Skip to main content

Towards the Specification of an Integrated Measurement Model for Evaluating VR Cybersickness in Real Time

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12190))

Abstract

Cybersickness (CS) is an affliction that limits the use of virtual reality (VR) applications. For decades, the measurement of cybersickness has presented one of the most challenges that have aroused the interest of VR research community. Having strong effects on users’ health, cybersickness causes several symptoms relating to different factors. In most cases, the literature studies for VR cybersickness evaluation adopt the questionnaire-based approaches. Some studies have focused on physiological and postural instability-based approaches, while others support the VR content. Despite the attention paid to define measurements for assessing cybersickness, there is still a need for a more complete evaluation model that allows measuring cybersickness in real time. This paper defines a conceptual model that integrates subjective and objective evaluation of CS in real time. The proposed model considers three CS factors (i.e. individual, software and hardware). The aim is to consider the heterogeneous findings (subjective and objective measures) related to the selected CS factors that define integrated indicators. The theoretical part of the model was initially validated by researchers who have comprehensive knowledge and skills in VR domain. As a research perspective, we intend to evaluate the proposed model through a practical case study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Motion sickness can be defined as any sickness endured by observation of visual motion [5].

  2. 2.

    Simulator sickness describes the sickness produced by vehicle simulators [5].

  3. 3.

    It represents a medical approach that presents a form of alternative therapy [9].

References

  1. Wang, G., Suh, A.: User adaptation to cybersickness in virtual reality: a qualitative study. In: 27th European Conference on Information Systems (ECIS) (2019)

    Google Scholar 

  2. Farmani, Y., Teather, R.: Viewpoint snapping to reduce cybersickness in virtual reality. In: Proceedings of Graphics Interface 2018, pp. 159–166 (2018). https://doi.org/10.20380/gi2018.21

  3. Jin, W., Fan, J., Gromala, D., Pasquier, P.: Automatic prediction of cybersickness for virtual reality games. In: IEEE Games, Entertainment, Media Conference (GEM), Galway, pp. 1–9. IEEE (2018). https://doi.org/10.1109/GEM.2018.8516469

  4. Choroś, K., Nippe, P.: Software techniques to reduce cybersickness among users of immersive virtual reality environments. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11431, pp. 638–648. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14799-0_55

    Chapter  Google Scholar 

  5. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10 (2019). https://doi.org/10.3389/fpsyg.2019.00158

  6. Silva, B.M., Fernando, P.: Early prediction of cybersickness in virtual, augmented & mixed reality applications: a review. In: 5th International Conference for Convergence in Technology (I2CT), India (2019)

    Google Scholar 

  7. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment – IE 2014, Newcastle, NSW, Australia, pp. 1–9. ACM Press (2014). https://doi.org/10.1145/2677758.2677780

  8. Rebenitsch, L.R.: Cybersickness prioritization and modeling (2015)

    Google Scholar 

  9. Liu, R., Zhuang, C., Yang, R., Ma, L.: Effect of economically friendly acustimulation approach against cybersickness in video-watching tasks using consumer virtual reality devices. Appl. Ergon. 82, 102946 (2020). https://doi.org/10.1016/j.apergo.2019.102946

    Article  Google Scholar 

  10. Sevinc, V., Berkman, M.I.: Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020). https://doi.org/10.1016/j.apergo.2019.102958

    Article  Google Scholar 

  11. McCauley, M.E., Sharkey, T.J.: Cybersickness: perception of self-motion in virtual environments. Presence Teleop. Virt. Environ. 1, 311–318 (1992). https://doi.org/10.1162/pres.1992.1.3.311

    Article  Google Scholar 

  12. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1138–1142 (1997). https://doi.org/10.1177/107118139704100292

  13. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20, 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9

    Article  Google Scholar 

  14. LaViola, J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000). https://doi.org/10.1145/333329.333344

    Article  Google Scholar 

  15. Kellog, R.S., Castore, C.H., Coward, R.E.: Psychophysiological effects of training in a full vision simulator. In: Annual Scientific Meeting of the Aerospace Medical Association (1980)

    Google Scholar 

  16. Gower, D.W., Fowlkes, J.E.: Simulator Sickness in the UH-60 (Black Hawk) Flight Simulator. Army Aeromedical Research Laboratory, U.S. (1989)

    Google Scholar 

  17. Fernandes, A.S., Feiner, S.K.: Combating VR sickness through subtle dynamic field-of-view modification. In: IEEE Symposium on 3D User Interfaces (3DUI), Greenville, SC, USA, pp. 201–210. IEEE (2016). https://doi.org/10.1109/3DUI.2016.7460053

  18. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  19. Stone III, W.B.: Psychometric evaluation of the Simulator Sickness Questionnaire as a measure of cybersickness. Graduate Theses and Dissertations, 15429 (2017). https://lib.dr.iastate.edu/etd/15429

  20. Kim, H.K., Park, J., Choi, Y., Choe, M.: Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73 (2018). https://doi.org/10.1016/j.apergo.2017.12.016

    Article  Google Scholar 

  21. Nalivaiko, E., Davis, S.L., Blackmore, K.L., Vakulin, A., Nesbitt, K.V.: Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Behav. 151, 583–590 (2015). https://doi.org/10.1016/j.physbeh.2015.08.043

    Article  Google Scholar 

  22. Guna, J., Geršak, G., Humar, I., Song, J., Drnovšek, J., Pogačnik, M.: Influence of video content type on users’ virtual reality sickness perception and physiological response. Future Gener. Comput. Syst. 91, 263–276 (2019). https://doi.org/10.1016/j.future.2018.08.049

    Article  Google Scholar 

  23. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016). https://doi.org/10.1016/j.displa.2016.07.002

    Article  Google Scholar 

  24. Kinsella, A.J.: The effect of 0.2 Hz and 1.0 Hz frequency and 100 ms and 20–100 ms amplitude of latency on simulatory sickness in a head mounted display (2014)

    Google Scholar 

  25. Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47, 507–516 (1998). https://doi.org/10.1016/S0361-9230(98)00091-4

    Article  Google Scholar 

  26. Lo, W.T., So, R.H.Y.: Cybersickness in the presence of scene rotational movements along different axes. Appl. Ergon. 32, 1–14 (2001). https://doi.org/10.1016/S0003-6870(00)00059-4

    Article  Google Scholar 

  27. Arcioni, B., Palmisano, S., Apthorp, D., Kim, J.: Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58, 3–11 (2019). https://doi.org/10.1016/j.displa.2018.07.001

    Article  Google Scholar 

  28. Wu, T.L.Y., Gomes, A., Fernandes, K., Wang, D.: The effect of head tracking on the degree of presence in virtual reality. Int. J. Hum.-Comput. Interact. 35, 1569–1577 (2019). https://doi.org/10.1080/10447318.2018.1555736

    Article  Google Scholar 

  29. Milosevic, I., McCabe, R.E. (eds.): Phobias: The Psychology of Irrational Fear. Greenwood, an imprint of ABC-CLIO, LLC, Santa Barbara (2015)

    Google Scholar 

  30. Kim, J., Kim, W., Oh, H., Lee, S., Lee, S.: A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In: IEEE International Conference on Computer Vision (ICCV), pp. 10580–10589 (2019)

    Google Scholar 

  31. Gavgani, A.M., Walker, F.R., Hodgson, D.M., Nalivaiko, E.: A comparative study of cybersickness during exposure to virtual reality and “classic” motion sickness: are they different? J. Appl. Physiol. 125, 1670–1680 (2018). https://doi.org/10.1152/japplphysiol.00338.2018

    Article  Google Scholar 

  32. Davis, S., Nesbitt, K., Nalivaiko, E.: Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In: Pisan, Y., Nesbitt, K., Blackmore, K. (eds.) 11th Australasian Conference on Interactive Entertainment (IE 2015), Sydney, Australia (2015)

    Google Scholar 

  33. ISO/IEC: Systems and software engineering – Measurement process (ISO/IEC 15939:2007) (2007)

    Google Scholar 

  34. Assila, A., Oliveira, K.M., Ezzedine, H.: Integration of subjective and objective usability evaluation based on IEC/IEC 15939: a case study for traffic supervision systems. Int. J. Hum.-Comput. Interact. 32, 931–955 (2016). https://doi.org/10.1080/10447318.2016.1220068

    Article  Google Scholar 

  35. Assila, A., Plouzeau, J., Merienne, F., Erfanian, A., Hu, Y.: Defining an indicator for navigation performance measurement in VE based on ISO/IEC15939. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 17–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_2

    Chapter  Google Scholar 

  36. Salah, D., Paige, R., Cairns, P.: An evaluation template for expert review of maturity models. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 318–321. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_31

    Chapter  Google Scholar 

  37. Havard, V., Jeanne, B., Lacomblez, M., Baudry, D.: Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. Prod. Manuf. Res. 7, 472–489 (2019). https://doi.org/10.1080/21693277.2019.1660283

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the researchers who evaluate the model presented in this study. LINEACT authors thanks the financial support granted by the Europe (FEDER), region Grand Est and region Normandie through the NumeriLab project and the Industrial Chair CISCO – VINCI Energies. Taisa Gonçalves thanks the financial support granted by CAPES – Science without Borders Program (DOC-PLENO 99999.013381/2013-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahlem Assila , Taisa Guidini Gonçalves , Amira Dhouib , David Baudry or Vincent Havard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Assila, A., Gonçalves, T.G., Dhouib, A., Baudry, D., Havard, V. (2020). Towards the Specification of an Integrated Measurement Model for Evaluating VR Cybersickness in Real Time. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics