
Combining SLiVER with CADP
to Analyze Multi-agent Systems

Luca Di Stefano1,2(B) , Frédéric Lang3, and Wendelin Serwe3

1 Gran Sasso Science Institute (GSSI), L’Aquila, Italy
luca.distefano@gssi.it

2 IMT School of Advanced Studies, Lucca, Italy
3 Univ. Grenoble Alpes, Inria, CNRS,

Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LIG,
38000 Grenoble, France

Abstract. We present an automated workflow for the analysis of multi-
agent systems described in a simple specification language. The pro-
cedure is based on a structural encoding of the input system and the
property of interest into an LNT program, and relies on the CADP soft-
ware toolbox to either verify the given property or simulate the encoded
system. Counterexamples to properties under verification, as well as sim-
ulation traces, are translated into a syntax similar to that of the input
language: therefore, no knowledge of CADP is required. The workflow is
implemented as a module of the verification tool SLiVER. We present the
input specification language, describe the analysis workflow, and show
how to invoke SLiVER to verify or simulate two example systems. Then,
we provide details on the LNT encoding and the verification procedure.

1 Introduction

Multi-agent systems are composed of standalone computational units, the agents,
that interact with each other and with an external environment. Computation
within each agent may be a composition of multiple interleaving processes. The
agents may also interleave their executions and interact with each other, possi-
bly through asynchronous interaction patterns. As a consequence, multi-agent
systems typically feature extremely large state spaces, which makes them hard
to design and reason about.

Therefore, there is a need for languages that allow to specify these systems
in a concise and intuitive fashion, as well as tools that can certify or increase
confidence in the correctness of such specifications. This need is felt far beyond
the multi-agent community, as agent-based models are gaining popularity in
economics [13,29], social sciences [3,4], and many other research fields. However,
the development of tools for such new languages may be a daunting task, as it

Work partially funded by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods
and Tools for Trustworthy Smart Systems).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 370–385, 2020.
https://doi.org/10.1007/978-3-030-50029-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_23&domain=pdf
http://orcid.org/0000-0003-1922-3151
https://doi.org/10.1007/978-3-030-50029-0_23

Combining SLiVER with CADP to Analyze Multi-agent Systems 371

must keep pace with both the evolution of the language and the state of the art
in formal analysis of systems.

An alternative solution is to encode a system specification into an existing
language, and reuse mature tools for that language to analyze the encoded sys-
tem. An example of this approach is given by SLiVER, a prototype tool for the
automated verification of multi-agent systems that are described in the simple
specification language LAbS [10].1 The tool is highly modular: it exploits the for-
mal semantics of LAbS to encode the input system into an emulation program
in a given language, through a structural translation procedure, and verifies the
emulation program with off-the-shelf tools for that language to reach a verdict
on the correctness of the input system. Previously [10], SLiVER only generated
sequential C programs and verified them through bounded model checking [5],
by using tools such as 2LS [8], CBMC [9], and ESBMC [14] as back ends.

In this paper, instead, we present a new analysis workflow based on process-
algebraic tools. Namely, we choose the process calculus LNT [17] as the target
language, and CADP [16] as the back end analysis tool.2 The workflow is imple-
mented as a SLiVER module and can verify both invariance properties (i.e., all
reachable states satisfy a given formula) and inevitable reachability ones (i.e.,
all executions lead to a state where the given formula is satisfied), over the full
state space of the input system. Furthermore, we can use the same workflow to
simulate the evolution of the system and return a set of execution traces. This is
the first SLiVER module that supports simulation. These two approaches may
complement each other: even though simulation can rarely lead to strong con-
clusions about the correctness of a system [31], it is a valuable design aid and
can provide quick feedback even on very large systems.

The rest of the paper is organized as follows. Section 2 briefly describes the
specification language LAbS supported by SLiVER through an example, and
contains an overview of LNT and CADP. Section 3 introduces the analysis work-
flow and its implementation as a SLiVER module, and provides usage examples.
In Sect. 4 we describe in further detail how the tool generates emulation pro-
grams, and in Sect. 5 we explain how it performs property verification through
model checking of such programs. Finally, we discuss related work in Sect. 6 and
provide concluding remarks in Sect. 7.

2 Background

System Specifications. LAbS [10] is a domain-specific language to describe the
behavior of agents in a multi-agent system. A behavior is made of basic actions,
which tell the agent to assign a value to a variable. There are three kinds of
assignments: to an internal variable, denoted by x ← E (where x is a variable
identifier and E a value expression); to a shared variable, denoted by x ���
E; and to a stigmergic variable, denoted by x �E. Stigmergic variables are a
distinguishing feature of LAbS. Their value is bound to a timestamp and stored
1 A Linux release of SLiVER is available at https://git.io/sliver-tool.
2 CADP is available at http://cadp.inria.fr.

https://git.io/sliver-tool
http://cadp.inria.fr

372 L. Di Stefano et al.

on a decentralized data structure, allowing agents to share their knowledge with
the rest of the system by exchanging asynchronous messages [26]. In brief, agents
send propagation messages after updating a stigmergic variable. A propagation
message contains the name of this variable, its new value, and its associated
timestamp. An agent that receives a message checks whether its timestamp is
newer than the local one for the same variable. If this is the case, the local value
and timestamp are overwritten by the received ones; furthermore, the receiver
will in turn propagate this new value to others. Otherwise, the message is simply
discarded. Agents also send confirmation messages after reading the value of a
stigmergic variable (i.e., by using it as part of a value expression). The contents
of a confirmation message are the same as those of a propagation message.
However, a receiver of a confirmation message that stores a value with a higher
timestamp will react by propagating its own value. This mechanism facilitates
the spread of up-to-date values through the system.

A single action may specify multiple assignments to variables of the same
kind: for instance, an assignment to multiple internal variables is denoted by
x1, . . . , xn ← E1, . . . , En. Multiple assignments to variables of different kinds
(e.g., an internal one and a shared one) are not allowed. Actions may be com-
posed with traditional process-algebraic operators: sequential composition (;),
nondeterministic choice (+), interleaving (|), and calls to other behaviors (pos-
sibly including recursive calls). Furthermore, a behavior B may be guarded by
a condition g (denoted as g → B), meaning that the agent may start behaving
as B only if g holds.

SLiVER takes as input a system specification in a machine-readable version
of LAbS, which is extended with constructs to specify the property of interest
and the initial state of the system through (possibly nondeterministic) variable
initialization expressions. Furthermore, the input format allows to parameterize
systems in one or more external variables.

Figure 1a shows an example specification describing the well-known dining
philosophers scenario. The system is parameterized in the number n of agents
(line 2), and features an array forks, which is shared by all the agents and whose
elements are all initialized to 0 (line 3: the set of shared variables within a system
is called its environment). Each element of the array models a fork: a value 0
means that the fork is available, while a value 1 means that it is currently held by
one of the agents. The (recursive) behavior of the agents is specified at lines 10–
21. Each agent repeatedly tries to acquire two forks, by checking and updating
the elements id and (id+1)% n of the array forks. The special variable id has a
different value for each agent, and % denotes the modulo operator. After acquiring
both forks, the agent releases them and starts over. Each agent maintains an
internal variable status, initially set to 0, which describes its current situation
(line 8: the set of internal variables of an agent is called its interface). When
status is set to either 0, 1, or 2, it denotes the number of forks currently held
by the agent. When status is set to 3, it means that the agent has just released
one fork and is going to release the other one during its next action. Lastly,

Combining SLiVER with CADP to Analyze Multi-agent Systems 373

Fig. 1. Two example systems in LAbS.

invariant NoDeadlock (lines 25–27) states that the system should never reach a
state where all agents are waiting for the second fork.

Figure 1b contains a simple leader election system, which we will use to illus-
trate stigmergic variables. Lines 6–9 define a stigmergy Election containing a
single variable leader. The link predicate is, in general, a Boolean expression
over the state of two agents: an agent may only send a stigmergic message to
another one if they satisfy this predicate. In this case, the predicate is simply
true, so any two agents may communicate at any time. The stigmergic vari-
able leader is initially set to the value of external parameter n. The definition
of Node agents states that they can access the Election stigmergy (line 12).
Their behavior (lines 13–16) simply tells them to repeatedly update the variable
leader to their own id as long as it contains a greater value. Finally, property
LeaderIs0 (lines 20–22) specifies that the system should eventually reach a state
where all Node agents agree on a value of 0 for variable leader.

Supported Properties. SLiVER currently supports invariants and inevitable
reachability properties. A property is expressed by a modality keyword (always
for invariants, eventually for inevitability properties), followed by a predicate
over the state of agents. The predicate may contain existential (exists) or uni-
versal (forall) quantifiers. Alternation of existential and universal quantifiers
in the same property is not supported yet.

374 L. Di Stefano et al.

LNT and CADP. LNT is a formally defined language for the description of asyn-
chronous concurrent systems [17]. A system is modeled as a process, generally
composed of several, possibly concurrent processes, which may perform commu-
nication actions on gates and exchange information by multiway (value-passing)
rendezvous, in the style of the Theoretical CSP [19] and LOTOS [20] process
algebras. The syntax of LNT is inspired from both imperative languages (assign-
ments, sequential composition, loops) and functional languages (pattern match-
ing, recursion), with many static checks, such as binding, typing, and dataflow
analysis ensuring the proper definition of variables and function results.

CADP [16] is a software toolbox for the analysis of asynchronous concur-
rent systems, in particular systems described in LNT. It contains a wide range
of tools for simulation, test generation, verification (model checking and equiv-
alence checking), performance evaluation, etc. We briefly describe two CADP
tools named Evaluator and Executor. Evaluator is a model checker that can
evaluate properties expressed in the language MCL [25], a temporal logic based
on the modal μ-calculus [21] extended with regular action formulas and value-
passing constructs.3 Executor, on the other hand, performs a bounded random
exploration of the state space of a given program. Starting from the initial state,
it repeatedly enumerates and then randomly chooses one of the transitions going
out of the current state, until it has generated a sequence of the requested length.
Explorations can be made reproducible by manually providing a seed for the
internal pseudo-random number generator.4

3 Overview of SLiVER

Workflow. The analysis workflow is shown in Fig. 2. First, a front end parses
the input file and substitutes external parameters with the values provided in
the command line, to obtain a system specification S and a property of interest
ϕ. After that, we perform a two-step encoding procedure. The first step is inde-
pendent of the target language and builds a structural symbolic representation
T of the behaviors of the agents within S. This representation is used in the
second step to encode S and ϕ into an LNT program P. At this point, a wrapper
invokes a specific program from the CADP toolbox, depending on the analysis
task requested by the user. In verification mode, the tool invokes Evaluator to
model-check P. If a counterexample is found, a translation module converts it
to a LAbS-like syntax and shows it to the user; otherwise, the user is notified
that ϕ holds in S. In simulation mode, instead, we call Executor to obtain one or
more random traces of P. Each trace is then translated and shown to the user.
Simulation traces will also display a message whenever an invariant is violated
or an eventually property is satisfied.

3 See http://cadp.inria.fr/man/evaluator.html and http://cadp.inria.fr/man/mcl.
html.

4 See http://cadp.inria.fr/man/executor.html.

http://cadp.inria.fr/man/evaluator.html
http://cadp.inria.fr/man/mcl.html
http://cadp.inria.fr/man/mcl.html
http://cadp.inria.fr/man/executor.html

Combining SLiVER with CADP to Analyze Multi-agent Systems 375

Fig. 2. Workflow of SLiVER with the CADP back end.

Implementation Details and Availability. The front end and encoder are imple-
mented in about 2500 lines of F#, and rely on LNT templates amounting to 450
additional lines. The rest of SLiVER consists of roughly 1000 lines of Python. All
Python source code for SLiVER, along with licensing information, is available
at https://git.io/sliver-tool. A demonstration video is available at https://drive.
google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL.

Usage. This command invokes SLiVER with CADP as the analysis back end:

sliver.py <specfile> [params] --backend cadp --fair
[--simulate <n> --steps <s>]

where specfile is the name of the input specification file. If the input system is
parameterized, the user must provide a sequence params in the form param=val
to assign a value to each parameter. Argument --backend cadp is needed to
force SLiVER to use the CADP analysis module. As an example, if we invoke
SLiVER on the system of Fig. 1a with the command

sliver.py philosophers.labs n=5 --backend cadp

we obtain the counterexample of Fig. 3a, disproving property NoDeadlock.
By default, the tool assumes that there are no constraints on the interleaving

of agents. However, in some cases it might be convenient to restrict the analysis
to traces where interleaving is restricted according to some policy. Currently,
SLiVER allows to enforce round-robin execution of agents through the optional
--fair flag.

If the optional arguments --simulate <n> --steps <s> are omitted, the
tool attempts to verify the input property on the given system. Otherwise, it
returns n execution traces, each one containing at most s transitions. As an
example, Fig. 3b contains part of a simulation trace for the leader election sys-
tem of Fig. 1b, with three agents5. This trace shows the asynchronous nature
of stigmergic messages. Notice that all stigmergic assignments within the trace
show both the value and its attached timestamp. In the first steps, nodes 0
and 2 update leader to their respective ids. Then, node 0 sends a confirmation
message for leader. It does so because it had to compute the guard leader >

5 The full command used to obtain this trace is sliver.py leader.labs n=3

--backend cadp --simulate 1 --steps 100.

https://git.io/sliver-tool
https://drive.google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL
https://drive.google.com/file/d/12kvZXbUiVHRZiXINvOm81D941CYaTeBL

376 L. Di Stefano et al.

Fig. 3. Example of SLiVER outputs.

id. Node 1 picks up the message and updates its value of leader accordingly
(lines 8–10). On the other hand, node 2 ignores the message, since its own value
of leader has a higher timestamp. After a sequence of messaging rounds, dur-
ing which node 0 sets leader to 2 (line 16), the same node updates yet again
leader to 0 (line 21). Then, a propagation messages from node 0 forces the
other nodes to accept that value for leader, and property LeaderIs0 becomes
satisfied (line 26).

The tool supports other flags, not shown above. If an invocation is enriched
with --verbose, SLiVER will print the full output from the back end. The
--debug flag enables the output of additional messages for diagnostic purposes.
Finally, the --show flag forces SLiVER to print the emulation program and quit
without performing any analysis.

4 Program Generation

In this section we describe how we encode a LAbS system S and a property ϕ
into an LNT emulation program P by using the intermediate representation T.

Combining SLiVER with CADP to Analyze Multi-agent Systems 377

We illustrate our description with simplified excerpts of LNT code generated
from the tool.6

Intermediate Representation. The intermediate representation of an agent
behavior B contains one record for each basic action within B. Each record
is decorated with an entry condition and an exit condition. An entry condition
is a predicate over a set of symbolic variables, which we call the program counter
of the agent. Intuitively, the program counter tracks the actions which the agent
can perform at any given time. An exit condition, on the other hand, is a (pos-
sibly nondeterministic) assignment to the program counter. Exit conditions are
constructed so as to preserve the control-flow of B. We use multiple variables
for the program counter to compactly represent parallel compositions of LAbS
processes within a single behavior.

Program Stub. Once the intermediate representation T is obtained, the genera-
tion of the emulation program P starts from a stub, containing a type definition
Sys that encodes the full state of S. A system is composed of a collection of
agents, an environment env, and a global clock time (Listing 1, lines 1–3).
The latter is needed to model the semantics of stigmergic variables. Throughout
Listing 1, the with "get", "set" construct implements standard functions for
accessing and updating elements (for array types) or fields (for record types).
The LNT type Agent models a LAbS agent: each agent has an identifier id, a
program counter pc, two stores I and L respectively used for local and stigmer-
gic variables, two stores Zprop and Zconf to keep track of pending propagation
and confirmation messages, and an init field that tracks whether the agent has
been initialized (lines 4–8). Agents, Env, PC, Iface, Lstig, and Pending are all
implemented as arrays (lines 10–12).

Their sizes are determined by SLiVER through static analysis of the input
specifications. #spawn is the total number of agents within the system, as spec-
ified in the spawn section (e.g., at line 4 in Fig. 1a). #I, #L, and #E respec-
tively denote the number of internal, stigmergic, and shared variables within the
behavioral specifications. #P is the number of program counter variables, which
is computed during the construction of T. Finally, type ID is a natural number
strictly less than the number of agents in the system (line 16). The stub also con-
tains LNT functions and processes that implement the semantics of LAbS, and
thus never change (see Sect. 4.1 for an example of such a process). Notice that
SLiVER is able to alter this stub according to the features of S. For instance,
if the system does not feature any stigmergic variables, the emulation program
will not contain Lstig, Pending, nor the functions that implement stigmergic
messaging, and the Sys type will not have a time field.

6 The full LNT programs for the dining philosophers system (with n = 5) and the
leader election one (with n = 3) can be found at https://git.io/philosophers-lnt and
https://git.io/leader-lnt, respectively.

https://git.io/philosophers-lnt
https://git.io/leader-lnt

378 L. Di Stefano et al.

Listing 1: Type definitions.

Emulation Functions. We populate the stub by encoding each record within
T as a separate LNT process. We call these processes emulation functions. An
emulation function for a given record alters the state of the system according
to the semantic rule of its action, and then updates the program counter of the
selected agent according to its exit condition. For instance, Listing 2 emulates
action

fork[id] = 0 -> fork[id] <-- 1

from the dining philosophers example (lines 11–12 of Fig. 1a). The guard is
encoded by the only if ... then ... end if construct, while the assignment
to fork[id] is represented by the update of the corresponding element of array
E (lines 20–21). We refer the reader to Sect. 4.2 for additional examples of emu-
lation functions.

The main section of the program (Listing 3) implements a scheduler, that
repeatedly selects an agent and calls an emulation function. Agent selection
happens by assigning a value to a variable id. If the tool is invoked with the
--fair flag, the variable is simply incremented modulo the number of agents;
otherwise, a nondeterministic assignment is performed (lines 34–37). Listing 4
shows the LNT process implementing an iteration of the scheduler. Notice that
an emulation function may only be called if the program counter of the selected
agent satisfies its corresponding entry condition (see e.g. lines 48–50). This pre-
vents spurious executions. At each iteration, instead of calling an emulation func-
tion, the scheduler may call one of several system functions implementing other
semantic rules of the language, e.g., communication between agents (line 39).

Combining SLiVER with CADP to Analyze Multi-agent Systems 379

Listing 2: An emulation function. Listing 3: Main section of P.

Property Instrumentation. The generated program is then instrumented for the
verification of ϕ. First, we obtain a propositional formula ϕ′ from ϕ by quantifier
elimination. Then, we add a monitor process to P, which is executed before each
iteration of the scheduler (Line 23 of Listing 3). A stub of the monitor process
is shown in Listing 5. If ϕ is an invariant and ϕ′ is violated, the monitor emits
a false value over a gate m (line 63). On the other hand, if ϕ is an inevitable
reachability property and ϕ′ holds, a true value will be emitted over m (line 68).
In any case, when the monitor emits a value, it also terminates P by means of a
stop instruction, since there is no need to further explore the evolution of P. This
instruction is only added to the program when in verification mode: in simulation
mode, the program will keep running until it reaches either a deadlocked state
or the user-provided bound.

Listing 4: A scheduler iteration. Listing 5: Property encoding.

Size of Emulation Programs. The behavior of multiple identical agents is only
encoded once, by parameterizing all emulation functions in the id of the agent.
Therefore, the number of lines of code in P scales well with the number of agents
in the input system. To show that, we consider the systems of Fig. 1a–1b, as
well as the boids and majority systems introduced in [10]. For each one, we
build a 10-agent and a 100-agent emulation program, and compare their sizes.
Table 1 shows the size of the input specification and of the two programs. Dining
philosophers is the only system where the size of P increases, roughly by a factor

380 L. Di Stefano et al.

of 1.5. This is due to initialization code for array forks, whose length depends on
the number of agents. The other systems have a fixed-size state, and thus their
encodings have the same size, regardless of the number of agents. The growth
of the dining philosophers program may be avoided by improving the LNT code
generator, e.g., by initializing LAbS arrays within a loop. We plan to implement
improvements of this kind in a future release of SLiVER.

Table 1. Size of LNT emulation programs with respect to the number n of agents.

Input system LNT size

Name Size n = 10 n = 100

Boids 55 530 530

Dining philosophers 28 332 512

Leader election 26 344 344

Majority 57 584 584

Listing 6: Propagation of stigmergic variables in LNT.

4.1 Example: A System Function

Listing 6 contains an LNT process that implements LAbS propagation messages.
This process may be called at each iteration of the scheduler of the emulation
program (line 39 of Listing 3). A similar function, not shown here, implements
confirmation messages.

Combining SLiVER with CADP to Analyze Multi-agent Systems 381

The process first selects an agent with at least one pending message, i.e.,
with a non-empty Zprop field. The selection happens via a nondeterministic
assignment of an agent identifier to a variable senderId (line 4). Once a suitable
sender is found, an element of Zprop is nondeterministically selected and stored
in the key variable (line 6). This value is the index of the stigmergic variable that
will be propagated. The process then finds all potential receivers of the message:
sender and receiver must be different agents, and they have to satisfy the link
predicate for the stigmergic variable that is being sent (line 9).

If an agent satisfies all the above requirements, it can receive the message.
Furthermore, if its own timestamp for key is less than the one of the sender
(line 10), it will update its value and timestamp for key with the ones from
the message (otherwise, it will just discard it). Notice that multiple stigmergic
variables may actually be updated (lines 12–14). This is because LAbS allows the
user to put multiple stigmergic variables together in a tuple, and its semantics
guarantee that variables within a tuple are always propagated together [10].
The loop in the LNT process enforces these guarantees. In lines 15–17, the state
of the receiver is updated, and key is added to its set of pending propagation
messages. Additionally, key is removed from its pending confirmation messages:
intuitively, the agent needs no further confirmation for that variable, since it has
just received a newer value. Finally, the value key is removed from the pending
propagation messages of the sender (line 20).

4.2 Example: Emulation Functions

Listing 7 contains all LNT emulation functions for the dining philosophers exam-
ple. The name of each emulation function is constructed from its entry condition.
For instance, function action 0 2 has entry condition pc[0] == 2. A comment
within each process reports its corresponding LAbS action. Updates to local and
shared variables are implemented through the attr and env processes, respec-
tively. Notice how the assignments to the program counter at the end of each
function preserve the control flow of the input specification.

5 Property Verification

In this section we explain how we determine whether a system S satisfies a
property ϕ by model-checking the emulation program generated from (S, ϕ).
We use the Evaluator tool to verify the values emitted by the monitor process
(Listing 5). If ϕ is an invariant, we check that the program never emits a false
value over m. This property is encoded as the MCL query

[true * . "M !FALSE"]false

382 L. Di Stefano et al.

Listing 7: Emulation functions for the dining philosopherssystem.
When ϕ is an inevitability property, instead, we check that all fair execu-

tions [27] of P emit a value of true over m at some point. To do that, we use the
following MCL query:

[(not ("M !TRUE"))*]<true * . "M !TRUE">true

To trust that the outcome of the model checker is also a verdict on the original
problem (namely, whether ϕ holds in S), we need to prove that intermediate
representation T preserves all traces of each behavior in the system, and also that
the emulation program P correctly interleaves these traces with calls to system
functions, without introducing spurious executions. We cannot include a detailed
proof for reasons of space, but this procedure adapts a previous structure-aware
encoding [11] (which was tied to explicit-state model checking) to the semantics
of LAbS, and makes it independent of the verification technique. Thus, our
argument for correctness closely follows the one for that encoding.

Combining SLiVER with CADP to Analyze Multi-agent Systems 383

6 Related Work

There are several specialized tools for the formal analysis of multi-agent sys-
tems. MCMAS [24] verifies multi-agent systems of unbounded size with syn-
chronous communication. Its language lacks value-passing actions, so it is not
clear whether their technique could be applied to LAbS. AJPF [7] can perform
explicit-state model-checking on a variety of agent-oriented languages. Differ-
ently from AJPF, SLiVER is modular with respect to the analysis back end,
and may support explicit-state techniques as well as symbolic ones, such as
SAT-based bounded model checking [10]. Peregrine [6] can verify and simulate
population protocols, i.e. collections of identical mobile agents [2]. It can check
that a population of unbounded size inevitably ends up satisfying a given pred-
icate over its initial state. SLiVER cannot reason over unbounded-size systems,
but it allows for the verification of invariants in addition to inevitable reachabil-
ity properties.

The concept of verifying domain-specific languages by means of a structural
translation into more amenable formalisms is not new. For instance, in [18]
hardware specifications are translated into LOTOS and verified with CADP,
while [11] shows a translation from an attribute-based process algebra [1] to
UMC [30].

7 Conclusion

We have presented an automated analysis workflow for multi-agent systems
based on CADP and implemented as part of the SLiVER tool. Through an LNT
encoding, the workflow allows to formally verify the input system via model
checking, as well as generate random execution traces. The end user does not
need to be familiar with either LNT or CADP: knowledge of the input language
LAbS is the only requirement.

Future work may improve the presented workflow at several levels. We cur-
rently represent the whole system as a sequential LNT program: one might
instead represent agents as parallel processes and apply compositional verifica-
tion [15,22,23] to improve model checking performance. We could verify much
more expressive properties than the current ones, by devising a translation into
MCL queries with data variables [25] to be passed to the model checker. This
would require an extension of the property language currently understood by
the tool, as well as a correct encoding of this (state-based) language into MCL,
which is action-based [12]. Finally, we could use the new trace generation capabil-
ity to implement simulation-based analysis techniques, such as statistical model
checking [28].

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for collective-adaptive
systems and its behavioural theory. Inf. Comput. 268 (2019). https://doi.org/10.
1016/j.ic.2019.104457

https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1016/j.ic.2019.104457

384 L. Di Stefano et al.

2. Aspnes, J., Ruppert, E.: An introduction to population protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-89707-1 5

3. Axtell, R.L., et al.: Population growth and collapse in a multiagent model of the
Kayenta Anasazi in Long House Valley. Proc. Natl. Acad. Sci. 99(suppl 3), 7275–
7279 (2002). https://doi.org/10.1073/pnas.092080799

4. Baeza, A., Janssen, M.A.: Modeling the decline of labor-sharing in the semi-desert
region of Chile. Reg. Environ. Change 18(4), 1161–1172 (2017). https://doi.org/
10.1007/s10113-017-1243-0

5. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) 5th International Conference on Tools and Algo-
rithms for Construction and Analysis of Systems (TACAS). LNCS, vol. 1579, pp.
193–207. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

6. Blondin, M., Esparza, J., Jaax, S.: Peregrine: a tool for the analysis of popula-
tion protocols. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol.
10981, pp. 604–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96145-3 34

7. Bordini, R.H., Dennis, L.A., Farwer, B., Fisher, M.: Automated verification of
multi-agent programs. In: 23rd International Conference on Automated Software
Engineering (ASE), pp. 69–78. IEEE (2008). https://doi.org/10.1109/ASE.2008.
17

8. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Synthesising
interprocedural bit-precise termination proofs. In: 30th International Conference
on Automated Software Engineering (ASE), pp. 53–64. IEEE (2015). https://doi.
org/10.1109/ASE.2015.10

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. De Nicola, R., Di Stefano, L., Inverso, O.: Multi-agent systems with virtual stig-
mergy. Sci. Comput. Program. 187 (2020). https://doi.org/10.1016/j.scico.2019.
102345

11. De Nicola, R., Duong, T., Inverso, O., Mazzanti, F.: Verifying properties of sys-
tems relying on attribute-based communication. In: Katoen, J.-P., Langerak, R.,
Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 169–190.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 9

12. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

13. Farmer, J.D., Foley, D.: The economy needs agent-based modelling. Nature
460(7256), 685–686 (2009). https://doi.org/10.1038/460685a

14. Gadelha, M.Y.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole,
D.A.: ESBMC 5.0: an industrial-strength C model checker. In: 33rd International
Conference on Automated Software Engineering (ASE), pp. 888–891. ACM (2018).
https://doi.org/10.1145/3238147.3240481

15. Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Informatica 52(4–5), 337–392 (2015).
https://doi.org/10.1007/s00236-015-0226-1

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transf.
15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1007/978-3-540-89707-1_5
https://doi.org/10.1073/pnas.092080799
https://doi.org/10.1007/s10113-017-1243-0
https://doi.org/10.1007/s10113-017-1243-0
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1007/978-3-319-96145-3_34
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1109/ASE.2008.17
https://doi.org/10.1109/ASE.2015.10
https://doi.org/10.1109/ASE.2015.10
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1016/j.scico.2019.102345
https://doi.org/10.1007/978-3-319-68270-9_9
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1038/460685a
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/s00236-015-0226-1
https://doi.org/10.1007/s10009-012-0244-z

Combining SLiVER with CADP to Analyze Multi-agent Systems 385

17. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.-P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500,
pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68270-9 1

18. Garavel, H., Salaün, G., Serwe, W.: On the semantics of communicating hardware
processes and their translation into LOTOS for the verification of asynchronous
circuits with CADP. Sci. Comput. Program. 74(3), 100–127 (2009). https://doi.
org/10.1016/j.scico.2008.09.011

19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

20. ISO/IEC: LOTOS – A formal description technique based on the temporal ordering
of observational behaviour. International Standard 8807 (1989)

21. Kozen, D.: Results on the propositional µ-Calculus. Theoret. Comput. Sci. 27,
333–354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

22. Lang, F., Mateescu, R., Mazzanti, F.: Compositional verification of concurrent
systems by combining bisimulations. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 196–213. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 13

23. Lang, F., Mateescu, R., Mazzanti, F.: Sharp congruences adequate with temporal
logics combining weak and strong modalities. TACAS 2020. LNCS, vol. 12079, pp.
57–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7 4

24. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

25. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-
passing systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,
vol. 5014, pp. 148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68237-0 12

26. Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data sharing in robot
swarms. In: 9th International Conference on Bio-inspired Information and Com-
munications Technologies (BICT), pp. 287–294. ICST/ACM (2015). https://doi.
org/10.4108/eai.3-12-2015.2262503

27. Queille, J.P., Sifakis, J.: Fairness and related properties in transition systems - a
temporal logic to deal with fairness. Acta Informatica 19, 195–220 (1983). https://
doi.org/10.1007/BF00265555

28. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

29. Stiglitz, J.E., Gallegati, M.: Heterogeneous interacting agent models for under-
standing monetary economies. Eastern Econ. J. 37(1), 6–12 (2011). https://doi.
org/10.1057/eej.2010.33

30. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

31. Winikoff, M.: Assurance of agent systems: what role should formal verification
play? In: Dastani, M., Hindriks, K., Meyer, J.J. (eds.) Specification and Verification
of Multi-Agent Systems, pp. 353–383. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-1-4419-6984-2 12

https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1016/j.scico.2008.09.011
https://doi.org/10.1016/j.scico.2008.09.011
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-30942-8_13
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.4108/eai.3-12-2015.2262503
https://doi.org/10.4108/eai.3-12-2015.2262503
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1057/eej.2010.33
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1007/978-1-4419-6984-2_12
https://doi.org/10.1007/978-1-4419-6984-2_12

	Combining SLiVER with CADP to Analyze Multi-agent Systems
	1 Introduction
	2 Background
	3 Overview of SLiVER
	4 Program Generation
	4.1 Example: A System Function
	4.2 Example: Emulation Functions

	5 Property Verification
	6 Related Work
	7 Conclusion
	References

