Skip to main content

Definable Subsets of Polynomial-Time Algebraic Structures

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

  • 647 Accesses

Abstract

A structure S in a finite signature \(\sigma \) is polynomial-time if the domain of S, and the basic operations and relations of S are polynomial-time computable. Following the approach of semantic programming, for a given polynomial-time structure S, we consider the family B(S) containing all subsets of \(\mathrm {dom}(S)\), which are definable by a \(\varDelta _0\) formula with parameters. It is known that each of these sets is polynomial-time computable; hence, B(S), endowed with the standard set-theoretic operations, forms a natural Boolean algebra of polynomial-time languages, associated with S. We prove that up to isomorphism, the algebras B(S), where S is a polynomial-time structure, are precisely computable atomic Boolean algebras.

The work is supported by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alaev, P., Selivanov, V.: Polynomial-time presentations of algebraic number fields. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp. 20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0_2

    Chapter  MATH  Google Scholar 

  2. Alaev, P.E.: Structures computable in polynomial time. I. Algebra Log. 55(6), 421–435 (2017). https://doi.org/10.1007/s10469-017-9416-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Alaev, P.E.: Structures computable in polynomial time. II. Algebra Log. 56(6), 429–442 (2018). https://doi.org/10.1007/s10469-018-9465-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Alaev, P.E., Selivanov, V.L.: Polynomial computability of fields of algebraic numbers. Dokl. Math. 98(1), 341–343 (2018). https://doi.org/10.1134/S1064562418050137

    Article  MATH  Google Scholar 

  5. Aleksandrova, S.A.: The uniformization problem for \(\varSigma \)-predicates in a hereditarily finite list superstructure over the real exponential field. Algebra and Logic 53(1), 1–8 (2014). https://doi.org/10.1007/s10469-014-9266-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Ash, C.J.: A construction for recursive linear orderings. J. Symb. Log. 56(2), 673–683 (1991). https://doi.org/10.2307/2274709

    Article  MathSciNet  MATH  Google Scholar 

  7. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier Science B.V, Amsterdam (2000)

    MATH  Google Scholar 

  8. Barwise, J.: Admissible Sets And Structures. Springer, Berlin (1975)

    Book  Google Scholar 

  9. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online structure theory. Bull. Symb. Log. 25(2), 141–181 (2019). https://doi.org/10.1017/bsl.2019.20

    Article  MathSciNet  MATH  Google Scholar 

  10. Bazhenov, N., Harrison-Trainor, M., Kalimullin, I., Melnikov, A., Ng, K.M.: Automatic and polynomial-time algebraic structures. J. Symb. Log. 84(4), 1630–1669 (2019). https://doi.org/10.1017/jsl.2019.26

    Article  MathSciNet  MATH  Google Scholar 

  11. Cenzer, D., Remmel, J.: Polynomial-time versus recursive models. Ann. Pure Appl. Log. 54(1), 17–58 (1991). https://doi.org/10.1016/0168-0072(91)90008-A

    Article  MathSciNet  MATH  Google Scholar 

  12. Cenzer, D., Remmel, J.B.: Complexity theoretic model theory and algebra. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.) Handbook of Recursive Mathematics: Volume 1: Studies in Logic and the Foundations of Mathematics, vol. 138, pp. 381–513. North-Holland, Amsterdam (1998). https://doi.org/10.1016/S0049-237X(98)80011-6

  13. Cenzer, D.A., Remmel, J.B.: Polynomial-time Abelian groups. Ann. Pure Appl. Log. 56(1–3), 313–363 (1992). https://doi.org/10.1016/0168-0072(92)90076-C

    Article  MathSciNet  MATH  Google Scholar 

  14. Ershov, Y.L.: Definability and Computability. Consultants Bureau, New York (1996)

    MATH  Google Scholar 

  15. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)

    Book  Google Scholar 

  16. Ershov, Y.L., Puzarenko, V.G., Stukachev, A.I.: \(HF\)-computability. In: Cooper, S.B., Sorbi, A. (eds.) Computability in Context, pp. 169–242. Imperial College Press, London (2011). https://doi.org/10.1142/9781848162778_0006

  17. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. Lond. Ser. A 248(950), 407–432 (1956). https://doi.org/10.1098/rsta.1956.0003

    Article  MathSciNet  MATH  Google Scholar 

  18. Goncharov, S., Ospichev, S., Ponomaryov, D., Sviridenko, D.: The expressiveness of looping terms in the semantic programming. Sib. Elektron. Mat. Izv. 17, 380–394 (2020). https://doi.org/10.33048/semi.2020.17.024

    Article  MATH  Google Scholar 

  19. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants Bureau, New York (1997)

    MATH  Google Scholar 

  20. Goncharov, S.S.: Conditional terms in semantic programming. Sib. Math. J. 58(5), 794–800 (2017). https://doi.org/10.1134/S0037446617050068

    Article  MathSciNet  MATH  Google Scholar 

  21. Goncharov, S.S., Sviridenko, D.I.: Theoretical aspects of \(\varSigma \)-programming. In: Bibel, W., Jantke, K.P. (eds.) MMSSS 1985. LNCS, vol. 215, pp. 169–179. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16444-8_13

    Chapter  Google Scholar 

  22. Goncharov, S.S., Sviridenko, D.I.: \(\varSigma \)-programming. Am. Math. Soc. Transl. Ser. 2 142, 101–121 (1989). https://doi.org/10.1090/trans2/142/10

    Article  MATH  Google Scholar 

  23. Goncharov, S.S., Sviridenko, D.I.: Recursive terms in semantic programming. Sib. Math. J. 59(6), 1014–1023 (2018). https://doi.org/10.1134/S0037446618060058

    Article  MathSciNet  MATH  Google Scholar 

  24. Goncharov, S.S., Sviridenko, D.I.: Logical language of description of polynomial computing. Dokl. Math. 99(2), 121–124 (2019). https://doi.org/10.1134/S1064562419020030

    Article  MATH  Google Scholar 

  25. Grigorieff, S.: Every recursive linear ordering has a copy in DTIME-SPACE\((n,\rm log(n))\). J. Symb. Log. 55(1), 260–276 (1990). https://doi.org/10.2307/2274966

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without delay. Theor. Comput. Sci. 674, 73–98 (2017). https://doi.org/10.1016/j.tcs.2017.01.029

    Article  MathSciNet  MATH  Google Scholar 

  27. Konovalov, A., Selivanov, V.: The Boolean algebra of piecewise testable languages. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 292–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_30

    Chapter  MATH  Google Scholar 

  28. Korovina, M.V.: Generalized computability of real functions. Sib. Adv. Math. 2(4), 85–103 (1992)

    MATH  Google Scholar 

  29. Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16(3), 77–129 (1961). https://doi.org/10.1070/RM1961v016n03ABEH001120

    Article  MathSciNet  MATH  Google Scholar 

  30. Melnikov, A.G.: Eliminating unbounded search in computable algebra. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 77–87. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_8

    Chapter  Google Scholar 

  31. Melnikov, A.G., Ng, K.M.: The back-and-forth method and computability without delay. Isr. J. Math. 234(2), 959–1000 (2019). https://doi.org/10.1007/s11856-019-1948-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Montalbán, A.: Computable structure theory: within the arithmetic. https://math.berkeley.edu/~antonio/CSTpart1.pdf

  33. Nerode, A., Remmel, J.B.: Polynomial time equivalence types. In: Sieg, W. (ed.) Logic and Computation, Contemporary Mathematics, vol. 106, pp. 221–249. American Mathematical Society, Providence (1990). https://doi.org/10.1090/conm/106/1057825

  34. Odintsov, S.P., Selivanov, V.L.: Arithmetic hierarchy and ideals of enumerated Boolean algebras. Sib. Math. J. 30(6), 952–960 (1989). https://doi.org/10.1007/BF00970918

    Article  MATH  Google Scholar 

  35. Ospichev, S., Ponomarev, D.: On the complexity of formulas in semantic programming. Sib. Elektron. Mat. Izv. 15, 987–995 (2018). https://doi.org/10.17377/semi.2018.15.083

    Article  MathSciNet  MATH  Google Scholar 

  36. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Am. Math. Soc. 95(2), 341–360 (1960). https://doi.org/10.2307/1993295

    Article  MathSciNet  MATH  Google Scholar 

  37. Selivanov, V., Konovalov, A.: Boolean algebras of regular languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 386–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1_33

    Chapter  Google Scholar 

  38. Selivanov, V., Konovalov, A.: Boolean algebras of regular \(\omega \)-languages. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 504–515. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37064-9_44

    Chapter  Google Scholar 

  39. Vajtsenavichyus, R.: On necessary conditions for the existence of a universal function on an admissible set. Mat. Logika Primen. 6, 21–37 (1989). in Russian

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazhenov, N. (2020). Definable Subsets of Polynomial-Time Algebraic Structures. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics