Skip to main content

User-Centric AR Sceneized Gesture Interaction Design

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality. Design and Interaction (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12190))

Included in the following conference series:

  • 2504 Accesses

Abstract

With the rapid development of AR technology, the interaction between humans and computers has become increasingly complex and frequent. However, many interactive technologies in AR currently do not have a very perfect interaction mode, and they are facing huge challenges in terms of design and technical implementation, including that AR gesture interaction methods have not yet been established. There is no universal gesture vocabulary in currently developed AR applications. Identifying appropriate gestures for aerial interaction is an important design decision based on criteria such as ease of learning, metaphors, memory, subjective fatigue, and effort [1]. It must be designed and confirmed in the early stages of system development, and will seriously affect each aerial application project development process as well as the intended user of the user experience (UX) [2]. Thanks to user-centric and user-defined role-playing method, this paper set up a suitable car simulation scenarios, allowing users to define the 3D space matches the information exchange system under AR design environment based on their habits and cultural backgrounds, in particular, It is a demanding gesture during the tour guide and proposes a mental model of gesture preference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou, W., Feng, G., Cheng, Y.: A fuzzy interaction scheme of mid-air gesture elicitation. J. Vis. Commun. Image Represent. 64, 102637 (2019)

    Article  Google Scholar 

  2. Nair, D., Sankaran, P.: Color image dehazing using surround filter and dark channel prior. J. Vis. Commun. Image Represent. 50, 9–15 (2018)

    Article  Google Scholar 

  3. Graham, M., Zook, M., Boulton, A.: Augmented reality in urban places: contested content and the duplicity of code. Trans. Inst. Br. Geogr. 38, 464–479 (2013)

    Article  Google Scholar 

  4. Zhang, S., Hou, W., Wang, X.: Design and study of popular science knowledge learning method based on augmented reality virtual reality interaction. Packag. Eng. 20, 60–67 (2017)

    Google Scholar 

  5. Lea, R., Gibbs, S., Dara-Abrams, A., Eytchison, E.: Networking home entertainment devices with HAVi. Computer 33, 35–43 (2000)

    Article  Google Scholar 

  6. Basari, Saito, K., Takahashi, M., Ito, K.: Measurement on simple vehicle antenna system using a geostationary satellite in Japan. In: 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), pp. 81–85 (2010)

    Google Scholar 

  7. Hancock, P., Billings, D., Schaefer, K., Chen, J., de Visser, E., Parasuraman, R.: A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 53, 517–527 (2011)

    Article  Google Scholar 

  8. Atta, R., Ghanbari, M.: Low-memory requirement and efficient face recognition system based on DCT pyramid. IEEE Trans. Consum. Electron. 56, 1542–1548 (2010)

    Article  Google Scholar 

  9. Ben-Abdennour, A., Lee, K.Y.: A decentralized controller design for a power plant using robust local controllers and functional mapping. IEEE Trans. Energy Convers. 11, 394–400 (1996)

    Article  Google Scholar 

  10. Pramanik, R., Bag, S.: Shape decomposition-based handwritten compound character recognition for Bangla OCR. J. Vis. Commun. Image Represent. 50, 123–134 (2018)

    Article  Google Scholar 

  11. Bai, C., Chen, J.-N., Huang, L., Kpalma, K., Chen, S.: Saliency-based multi-feature modeling for semantic image retrieval. J. Vis. Commun. Image Represent. 50, 199–204 (2018)

    Article  Google Scholar 

  12. Han, J., et al.: Representing and retrieving video shots in human-centric brain imaging space. IEEE Trans. Image Process. 22, 2723–2736 (2013)

    Article  MathSciNet  Google Scholar 

  13. Goffman, E.: The Presentation of Self in Everyday Life. Doubleday, Oxford (1959)

    Google Scholar 

  14. Asheim, L.: Libr. Q.: Inf. Commun. Policy 56, 65–66 (1986)

    Article  Google Scholar 

  15. Robert, S.: Age of Context: Mobile. Sensors, Data and the Future of Privacy (2013)

    Google Scholar 

  16. Liang, K., Li, Y.: Interaction design flow based on user scenario. Packag. Eng. 39(16), 197–201 (2018)

    Google Scholar 

  17. Wei, W.: Research on digital exhibition design based on scene interaction. Design 17, 46–48 (2018)

    Google Scholar 

  18. Blackler, A., Popovic, V., Mahar, D.: Investigating users’ intuitive interaction with complex artefacts. Appl. Ergon. 41, 72–92 (2010)

    Article  Google Scholar 

  19. Cooper, A., Reimann, R., Cronin, D.: About Face 3: The Essentials of Interaction Design. Wiley, Indiana (2007)

    Google Scholar 

  20. Xu, M., Li, M., Xu, W., Deng, Z., Yang, Y., Zhou, K.: Interactive mechanism modeling from multi-view images. ACM Trans. Graph. 35, 236:201–236:213 (2016)

    Google Scholar 

  21. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25, 1309–1321 (2015)

    Article  Google Scholar 

  22. Xu, M., Zhu, J., Lv, P., Zhou, B., Tappen, M.F., Ji, R.: Learning-based shadow recognition and removal from monochromatic natural images. IEEE Trans. Image Process. 26, 5811–5824 (2017)

    Article  MathSciNet  Google Scholar 

  23. Xu, M., Li, C., Lv, P., Lin, N., Hou, R., Zhou, B.: An efficient method of crowd aggregation computation in public areas. IEEE Trans. Circuits Syst. Video Technol. 28, 2814–2825 (2018)

    Article  Google Scholar 

  24. Wobbrock, J.O., Aung, H.H., Rothrock, B., Myers, B.A.: Maximizing the guessability of symbolic input. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, pp. 1869–1872. ACM, Portland (2005)

    Google Scholar 

  25. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1083–1092. ACM, Boston (2009)

    Google Scholar 

  26. Ruiz, J., Li, Y., Lank, E.: User-defined motion gestures for mobile interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 197–206. ACM, Vancouver (2011)

    Google Scholar 

  27. Silpasuwanchai, C., Ren, X.: Jump and shoot!: prioritizing primary and alternative body gestures for intense gameplay. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 951–954. ACM, Toronto (2014)

    Google Scholar 

  28. Leng, H.Y., Norowi, N.M., Jantan, A.H.: A user-defined gesture set for music interaction in immersive virtual environment. In: Proceedings of the 3rd International Conference on Human-Computer Interaction and User Experience in Indonesia, pp. 44–51. ACM, Jakarta (2017)

    Google Scholar 

  29. Anderson, S., Heartbeat-A Guide to Emotional Interaction Design, Revised edn. (2015)

    Google Scholar 

  30. Chen, Z., et al.: User-defined gestures for gestural interaction: extending from hands to other body parts. Int. J. Hum.-Comput. Interact. 34, 238–250 (2018)

    Article  Google Scholar 

  31. Vatavu, R.-D., Wobbrock, J.O.: Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1325–1334. ACM, Seoul (2015)

    Google Scholar 

  32. Dim, N.K., Silpasuwanchai, C., Sarcar, S., Ren, X.: Designing mid-air TV gestures for blind people using user- and choice-based elicitation approaches. In: Proceedings of the 2016 ACM Conference on Designing Interactive Systems, pp. 204–214. ACM, Brisbane (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Li Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, XL., Xi, R., Hou, Wj. (2020). User-Centric AR Sceneized Gesture Interaction Design. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics