Skip to main content

House of Prototyping Guidelines: A Framework to Develop Theoretical Prototyping Strategies for Human-Centered Design

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12200))

Abstract

Prototyping is one of the most critical and costly steps in the product development process. However, the existing literature lacks in prototyping strategies that are comprehensive and widely accepted. Current prototyping strategies mostly focus on the hands-on activity of building the prototype by relying on the designer’s experience. Another limitation is that prototyping strategies often do not address human factors for prototyping human-centered products. This paper introduces a House of Prototyping Guidelines (HOPG) framework, which integrates the existing prototyping guidelines and human factor engineering principles for better prototyping outcomes. The methodology contains four steps. The first step pertains to the state-of-the-art prototyping literature review. The second step consists of filtering the prototyping findings and summarizing the key prototyping findings from Step 1. The third step presents the HOPG conceptual map, which is loosely based on the House of Quality (HOQ) approach. HOPG contains the Prototyping Categories and Prototyping Dimensions, which are similar to Customer Requirement and Engineering Requirement of HOQ, respectively. In the HOPG framework, designers go through the Prototyping Categories to understand the prototyping requirements and then identifies the Prototyping Dimensions to create the prototypes that fit human-centered design needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. James dyson on his vacuum failure and success. http://nymag.com/vindicated/2016/11/james-dyson-on-5-126-vacuums-that-didnt-work-and-1-that-did.html. Accessed 16 Dec 2019

  2. Ahmed, S., Gawand, M.S., Irshad, L., Demirel, H.O.: Exploring the design space using a surrogate model approach with digital human modeling simulations. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V01BT02A011. American Society of Mechanical Engineers (2018)

    Google Scholar 

  3. Ahmed, S., Irshad, L., Demirel, H.O., Tumer, I.Y.: A comparison between virtual reality and digital human modeling for proactive ergonomic design. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_1

    Chapter  Google Scholar 

  4. Ahmed, S., Zhang, J., Demirel, O.: Assessment of types of prototyping in human-centered product design. In: Duffy, V. (ed.) DHM 2018, vol. 10917, pp. 3–18. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-91397-1_1

    Chapter  Google Scholar 

  5. Alexopoulos, K., Mavrikios, D., Chryssolouris, G.: ErgoToolkit: an ergonomic analysis tool in a virtual manufacturing environment. Int. J. Comput. Integr. Manuf. 26(5), 440–452 (2013)

    Article  Google Scholar 

  6. Badler, N.I., Phillips, C.B., Webber, B.L.: Simulating Humans: Computer Graphics Animation and Control. Oxford University Press, Oxford (1993)

    Google Scholar 

  7. Barbieri, L., Angilica, A., Bruno, F., Muzzupappa, M.: Mixed prototyping with configurable physical archetype for usability evaluation of product interfaces. Comput. Ind. 64(3), 310–323 (2013)

    Article  Google Scholar 

  8. Bi, Z.: Computer integrated reconfigurable experimental platform for ergonomic study of vehicle body design. Int. J. Comput. Integr. Manuf. 23(11), 968–978 (2010)

    Article  Google Scholar 

  9. Binnard, M.: Design by Composition for Rapid Prototyping, vol. 525. Springer, Heidelberg (2012)

    Google Scholar 

  10. Bordegoni, M., Cugini, U., Caruso, G., Polistina, S.: Mixed prototyping for product assessment: a reference framework. Int. J. Interact. Des. Manuf. (IJIDeM) 3(3), 177–187 (2009)

    Article  Google Scholar 

  11. Brereton, M., McGarry, B.: An observational study of how objects support engineering design thinking and communication: implications for the design of tangible media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 217–224. ACM (2000)

    Google Scholar 

  12. Broek, J.J., Sleijffers, W., Horváth, I., Lennings, A.F.: Using physical models in design. In: Proceedings of CAID/CD’2000 Conference, pp. 155–163 (2000)

    Google Scholar 

  13. Bullinger, H.J., Dangelmaier, M.: Virtual prototyping and testing of in-vehicle interfaces. Ergonomics 46(1–3), 41–51 (2003)

