sicherheit 2020, pp. 121–124 (2020)
12. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from extended data flow

diagrams. In: Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol.
9639, pp. 56–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_4

13. Sion, et al.: Risk-based design security analysis. In: 1st International Workshop on Security
Awareness from Design to Deployment, Sweden (2018)

14. Jupyter Notebook. https://github.com/OVVL-HSO/Threat-Catalogue
15. CWE Database. https://cwe.mitre.org/. Accessed 25 Feb 2020
16. CVE Database. https://cve.mitre.org/. Accessed 25 Feb 2020
17. Sonarqube. https://www.sonarqube.org/. Accessed 25 Feb 2020
18. LightGBM. https://lightgbm.readthedocs.io/en/latest/. Accessed 25 Feb 2020
19. Weerawardhana, S.S., et al.: Automated extraction of vulnerability information for home

computer security. In: FPS 2014, pp. 356–366 (2014)
20. Almorsy, M., et al.: Automated software architecture security risk analysis using formalized

signatures. In: Proceedings of the 2013 International Conference on Software Engineering,
pp. 662–671. IEEE Press (2013)

21. Basin, D., et al.: Automated analysis of security-design models. Inf. Softw. Technol. 51(5),
815–831 (2009)

22. Birkholz,H., et al.: Efficient automated generation of attack trees fromvulnerability databases.
In: Working Notes for the 2010 AAAI Workshop on Intelligent Security (SecArt), pp. 47–55
(2010)

https://resources.sei.cmu.edu/asset_files/WhitePaper/2018_019_001_524597.pdf
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://docs.microsoft.com/de-de/azure/security/develop/threat-modeling-tool
https://threatdragon.org/login
https://iriusrisk.com/threat-modeling-tool/
https://threatmodeler.com/
https://doi.org/10.1007/978-3-319-30806-7_4
https://github.com/OVVL-HSO/Threat-Catalogue
https://cwe.mitre.org/
https://cve.mitre.org/
https://www.sonarqube.org/
https://lightgbm.readthedocs.io/en/latest/

	ML-Supported Identification and Prioritization of Threats in the OVVL Threat Modelling Tool
	1 Introduction
	2 Background Work
	2.1 STRIDE-Based Threat Modelling
	2.2 Weakness and Vulnerability Databases
	2.3 The OVVL Approach and Tool

	3 Design and Technical Approach
	3.1 Step 1: CWE and CVE Mapping
	3.2 Step 2: STRIDE Mapping

	4 Text Classification
	4.1 Pre-processing
	4.2 Model Selection
	4.3 Hyper-parameter Optimization
	4.4 Evaluation

	5 OVVL Framework Integration
	5.1 Attribute Selection
	5.2 Dataset Reduction

	6 Summary and Conclusion
	References




