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Abstract. We identify two important features to enhance the design
of communication protocols specified in the pi-calculus, that are linear
and static channels, and present a compiler, named GoPi, that maps
high level specifications into executable Go programs. Channels declared
as linear are deadlock-free, while the scope of static channels, which
are bound by a hide declaration, does not enlarge at runtime; this is
enforced statically by means of type inference, while specifications do
not include annotations. Well-behaved processes are transformed into Go
code that supports non-deterministic synchronizations and race-freedom.
We sketch two main examples involving protection against message for-
warding, and forward secrecy, and discuss the features of the tool, and
the generated code. We argue that GoPi can support academic activities
involving process algebras and formal models, which range from the anal-
ysis and testing of concurrent processes for research purposes to teaching
formal languages and concurrent systems.

1 Introduction

Concurrent programming is nowadays pervasive to most software development
processes. However, it poses hard challenges to the developers, which must
envisage and try to solve without automatic support undesired behaviours like
security breaches, deadlocks, races, often leading to bugs of substantial impact
[11,22]. Automated techniques and tools are thus needed to analyse and ensure
secure and correct concurrent code. Formal methods have been advocated as an
effective tool to analyse and deploy secure communicating programs and proto-
cols [10]. Process calculi, in particular, allow to study prototype analysis tech-
niques that could be embedded into next generation compilers for distributed
languages, and to investigate high-level security abstractions that can be effec-
tively deployed into lower-level languages, thus providing for APIs for secure
process interaction (e.g., [2,5]).
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let Alice = priv?(c).c'helloAlice in

let Bob = priv?(c).cthelloBob.pub!priv in

let Carl = pub?(p).p?(c).c'helloCarl in

let Board = *chat? (message).print :: message in

let Setup = xprivlchat in

let Chat = [hide chat][Board | (new priv)(Setup | Alice | Bob) | Carl] in Chat

Fig. 1. Suspicious specification of a secret chat in the LSpi language

This paper presents a contribution towards this direction by introducing a
fully-automated tool, named GoPi [1], that allows to analyse and run communi-
cation protocols specified in a variant of the pi calculus featuring linear channels
that must be used exactly once for input and once for output, and static chan-
nels that are never extruded. Well-behaved high-level processes are mapped into
executable Go programs communicating through message-passing: rather than
enforcing the channels’ constraints at the target language level, GoPi performs
a static analysis of the specification and only generates executable Go code
that at runtime preserves the specified invariants. The analysis is based on type
inference, while the specification language does not include type decorations.
GoPi supports further non-trivial features, which include a contextual analysis
of static channels, and deadlock detection on linear channels, at the source lan-
guage level, and non-deterministic synchronizations, and race-freedom, at the
target language level.

The aim is twofold:

— to provide for an automated static analysis of processes described in a variant
of the linear pi-calculus without relying on annotations;

— to make available a message-passing runtime system for well-behaved pi-
calculus processes featuring static channels that are never extruded.

1.1 Message Forwarding Protection

To illustrate our approach, we consider the case when we want to study the
design of a messaging application supporting secret chats' featuring message
forwarding protection. To this aim, we analyse an instance of a secret chat that
involves three users, and describe the protocol as follows: “Alice, Bob, and Carl
share a hidden chat channel with static scope including the users, the board, and
a setup process that distributes the channel to the users, where the scope of the
channel should never be enlarged”. The static scope invariant offers protection
against message forwarding, and only processes that are included in the scope of
the channel in the specification will be able to ever use the channel at runtime.

! https://www.viber.com/blog/2017-03-13 /share-extra-confidently-secret-chats.
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Figure 1 presents a formal specification of the protocol in a variant of the pi-
calculus featuring secret channels. The program is based on message-passing
and builds around three main channels: the hidden channel chat, the distribution
channel priv, and a public channel pub. Base channels are noted in typewriter.
We use |, 7, ., %, and | to indicate output, input, sequence, loop and parallel
execution constructors, respectively; channels are created with the new and hide
constructors by indicating their scope with parentheses (new) and squares (hide).
The print imperative construct allows to print channels. In order to be safe,
the program in Fig.1 should preserve the static scope invariant, that is: the
scope of the hidden channel must not be enlarged at runtime. The specification is
suspicious since Carl, who is left out of the distribution process, is invited to the
chat by receiving the private channel priv from the open channel pub, perhaps
because of a bad design choice.

By running GoPi, we verify that, when considered in isolation, the program
in Fig.1 is safe: intuitively, this holds since all processes receiving the hidden
channel are included in its static scope (the squares). However, the protocol is
flagged as contezrtually unsafe: the reason is that there exists a process that, once
put in parallel with the Chat process, can break the static scope invariant by
receiving the hidden channel. That is, because of non-determinism, the private
channel priv can be received by a parallel process that is listening on the open
channel pub, rather than by Carl, thus allowing a process outside the squares to
receive the hidden channel chat. To fix to the program in Fig. 1 we can resort to
linear channels that must be used exactly once for input and once for output.
By declaring pub as linear, written as (pub), the protocol SafeChat 2 (pub) Chat
gains protection from parallel (typed) processes, which are assumed to do not
break linearity, and in turn contextual safety, as established by GoPi.

The static analysis is relevant since, in general, detecting if a program may
extrude a secret channel by code inspection can be hard, because of channel
mobility, and of the arbitrary length of the attack sequence. To see that, take
P £ (neway,...,a,)([hidec][an!c] | ailas | -+ | an_1'a, | publay), for some
n > 1: the secret channel c is sent over a restricted channel a,,, which in turn is
sent over a restricted channel a,,_1, and so on, while the error is that the first
channel in the chain, ap, is sent over a public channel pub, allowing processes
running in parallel with P to receive the hidden channel from a,,.

1.2 Related Work

We briefly discuss work related to the design of the specification language, and
to runtime systems for process calculi and Go as a target language.

Language Design. Secret channels have been studied by the author at the lan-
guage [16] and type [15] level; this work integrates those results by presenting
a compiler based on a novel type inference algorithm. The paper [16] presents
a variant of the pi-calculus introducing a further operator, hide, that allows
to declare channels that can be passed over channels, but cannot be extruded,
and studies its behavioural properties. The static scope mechanism is embedded
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in the operational semantics of the language, where a dynamic check ensures
that the context cannot receive channels protected by hide. In subsequent work
[15], the mechanism is shifted to the level of types by means of a declarative
system that enforces the static scope invariant in a standard pi-calculus. These
mechanisms, complemented with linear type qualifiers (cf., [14,18]) and deadlock
detection (cf., [17]), are the core of the static analysis performed by the GoPi
tool.

Static channels and boundaries in process calculi have been investigated since
the origins of this research area [28], and more recently in, e.g., [6,7,26]. The work
in [6] has similarities with our approach and introduces a pi-calculus featuring a
group creation operator, and a typing system that disallows channels to be sent
outside of the group. Programmers must declare which is the group type of the
payload: the typing system rules out processes of the form Q £ (newp: U)(P |
(new G)((newz: G])(p'x))) since the type U of channel p cannot mention the
secret type G, which is local. In contrast, we do not rely on type decorations
and accept process () whenever x is hidden and P does not allow to extrude
x, e.g., P does not input on p or distribute p. From the point of view of the
language design, we share some similarity with the ideas behind the boxed pi-
calculus [26]. A box in [26] acts as wrapper where we can confine untrusted
processes; communication among the box and the context is subject to a fine-
grained control that prevents the untrusted process to interfere with the protocol.
Our hide construct is based on the symmetric principle: a process is trusted
whenever contexts cannot interfere with the process’ protocol, that is contexts
cannot enlarge the scope of the hidden channels of the process.

Runtime System. To the best of our knowledge, most interpreters for distributed
calculi do not rely on channel-based mechanisms at the target language level,
such implementations, pioneered by [25,27,29] for the pi-calculus, are commonly
based on simulating non-determinism and concurrency by process interleaving.
Previous attempts to develop calculi-inspired languages with native support for
channel-over-channel passing include JoCaml [12], where mobility is now discon-
tinued [23].

Recently, a behavioural static analysis of Go programs based on multiparty
session types (MPST, [19]) has been presented in [20,21]. The approach followed
in that line of work consists in analysing existing Go programs to ensure stronger
properties at compile-time, e.g., deadlock-freedom. None of those works, how-
ever, support channel-over-channel passing. Castro et al. [8] introduced a frame-
work to translate distributed MPST written in the Scribble protocol language
into a Go API; safety in APT’s clients is enforced at runtime by generating linear-
ity exceptions. Differently, we obtain safety of Go programs statically by means
of type inference of pi-calculus channels.

Structure of the Paper

Section 2 presents the specification language and the notion of error, and sketches
few examples. The next two sections introduce the two main parts of the GoPi
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compiler: the static analyser, presented in Sect.3, and the Go code generator,
presented in Sect. 4. We conclude in Sect. 5 by envisioning possible usage scenar-
ios of GoPi, and by discussing limitations and future work.

2 The LSpi Specification Language

This section introduces the syntax of the language processed by the GoPi com-
piler. We consider communication channels, or variables, a, ..., z, and processes
generated by the grammar:

P,Q:=axWw.P|2?(y).P| (P|Q)]| 0| [hidex][P] | (newx)(P) | *P |
(a,...,z)P|let X =Pin Q| X | print :: v

Most operators are standard for message passing languages, with some excep-
tions. We have primitives for sending and receiving channels and continuing
as P, noted as z!v.P and z7?(y).P, respectively, for parallel composition, noted
P | Q, for inert processes, noted 0, for channel creation, noted (new x)(P),
for process variables, noted X, and for assigning processes to process variables,
noted let X = P in ). The hide operator is the main feature of the language
and shall be interpreted as follows: [hide c|[P] declares that the fresh channel ¢
should be confined into the (fixed) square brackets even when process P inter-
acts with other processes. In the pi-calculus jargon, this is better summarized
by the sentence: “scope extrusion of channel c is disallowed ”. The other crucial
feature is the linear channel declaration (a, ..., z)P, which declares that each of
the channels a,...,x must be used exactly once for input and once for output.
Loops are programmed with the construct *P, which executes P forever. The
construct print::v supplies an imperative command to observe the channel v.

We assume the usual notions of free and bound variables and process vari-
ables, which we deem pairwise distinct by following the Barendregt convention,
and let  be bound in [hide z|[P], (new x)(P), and a?(z).P, and be free oth-
erwise, and X be bound in let X = P in @, and free otherwise. The process
let X = P in Q is acyclic whenever X is not free in P, and P, Q are acyclic; the
remaining cases are homomorphic. We only consider acyclic processes not con-
taining free process variables. We will often avoid training nils, use the _ variable
wildcard, and refer to channels not used in input or output as to base values,
and write them in typewriter style, when convenient.

2.1 Runtime and Errors

GoPi allows to run LSpi processes by mapping well-behaved processes into
executable Go programs. At a more abstract level, the semantics of the lan-
guage is provided by translating LSpi processes into standard (typed) pi-
calculus processes: intuitively, the hide construct is mapped into a restriction
and has standard semantics (cf., [15]), while linear annotations are separated
from processes and used in the static analysis. For instance, the specification
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[hide c][alc] | a?(x).P declares that c should be confined in the squares, while at
runtime P can receive the restricted channel c: therefore this process is unsound
and should be rejected at compile-time.

LSpi programs can contain three kind of errors, all detected by the GoPi
compiler:

(A) channels declared as hidden that can be received by processes outside the
static scope of the channels;

(B) channels declared as linear that are not used exactly once for input and
once for output;

(C) channels declared as linear that at runtime give rise to deadlocks.

Ezxamples. Process Chat in Fig.1 does not contain errors. In contrast, process
Chat | P, where P £ pub?(2priv)-Tpriv? (Tchat)-Q, is an error of kind A: there is
a sequence of reductions which leads to the instantiation of the variable x.j4; in
() with the hidden channel chat, that is the channel chat can be received by a
process outside its static scope. Because of that, GoPi flags Chat as contextually
unsafe. Process SafeChat = (pub) Chat does not contain errors, and is contextu-
ally safe, as we will see in Sect. 3: intuitively, this holds since process P above
is no longer a valid (typed) opponent, because channel pub is linear and cannot
be accessed by the context.

To see an example of an error of kind B, take process (priv) Chat, where
channel priv is declared as linear. The linear invariant does not hold, because
channel priv is used three times in input, by Alice, Bob and Carl (through
delegation), respectively, and an unbound number of times in output, by process
Setup.

Typical errors of kind C are processes containing self-deadlocks, which arise
when a linear input (output) prefixes a continuation containing the matching
output (input), and processes containing mutual deadlocks. The variant of pro-
cess Chat below, where an ack is sent after sending channel priv over channel
pub, and where channels ack and pub are linear, contains a mutual deadlock:

let Bob = priv?(c).cthelloBob.pub!priv.acklok in
let Carl = ack?(z).confirm!z.pub?(p).p?(c).cthelloCarl in --- in
let ChatAck = (ack, pub) Chat in ChatAck (1)

At runtime the continuation of process Bob will be stuck on the output on the
linear channel pub, which can be only unblocked by Carl, because pub is linear
and must be used exactly once for input and once for input. Since Carl, in turn,
is blocked on the linear channel ack, the process will deadlock.

An interesting example of security error is process FSA below, which
abstracts a forward secrecy attack. Process FSA distributes a secret channel
c on a private channel a, sends a password on ¢, and afterwards releases channel
c on a public channel pub:

FSA £ (newa)([hide c][alc.clpwd | a?(x).2?(.).publz]) | pub?(2).Q (2)
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;; DATATYPES

(declare-datatypes () ((Scope static dynamic)))

(declare-datatypes () ((ChanType top

(channel (scope Scope) (payload ChanType) (id Int) (i Int) (o Int)(ord Int)))))

Fig. 2. LSpi types in the SMT-LIB language

By considering that a hide is mapped into a new at runtime, process F'SA might
be interpreted as secure, because the context cannot observe the exchange over
the restricted channel ¢, and in turn cannot retrieve the password. However,
preserving the invisibility of restricted communications when pi-calculus pro-
cesses are deployed in open, untrusted networks is problematic, exactly because
of scope extrusion (cf., [3]), and eventually leads to complex solutions based on
cryptographic protocols relying on trusted authorities (cf., [5]). For these rea-
sons, we advocate that processes relying on dynamic scope restriction for security
should be rejected (cf., [15,16]). In fact, process FSA contains an error of kind
A, because at runtime the secret channel ¢ can be received by a process outside
the squares, that is ¢ can be received from pub.

The forward secrecy attack hints on how to use secret channels to develop
more secure programs: whenever a secret is sent over an hidden channel of an
error-free process, the secret will be unknown outside the static scope of the hide
declaration. Process FSecret is one of such secure programs, where we note that
the distribution channel a can occur in processes outside the scope of the hide:

FSecret = (new a)(new b)(([hide c][alc.ctpud | a?(z).2?(J)] | bla | b2(.)))

3 Static Analyser

The static analyser is based on the type inference of LSpi channels and is imple-
mented as an automatically generated constraint system written in the SMT-LIB
language [4], and decided through the Z3 theorem prover [24]. Notably, the con-
straint system does not make use of quantifiers.

Figure 2 presents the syntax of the type of LSpi channels, named ChanType:
base values are represented by the top constructor, while channels are built with
the channel constructor receiving six arguments, where the last three (integer)
constructors are for linearity. Type inference of a process P relies on a set of
allowed identifiers (cf., id), which are the type identifiers that each input process
is allowed to receive. Roughly, the static scope analysis is based on this technique.

To illustrate, consider the encoding? of the forward secrecy attack FSA in
(2); the input on a is allowed to receive both (dynamic) channels tagged with 0
and the static channel identified by id., while the input on pub can only receive
channels tagged with 0:

(new a: dyn@0)((new c: stat@id,)alc.clpwd | a?(z).2?(.).publx)) | pub?(z).Q

2 The main rationale is that a new is mapped into a new with a dynamic type tagged
with 0, while a hide is mapped into a new with a static type tagged with a positive
identifier.
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The corresponding SMT-LIB assertions generated by GoP1i enforce the invariants
for @ and pub through their payload, where the randomly generated identifier
that instantiates id, is 345:

(assert (! (= (id c) 345) :named A5))

(assert (! (= ¢ (payload a)) :named A12))

(assert (! (and (= (payload a) x) (or (= (id x) 0) (= (id x) 345)) :named A23))
(assert (! (= x (payload pub)) :named A46))

(assert (! (and (= (payload pub) z) (= (id z) 0)) :named A48))

These assertions make the model UNSAT, as expected, because by transitivity
we obtain 345 = 0: that is, the variable z bound by the input prefix on channel

pub should have id equal to 0, while it has the id of the static (hidden) channel.

3.1 Contextual Safety

Contextual safety is analysed by resorting to auto-generated catalysers (cf., [9])
of order n, that are processes that can both inject and receive channels, on which
they inject and receive channels, and so on, with depth n. Catalysers are put in
parallel with the process in order to collect the process’ global constraints, as if
the process was immersed in an arbitrary (typed) context. The contexts under
consideration are those that respect the linearity invariants of the process: that
is, we generate catalysers from the unrestricted free variables of the process.

To see an example of catalyser, consider process Chat in Fig. 1, where we
note that the only unrestricted free variable of Chat is pub. The catalyser below
is generated by following the structure of Chat and by matching each input
(output) on pub with an output (input) on pub with depth three, which is the
maximum order of Chat, where f is a randomly generated channel distinct from
any channel in the free and bound variables of Chat:

Cat 2 pub?(z).(x?(y).y?(2) | 0) | pubtf.(f?(2).x2(y) | f2(x).(x?(y).y?(2) | 0))

Process Chat is contextually unsafe because Chat | Cat contains an error: the
hidden channel chat at runtime can be received by process Cat, which is outside
the static scope of the channel (cf., Sect.2). This is established by GoPi via the
generation of the SMT-LIB assertions of Chat | Cat, and by discovering that the
model is UNSAT; we omit the core assertions, which are similar to those of the
forward secrecy attack.

As a further example, consider SafeChat = (pub)Chat. Given that the set
of the unrestricted free variables of SafeChat is empty, we generate an inert
catalyser (cf., 0), and in turn obtain that SafeChat is contextually safe because
the SMT-LIB model generated from SafeChat | 0 is SAT, that is the parallel

composition is error-free.

3.2 Linearity Analysis

To enforce linearity, we use the input, output, and order integer constructors,
noted 4, o, and ord, respectively, of the type ChanType in Fig. 2. Input (output)
fields contain the number of times that the input (output) capability is used for
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a variable of the given type. Order fields are manipulated by the solver to find
an ordering among linear channels.

The linearity analysis is performed by mapping the actual usage of channels
into assertions of the constraint system. While analysing processes and generat-
ing the corresponding assertions for type reconstruction, we build a usage table
that maps channels z to entries of the form (n;,n,, ls), where n;, n, are integers
tracking the usage of  in input and output, respectively, and Is is a list contain-
ing the channels where = has been sent. At the end of the process analysis, the
contents of the table are transformed into assertions and added to the constraint
system.

The SMT-LIB assertions below are an excerpt of the model generated from
process ChatAck in (1):

(assert (! (=> (isLinear ack) (< (ord pub) (ord ack))) :named A67))
(assert (! (=> (isLinear pub) (< (ord ack) (ord pub))) :named A96))
(assert (! (isLinear ack) :named A111))
(assert (! (isLinear pub) :named A112))
(assert (! (=> (isLinear ack) (and (= (o ack) 1) (= (o ack) (+ 1 0 ))))

:named A113))
(assert (! (=> (isLinear ack) (and (= (i ack) 1) (= (i ack) (+ 1 0 ))))

:named A114))
(assert (! (=> (isLinear pub) (and (= (o pub) 1) (= (o pub) (+ 1 0 ))))

:named A137))
(assert (! (=> (isLinear pub) (and (= (i pub) 1) (= (i pub) (+ 1 0 ))))

:named A138))
Assertions A111 and A112 come from the linear declaration (ack, pub) in (1).
Assertions A113, A114, A137, and A138 are generated from the usage table,
where, for each conjunction, the first entry is the expected value, and the second
entry is the actual value. The assertions are satisfiable: that is, each i/o capability
of channel ack, and of channel pub, respectively, is used exactly once in (1). The
model is UNSAT because the conclusions in the assertions A67 and A96 state
that the order of pub is smaller than the order of ack, and vice-versa. We note that
the unsatisfiability of the model prevents the mutual deadlock inside ChatAck
(cf., Sect. 2).

4 Go Code Generation

Given a well-behaved LSpi process, and the type of its channels, GoPi generates
executable Go code that is based on the channels’ types. Channel types in Go
have the following syntax®, where ElementType is any type:

ChannelType = ("chan" | "chan" "<-" | "<-" "chan") ElementType.

We map types in Fig. 2 to types of the form above by ignoring all fields but the
payload, and by mapping the top type to string.

The generation of code implementing LSpi processes is not straightforward:
while the target language features concurrent goroutines (cf., go f(a ,..., z)) that
are a natural candidate to represent high-level parallel processes, the whole appli-
cation’s design must be carefully pondered.

3 https://golang.org/ref/spec.
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1 var pub chan chan chan base

2 //Chat process

3 func(){

4 chat := make(chan base) ;

5 func(){ ...

6 priv := make(chan chan base); ...

7 go func(){ ... ; pub« priv}() //Bob

8 }0

9 go func(){ p := «pub; fmt.Print (” Retrieved:”, p); ... }(); //Carl

FH()
11 //Parallel process
12 go func(){ a := make(chan chan base) ; pub < a}()

Fig. 3. Naive implementation of the Chat protocol in Go

As a first attempt, we could map input and output constructs of LSpi directly
into receive and send primitives of Go, respectively. To illustrate, take the parallel
execution of process Chat in Fig. 1 with a process sending a fresh channel a over
the public channel pub, that is process Chatyp = Chat | (newa)(publa), where
the subscript stands for non-deterministic, since Carl can receive priv from Bob,
or a from the parallel process, non-deterministically. Process Chatyp would be
mapped into Go code of the form outlined in Fig. 3, where we list the parts that
are related to the communication over channel pub. The scope of channel chat
is grouped by the function call in lines 3—10, while the scope of channel priv is
grouped by the function call in lines 5-8. The listed processes that are executed
concurrently are Bob (line 7), Carl (line 9), and the parallel process (line 12).

While appealingly simple, the implementation in Fig. 3 has at least two main
drawbacks:

— in the vast majority of cases, i.e., ~90%, p is bound to priv, while the prob-
ability should be 50%, being receiving priv from pub equally probable to
receiving a from pub;

— channels have no name associated, making difficult the interpretation of the
output of the program, e.g., “Retrieved: 0xc000022060".

4.1 Channel Servers

The envisioned solution consists in using channel servers that take care of input
and output requests of clients, while internally managing both non-deterministic
synchronizations, and the naming of channels. The access to channel servers is
regulated by an API for communication, implemented as methods of a type
environment infrastructure; the structure, represented by the typeEnv typed col-
lection in Fig. 4, aggregates channel servers by their order.

Servers are equipped with dynamic arrays, referred as queues, that collect the
values concurrently sent on the channel by output clients, and act as a bridge
between input and output clients: input clients send requests to the server and
receive values sent by output clients and stored in the queue. Non-determinism
is simulated through a randomization of queues, and can be pushed forward by
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type base string
type basePair struct{
ch base
replych chan bool

type queueBase []|basePair;
type chan0 chan base
type chanOPair struct{

ch chan0
10 replych chan bool
1 }
12 type queueChanO []chanOPair;
13 type chanl chan chan0O ; ...
14 type typeEnv struct{

OO~ U s WN

15 ord struct{ ... }

16 ord0 struct{

17 toStr map|[chanO]string //marshalling

18 fromStr map[string]chan0 //unmarshalling

19 queue map|chan0]queueBase

20 dequeue map[chan0]func() //instantiated at registration
21 mux sync.Mutex

22 }

23 ordl struct{

24 toStr map[chanl]string //marshalling

25 fromStr map[string]chanl //unmarshalling

26 queue map|chanl]queueChan0

27 dequeue map[chanl]|func() //instantiated at registration
28 mux sync.Mutex

29 }os

Fig. 4. Type of channel servers

tuning the timeouts in retrieving messages*. A muter regulating the access to
queue and dequeue operations prevents data races; this is verified with Go’s race
detector.

Server Registration. A channel server of order n > 0 is registered by instantiating
the entries of ord, in the (unique) variable I" of type typeEnv (cf., Fig.4). The
procedure to register a channel server of order zero for the name “a”, where, by
convention, zero is the order of channels conveying base values, consists of five
major steps:

create a fresh channel c of type chan0;

acquire the lock (cf., line 21)

defer the unlock

insert the mappings between “a” and ¢ (cf., lines 17, 18)

insert the mapping from ¢ to a function (cf., line 20) that retrieves values
from Gamma.ord0.queue/c] (cf., line 19).

Gt o=

4.2 Clients’ Access to Servers

The channels servers are accessed by clients by means of methods of the variable
I" of type typeEnv. The signatures below list the most relevant operations.

4 Non-zero dequeue timeouts are optional, and discouraged for non-academic pur-
poses.
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1 //Methods of typeEnv accessed by clients

2 func (t *typeEnv) register (name string, nameType string) error
3 func (t *typeEnv) dequeue(input value) error

4 func (t *typeEnv) queue(output value, payload value,

5 replyCh chan bool) error

6 func (t *typeEnv) nameOf(c value) string

The register method is invoked by clients in correspondence of a new or of a hide
declaration, where the second parameter is the order of the declared channel.
The dequeue method is called by input clients, where value is an interface
implemented by channels and base values. The queue method is invoked by
output clients, where the third parameter will be instantiated by a (fresh) ack
channel, to enforce synchronous communications. The nameOf method is called
by print clients in order to print the string associated to a channel reference.

4.3 Working Example

Figure 5 contains the code generated by GoP1i for the Chat process (cf., Fig. 1),
where we only list the code of clients, being the code of servers invariant.
The outer function call generates channel chat and closes its scope. In the
body of the call, we have the parallel execution of Board (lines 5-20), of
(new priv)(Setup | Alice | Bob) (lines 21-51), and of Carl (lines 52-62). Gen-
eration of fresh channels is implemented by a mechanism that uses randomly
generated keys, and a counter protected by a mutex, for loops (cf., lines 7, 9, 27,
29).

The code implementing Board invokes the dequeue method of I' (line 10),
which triggers the selection of a message m from the queue of channel chat and
the dispatch of m over chat. Subsequently, the message is retrieved from chat
and printed, where the code in lines 13-17 implements the polymorphic print
construct of LSpi. The sending on channel done (line 19) is discussed below.

The code for Setup continuously uses the queue method of I' to send chat
over priv (cf., lines 28-33); to enforce synchrony, the write request includes a
reply boolean channel that will be unblocked by the server once priv is retrieved
in the queue (cf., lines 30, 32).

The code for Bob sends three requests to I': one dequeue, to retrieve a channel
from priv (line 39), one queue, to send the string helloBob over the channel
retrieved from priv (line 42), and one queue, to send priv over pub (line 45).
Before the exit, a boolean ack is sent over channel done (line 47), to signal
that the thread ended. The ack is received by the loop in line 63, which allows
the program to wait for the termination of all threads until a given timeout,
to increase the chances to retrieve messages from queues. This mechanism is
followed by all threads, regardless of loops.

Finally, the code for Carl sends three requests to I': one dequeue, to retrieve a
channel from pub (line 54), one dequeue, to retrieve a channel ¢ from the channel
retrieved from pub (line 56), and one queue, to send the string helloCarl over ¢
(line 59).
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Fig. 5. GoPi’s implementation of the Chat process
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5 Discussion

GoPi’s main aim is to support academic activities involving process algebras and
formal models, which range from the analysis and testing of concurrent processes
for research purposes to teaching formal languages and concurrent systems.

In this context, we have done some tests® with encouraging results, e.g, GoPi
decided the safety of a complex variant of the secret chat protocol of Sect.1
involving a communication of order seven and more than thirty programming
constructs in 0.2s, producing 600 constraints and a Go file of 1Kloc (cf., [1]).
On the Go’s side, we ran the code generated from a LSpi process continuously
creating, sending and printing fresh channels for one day, without encountering
exceptions. With Anténio Ravara, we plan to use GoPi in the course Modelling
and Validating Concurrent Systems of the Integrated Master in Computer Engi-
neering, New University of Lisbon, 2020/21.

5.1 Limitations

The current architecture of GoPi does not allow to separate the static analy-
sis from the generation of the Go code, and in turn to generate code based on
type annotations provided by different tools. Another limitation is that modifi-
cations of the Go code made by the programmer are lost when the specification
is changed, since GoPi does not support annotations of the specification with
Go snippets. We also note that the static analysis is not compositional, since to
determine whether a process is safe, we perform a contextual analysis.

The information reported in case of failure of the analysis is not parsed into
an human-readable format; this limits the usability of the tool.

At the language level, one current limitation is that delegation of partial
capabilities of linear channels is rejected, because of issues related to the detec-
tion of deadlocks (cf., [17]). Another limitation, which is common in the context
of behavioural type systems (cf., [13]), is that deadlocks are detected on linear
channels, while unrestricted channels, interpreted as open ports, can give rise to
runtime locks caused by decoupled input and output communications.

5.2 Future Work

GoPi aims at being an open and live project developing and maintaining a
compiler for a language with built-in support for mobility, security, resource-
awareness, and deadlock-resolution. In that direction, most limitations outlined
above need to be overcome.

The separation of the static analysis and of the generation of Go code, and
the readability of the output of the static analysis, appear as the most urgent
issues. We believe that both features could be supported in the next release of
GoP1, while the presentation of the results of the static analysis could (at least)
state a list of channels, and the kind or error encountered (cf., Sect. 2).

5 Testing machine: MacBook 2 GHz i5 8 GB 1867 MHz LPDDRS3.
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Supporting partial delegation of linear capabilities is another feature that we
are keen to support in future releases, while the static analysis may be more
involved, because of deadlock detection.

Acknowledgements. The author would like to warmly thank the anonymous review-
ers for their competent comments and constructive criticism on a previous draft of the
paper, and for providing insightful suggestions in the preparation of this paper.
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