    Google Scholar 

  14. Camburn, B., et al.: A systematic method for design prototyping. J. Mech. Des. 137(8), 081102 (2015)

    Article  Google Scholar 

  15. Camburn, B., et al.: Design prototyping methods: state of the art in strategies, techniques, and guidelines. Des. Sci. 3 (2017)

    Google Scholar 

  16. Chaffin, D.B.: Some requirements and fundamental issues in digital human modeling. In: Handbook of Digital Human Modeling, pp. 2–1 (2009)

    Google Scholar 

  17. Chaffin, D.B., Nelson, C., et al.: Digital Human Modeling for Vehicle and Workplace Design. Society of Automotive Engineers, Warrendale (2001)

    Book  Google Scholar 

  18. Chang, K.H., Silva, J., Bryant, I.: Concurrent design and manufacturing for mechanical systems. Concurrent Eng. 7(4), 290–308 (1999)

    Article  Google Scholar 

  19. Christie, E.J., et al.: Prototyping strategies: literature review and identification of critical variables. In: American Society for Engineering Education Conference (2012)

    Google Scholar 

  20. Coutts, E.R., Wodehouse, A., Robertson, J.: A comparison of contemporary prototyping methods. In: Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, pp. 1313–1322. Cambridge University Press (2019)

    Google Scholar 

  21. Cugini, U., Bordegoni, M., Mana, R.: The role of virtual prototyping and simulation in the fashion sector. Int. J. Interact. Des. Manuf. (IJIDeM) 2(1), 33–38 (2008)

    Article  Google Scholar 

  22. Demirel, H.O., Duffy, V.G.: Applications of digital human modeling in industry. In: Duffy, V.G. (ed.) ICDHM 2007. LNCS, vol. 4561, pp. 824–832. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73321-8_93

    Chapter  Google Scholar 

  23. Demirel, H.O., Duffy, V.G.: Digital human modeling for product lifecycle management. In: Duffy, V.G. (ed.) ICDHM 2007. LNCS, vol. 4561, pp. 372–381. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73321-8_43

    Chapter  Google Scholar 

  24. Dow, S.P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L., Klemmer, S.R.: Parallel prototyping leads to better design results, more divergence, and increased self-efficacy. ACM Trans. Comput.-Hum. Interact. (TOCHI) 17(4), 18 (2010)

    Google Scholar 

  25. Dow, S.P., Heddleston, K., Klemmer, S.R.: The efficacy of prototyping under time constraints. In: Proceedings of the Seventh ACM Conference on Creativity and Cognition, pp. 165–174. ACM (2009)

    Google Scholar 

  26. Drezner, J.A., Huang, M.: On prototyping (2009)

    Google Scholar 

  27. Duffy, V.G.: Modified virtual build methodology for computer-aided ergonomics and safety. Hum. Factors Ergon. Manuf. Serv. Ind. 17(5), 413–422 (2007)

    Article  Google Scholar 

  28. Duffy, V.G.: Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Boca Raton (2016)

    Google Scholar 

  29. Ferrise, F., Bordegoni, M., Cugini, U.: Interactive virtual prototypes for testing the interaction with new products. Comput.-Aided Des. Appl. 10(3), 515–525 (2013)

    Article  Google Scholar 

  30. Gawron, V.J., Drury, C.G., Fairbanks, R.J., Berger, R.C.: Medical error and human factors engineering: where are we now? Am. J. Med. Qual. 21(1), 57–67 (2006)

    Article  Google Scholar 

  31. Gerber, E., Carroll, M.: The psychological experience of prototyping. Des. Stud. 33(1), 64–84 (2012)

    Article  Google Scholar 

  32. Hall, R.R.: Prototyping for usability of new technology. Int. J. Hum.-Comput. Stud. 55(4), 485–501 (2001)

    Article  Google Scholar 

  33. Hamon, C.L., Green, M.G., Dunlap, B., Camburn, B.A., Crawford, R.H., Jensen, D.D.: Virtual or physical prototypes development and testing of a prototyping planning tool. Technical report, Air Force Academy United States (2014)

    Google Scholar 

  34. Hauser, J.R., Clausing, D., et al.: The house of quality (1988)

    Google Scholar 

  35. Horváth, I., Du Bois, E.: Using modular abstract prototypes as evolving research means in design inclusive research. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 475–486. American Society of Mechanical Engineers (2012)

    Google Scholar 

  36. Jönsson, A.: Lean prototyping of multi-body and mechatronic systems. Ph.D. thesis, Blekinge Institute of Technology (2004)

    Google Scholar 

  37. Kantowitz, B.H., Sorkin, R.D.: Human factors: understanding people-system relationships. Wiley, Hoboken (1983)

    Google Scholar 

  38. Knuth, J.: Material increase manufacturing by rapid prototyping technique. Ann. CIPP 40(2), 603–604 (1999)

    Google Scholar 

  39. Kuutti, K., et al.: Virtual prototypes in usability testing. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences, p. 7. IEEE (2001)

    Google Scholar 

  40. Lämkull, D., Hanson, L., Örtengren, R.: A comparative study of digital human modelling simulation results and their outcomes in reality: a case study within manual assembly of automobiles. Int. J. Ind. Ergon. 39(2), 428–441 (2009)

    Article  Google Scholar 

  41. Lauff, C., Menold, J., Wood, K.L.: Prototyping canvas: design tool for planning purposeful prototypes. In: Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, pp. 1563–1572. Cambridge University Press (2019)

    Google Scholar 

  42. Lauff, C.A., Kotys-Schwartz, D., Rentschler, M.E.: What is a prototype? What are the roles of prototypes in companies? J. Mech. Des. 140(6), 061102 (2018)

    Article  Google Scholar 

  43. Lee, Y.G., et al.: Immersive modeling system (IMMS) for personal electronic products using a multi-modal interface. Comput.-Aided Des. 42(5), 387–401 (2010)

    Article  Google Scholar 

  44. Lim, Y.K., Stolterman, E., Tenenberg, J.: The anatomy of prototypes: prototypes as filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact. (TOCHI) 15(2), 7 (2008)

    Google Scholar 

  45. Menold, J., Jablokow, K., Simpson, T.: Prototype for X (PFX): a holistic framework for structuring prototyping methods to support engineering design. Des. Stud. 50, 70–112 (2017)

    Article  Google Scholar 

  46. Moe, R., Jensen, D.D., Wood, K.L.: Prototype partitioning based on requirement flexibility. In: ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 65–77. American Society of Mechanical Engineers (2004)

    Google Scholar 

  47. Mutambara, A.G., Durrant-Whyte, H.: Estimation and control for a modular wheeled mobile robot. IEEE Trans. Control Syst. Technol. 8(1), 35–46 (2000)

    Article  Google Scholar 

  48. Neeley, W.L., Lim, K., Zhu, A., Yang, M.C.: Building fast to think faster: exploiting rapid prototyping to accelerate ideation during early stage design. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V005T06A022. American Society of Mechanical Engineers (2013)

    Google Scholar 

  49. Nilsson, S., Johansson, B.: A cognitive systems engineering perspective on the design of mixed reality systems. In: Proceedings of the 13th Eurpoean Conference on Cognitive Ergonomics: Trust and Control in Complex Socio-Technical Systems, pp. 154–161. ACM (2006)

    Google Scholar 

  50. Otto, K.N., et al.: Product Design: Techniques in Reverse Engineering and New Product Development. Tsinghua University Press Co., Ltd., Beijing (2003)

    Google Scholar 

  51. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach. Springer, Heidelberg (2013)

    Google Scholar 

  52. Petrakis, K., Hird, A., Wodehouse, A.: The concept of purposeful prototyping: towards a new kind of taxonomic classification. In: Proceedings of the Design Society: International Conference on Engineering Design, vol. 1, pp. 1643–1652. Cambridge University Press (2019)

    Google Scholar 

  53. Pham, D.T., Gault, R.S.: A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 38(10–11), 1257–1287 (1998)

    Article  Google Scholar 

  54. Pontonnier, C., Dumont, G., Samani, A., Madeleine, P., Badawi, M.: Designing and evaluating a workstation in real and virtual environment: toward virtual reality based ergonomic design sessions. J. Multimodal User Interfaces 8(2), 199–208 (2014)

    Article  Google Scholar 

  55. Stowe, D.: Investigating the role of prototyping in mechanical design using case study validation (2008)

    Google Scholar 

  56. Sundin, A., Örtengren, R.: Digital human modeling for CAE applications. In: Handbook of Human Factors and Ergonomics, pp. 1053–1078 (2006)

    Google Scholar 

  57. Thomke, S., Bell, D.E.: Sequential testing in product development. Manag. Sci. 47(2), 308–323 (2001)

    Article  Google Scholar 

  58. Thomke, S.H.: Experimentation Matters: Unlocking the Potential of New Technologies for Innovation. Harvard Business Press, Cambridge (2003)

    Google Scholar 

  59. Tseng, M.M., Jiao, J., Su, C.J.: A framework of virtual design for product customization. In: 1997 IEEE 6th International Conference on Emerging Technologies and Factory Automation Proceedings, EFTA 1997, pp. 7–14. IEEE (1997)

    Google Scholar 

  60. Ullman, D.G.: The Mechanical Design Process: Part 1. McGraw-Hill, New York (2010)

    Google Scholar 

  61. Ulrich, K.T., Eppinger, S.D.: Concept Selection. Product Design and Development, 5th edn., vol. 1, pp. 145–161. McGraw-Hill/Irwin, Philadelphia (2012)

    Google Scholar 

  62. Verlinden, J., Horváth, I.: Analyzing opportunities for using interactive augmented prototyping in design practice. AI EDAM 23(3), 289–303 (2009)

    Google Scholar 

  63. Virzi, R.A., Sokolov, J.L., Karis, D.: Usability problem identification using both low-and high-fidelity prototypes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 236–243. ACM (1996)

    Google Scholar 

  64. Viswanathan, V.K., Linsey, J.S.: Role of sunk cost in engineering idea generation: an experimental investigation. J. Mech. Des. 135(12), 121002 (2013)

    Article  Google Scholar 

  65. Walker, M., Takayama, L., Landay, J.A.: High-fidelity or low-fidelity, paper or computer? Choosing attributes when testing web prototypes. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, pp. 661–665. SAGE Publications, Los Angeles (2002)

    Google Scholar 

  66. Wall, M.B., Ulrich, K.T., Flowers, W.C.: Evaluating prototyping technologies for product design. Res. Eng. Des. 3(3), 163–177 (1992)

    Article  Google Scholar 

  67. Ward, S.: Getting feedback from users early in the design process: a case study. In: Ergonomics: The Fundamental Design Science, Proceedings of the 30th Annual Conference of the Ergonomics Society of Australia, pp. 22–29. The Ergonomics Society of Australia Canberra (1994)

    Google Scholar 

  68. Waterman, N.A., Dickens, P.: Rapid product development in the USA, Europe and Japan. World Class Des. Manuf. 1(3), 27–36 (1994)

    Article  Google Scholar 

  69. Wickens, C.D., Gordon, S.E., Liu, Y., et al.: An introduction to human factors engineering (1998)

    Google Scholar 

  70. Yan, X., Gu, P.: A review of rapid prototyping technologies and systems. Comput.-Aided Des. 28(4), 307–318 (1996)

    Article  Google Scholar 

  71. Zhang, X., Chaffin, D.B.: Digital human modeling for computer-aided ergonomics. Handbook of Occupational Ergonomics, pp. 1–20. Taylor & Francis, London (2005)

    Google Scholar 

  72. Ziolek, S.A., Kruithof Jr., P.C.: Human modeling & simulation: a primer for practitioners. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, pp. 825–827. SAGE Publications, Los Angeles (2000)

    Google Scholar 

  73. Zorriassatine, F., Wykes, C., Parkin, R., Gindy, N.: A survey of virtual prototyping techniques for mechanical product development. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(4), 513–530 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Onan Demirel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, S., Demirel, H.O. (2020). House of Prototyping Guidelines: A Framework to Develop Theoretical Prototyping Strategies for Human-Centered Design. In: Marcus, A., Rosenzweig, E. (eds) Design, User Experience, and Usability. Interaction Design. HCII 2020. Lecture Notes in Computer Science(), vol 12200. Springer, Cham. https://doi.org/10.1007/978-3-030-49713-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49713-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49712-5

  • Online ISBN: 978-3-030-49713-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics