Skip to main content

Abstract

There are different models of the routing problem. We are building a test environment, where the decision making methods of the different models can be evaluated in almost real traffic. The almost real traffic runs in a well known simulation platform. The route selections are injected into the simulation platform, and the simulation platform drives the vehicles. We demonstrate how the routing model evaluator can be run to evaluate a routing model against a dynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.openstreetmap.org/.

  2. 2.

    https://threejs.org/.

References

  1. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_14

    Chapter  Google Scholar 

  2. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, November 2018. https://doi.org/10.1109/itsc.2018.8569938

  3. Parkes, D.C.: Online mechanisms. In: Algorithmic Game Theory, pp. 411–439. Cambridge University Press (2007). https://doi.org/10.1017/CBO9780511800481

  4. Peeta, S., Ziliaskopoulos, A.K.: Foundations of dynamic traffic assignment: the past, the present and the future. Netw. Spatial Econ. 1(3), 233–265 (2001). https://doi.org/10.1023/A:1012827724856

    Article  Google Scholar 

  5. Pourabdollah, M., Bjarkvik, E., Furer, F., Lindenberg, B., Burgdorf, K.: Calibration and evaluation of car following models using real-world driving data. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, October 2017. https://doi.org/10.1109/itsc.2017.8317836

  6. Roughgarden, T.: Routing games. In: Algorithmic Game Theory, pp. 461–486. Cambridge University Press (2007). https://doi.org/10.1017/CBO9780511800481

  7. Varga, L.: On intention-propagation-based prediction in autonomously self-adapting navigation. Scalable Comput.: Pract. Exp. 16(3), 221–232 (2015). http://www.scpe.org/index.php/scpe/article/view/1098

  8. Varga, L.Z.: Two prediction methods for intention-aware online routing games. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT 2017. LNCS (LNAI), vol. 10767, pp. 431–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01713-2_30

    Chapter  Google Scholar 

  9. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1(36), 352–378 (1952)

    Google Scholar 

Download references

Acknowledgement

The work of V. Antal, T.G. Farkas, A. Kiss, and M. Miskolczi was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). The work of L.Z. Varga was supported by project no. ED_18-1-2019-0030 (Application domain specific highly reliable IT solutions subprogramme), and implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Z. Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antal, V., Farkas, T.G., Kiss, A., Miskolczi, M., Varga, L.Z. (2020). A Demonstration of the Routing Model Evaluator. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics