Skip to main content

Design of Vibrotactile Direction Feedbacks on Wrist for Three-Dimensional Spatial Guidance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12192))

Abstract

A wrist-worn vibrotactile interface was previously studied but was aimed at low-resolution navigation tasks such as driving. The previous design had achieved up to six directions for three-dimensional navigation. We argue that the expressivity of vibrotactile navigation on the wrist has not been fully explored, and we address how three-dimensional direction cues can be packed into a wrist-form tactile interface. We present an 8-tactor cuboid worn in wrist form to generate high-density three-dimensional direction feedback around the wrist. This sparse arrangement of 8 vibrotactors allows up to 26 directions to be presented, when benefitting from phantom illusion. We conducted a study with 36 participants to inform the effective design of the interface regarding two factors: the cuboid shape (e.g., the length along the wrist), by comparing 4-cm, 6-cm, and 8-cm configurations, and the direction feedback, which includes point stimuli and motion stimuli. The results show that 6 cm strikes a balance between form and recognition rate. The direction feedbacks made with motion stimuli (80.2%) are generally more discernible than those made with point stimuli (69.6%).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.precisionmicrodrives.com/product/310-117-10mm-vibration-motor-3mm-type.

References

  1. Anstis, S.M., Mackay, D.M.: The perception of apparent movement [and discussion]. Philos. Trans. R. Soc. Lond. B Biol. Sci. 290(1038), 153–168 (1980)

    Article  Google Scholar 

  2. Chen, H.-Y., Santos, J., Graves, M., Kim, K., Tan, H.Z.: Tactor localization at the wrist. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 209–218. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_25

    Chapter  Google Scholar 

  3. Ho, C., Tan, H.Z., Spence, C.: Using spatial vibrotactile cues to direct visual attention in driving scenes. Transp. Res. Part F: Traffic Psychol. Behav. 8(6), 397–412 (2005)

    Article  Google Scholar 

  4. Hong, J., Stearns, L., Froehlich, J., Ross, D., Findlater, L.: Evaluating angular accuracy of wrist-based haptic directional guidance for hand movement. In: Proceedings of the 42nd Graphics Interface Conference, GI 2016, pp. 195–200. School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada. Canadian Human-Computer Communications Society (2016)

    Google Scholar 

  5. Jin, Y.S., Chun, H.Y., Kim, E.T., Kang, S.: VT-ware: a wearable tactile device for upper extremity motion guidance. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 335–340, August 2014

    Google Scholar 

  6. Johnson, K.O.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11(4), 455–461 (2001)

    Article  Google Scholar 

  7. Kapur, P., Jensen, M., Buxbaum, L.J., Jax, S.A., Kuchenbecker, K.J.: Spatially distributed tactile feedback for kinesthetic motion guidance. In: 2010 IEEE Haptics Symposium, pp. 519–526, March 2010

    Google Scholar 

  8. Karime, A., Al-Osman, H., Gueaieb, W., El Saddik, A.: E-glove: an electronic glove with vibro-tactile feedback for wrist rehabilitation of post-stroke patients. In: 2011 IEEE International Conference on Multimedia and Expo, pp. 1–6, July 2011

    Google Scholar 

  9. Lee, J., Han, J., Lee, G.: Investigating the information transfer efficiency of a 3x3 watch-back tactile display. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 1229–1232. ACM, New York (2015)

    Google Scholar 

  10. Lee, S.C., Starner, T.: Buzzwear: alert perception in wearable tactile displays on the wrist. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 433–442. ACM, New York (2010)

    Google Scholar 

  11. Leek, M.R.: Adaptive procedures in psychophysical research. Percept. Psychophys. 63(8), 1279–1292 (2001)

    Article  Google Scholar 

  12. Liao, Y.C., Chen, Y.L., Lo, J.Y., Liang, R.H., Chan, L., Chen, B.Y.: Edgevib: effective alphanumeric character output using a wrist-worn tactile display. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, pp. 595–601. ACM, New York (2016)

    Google Scholar 

  13. Lieberman, J., Breazeal, C.: Tikl: development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Trans. Rob. 23(5), 919–926 (2007)

    Article  Google Scholar 

  14. Pasquero, J., Stobbe, S.J., Stonehouse, N.: A haptic wristwatch for eyes-free interactions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp. 3257–3266. ACM, New York (2011)

    Google Scholar 

  15. Schönauer, C., Fukushi, K., Olwal, A., Kaufmann, H., Raskar, R.: Multimodal motion guidance: techniques for adaptive and dynamic feedback. In: Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI 2012, pp. 133–140. ACM, New York (2012)

    Google Scholar 

  16. Sergi, F., Accoto, D., Campolo, D., Guglielmelli, E.: Forearm orientation guidance with a vibrotactile feedback bracelet: on the directionality of tactile motor communication. In: 2008 2nd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 433–438, October 2008

    Google Scholar 

  17. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Boston (1977)

    MATH  Google Scholar 

  18. Weber, B., Schätzle, S., Hulin, T., Preusche, C., Deml, B.: Evaluation of a vibrotactile feedback device for spatial guidance. In: 2011 IEEE World Haptics Conference, pp. 349–354, June 2011

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by the Ministry of Science and Technology of Taiwan (MOST 108-2633-E-002-001), National Taiwan University, Intel Corporation, and Delta Electronics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jo-Hsi Tang , Giuseppe Raffa or Liwei Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, JH., Raffa, G., Chan, L. (2020). Design of Vibrotactile Direction Feedbacks on Wrist for Three-Dimensional Spatial Guidance. In: Rau, PL. (eds) Cross-Cultural Design. User Experience of Products, Services, and Intelligent Environments. HCII 2020. Lecture Notes in Computer Science(), vol 12192. Springer, Cham. https://doi.org/10.1007/978-3-030-49788-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49788-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49787-3

  • Online ISBN: 978-3-030-49788-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics