
Typechecking Java Protocols
with [St]Mungo

A. Laura Voinea(B) , Ornela Dardha , and Simon J. Gay

School of Computing Science, University of Glasgow, Glasgow, UK
a.voinea.1@research.gla.ac.uk, {Ornela.Dardha,Simon.Gay}@glasgow.ac.uk

Abstract. This is a tutorial paper on [St]Mungo, a toolchain based on
multiparty session types and their connection to typestates for safe dis-
tributed programming in Java language.

The StMungo (“Scribble-to-Mungo”) tool is a bridge between multi-
party session types and typestates. StMungo translates a communication
protocol, namely a sequence of sends and receives of messages, given as a
multiparty session type in the Scribble language, into a typestate spec-
ification and a Java API skeleton. The generated API skeleton is then
further extended with the necessary logic, and finally typechecked by
Mungo. The Mungo tool extends Java with (optional) typestate specifi-
cations. A typestate is a state machine specifying a Java object protocol,
namely the permitted sequence of method calls of that object. Mungo
statically typechecks that method calls follow the object’s protocol, as
defined by its typestate specification. Finally, if no errors are reported,
the code is compiled with javac and run as standard Java code.

In this tutorial paper we give an overview of the stages of the
[St]Mungo toolchain, starting from Scribble communication protocols,
translating to Java classes with typestates, and finally to typechecking
method calls with Mungo. We illustrate the [St]Mungo toolchain via a
real-world case study, the HTTP client-server request-response proto-
col over TCP. During the tutorial session, we will apply [St]Mungo to a
range of examples having increasing complexity, with HTTP being one
of them.

Keywords: Multiparty session types · Typestate · Mungo ·
StMungo · HTTP protocol

1 Introduction

The concept of an application programming interface (API) is central to soft-
ware architecture and implementation. An API is a specification of a collection

Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, by the EU HORIZON 2020
MSCA RISE project 778233 “BehAPI: Behavioural Application Program Interfaces”,
and by an EPSRC PhD studentship.

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
A. Gotsman and A. Sokolova (Eds.): FORTE 2020, LNCS 12136, pp. 208–224, 2020.
https://doi.org/10.1007/978-3-030-50086-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50086-3_12&domain=pdf
http://orcid.org/0000-0003-4482-205X
http://orcid.org/0000-0001-9927-7875
http://orcid.org/0000-0003-3033-9091
https://doi.org/10.1007/978-3-030-50086-3_12

Typechecking Java Protocols with [St]Mungo 209

of related programming language operations that enable the use of a particular
kind of functionality. For example, in a typical programming language, the func-
tionality for implementing graphical user interfaces is organised and described
as an API. In an object-oriented language, an API is presented as a collection of
classes, each with methods for a range of related operations. A specific example
is the JavaFX API, which provides graphics and media functionality—in fact
JavaFX is so large that it is better described as a collection of APIs for more
specific purposes, such as media streaming and web rendering.

Nowadays, APIs are not only used to present the library functions of pro-
gramming language implementations. They can also package up the functionality
of distributed services, and be called remotely in networked applications. A sig-
nificant trend is the development and publication of APIs to allow access to
functions that were previously internal to a software application. For example,
the developer of a student records database might publish an API to allow pro-
grammatic access to the data, and this could be used by third-party developers
to produce applications that make use of student records to provide additional
services. This evolution of the API concept has become a key aspect of open
software development and service-oriented system architectures. In a commer-
cial setting it has enabled the birth of an API economy in which the provision
of APIs can be monetised. APIs have thus become a key focus of the software
industry.

Typical methods in an API require parameters, and these can be specified
using standard type-theoretic techniques. In a statically typed language, each
method in an API has its type signature, specifying the types of its param-
eters and the type of any result that it returns. The standard techniques of
typechecking, especially when implemented in an integrated development envi-
ronment (IDE), are effective in supporting programmers to use APIs correctly,
identifying errors during development rather than waiting until the testing phase
when they are much more expensive to correct.

The description of an API as a collection of typed method signatures however,
does not capture any constraints on the sequence in which methods can be
called. For example, an API for working with files requires that a file must be
successfully opened before it can be read or written. After the file has been
closed, it cannot be read or written any more, and the only available method
is open. Another standard example is the Iterator class in Java, in which the
hasNext method must be called (and return true) before the next method can
be called.

Another category of examples arises in APIs for communication, in concur-
rent or distributed systems. Typically the communication within a system is
structured around various communication protocols, each of which specifies a
permitted sequence of messages and the format (type) of each message. An API
whose operations allow sending and receiving of messages in a given protocol has
constraints so that the operation calls follow the protocol specification. These
constraints cannot be expressed purely within the framework of typed method
signatures, more expressive types and type systems are needed. In general, we

210 A. L. Voinea et al.

can speak of behavioural APIs, a term based on the term behavioural types for
type systems that specify sequence-related properties involving multiple method
calls.

Two established lines of research are relevant in this context. One is typestates
[42], which is the idea of using static type systems to specify permitted sequences
of method calls. The other is session types [26,28,44], which are type-theoretic
descriptions of communication protocols. The StMungo and Mungo tools are the
result of convergence between these two lines of research [2,17,34,35]. On the one
hand, APIs for communication protocols are clearly a special case of behavioural
APIs in general. On the other hand, transferring the concepts of session types
from process calculi or functional languages to object-oriented languages requires
embedding them in a more general setting that supports typestates. This is
because it is natural to define methods that each perform several communication
steps, and then the original communication protocol (session type) gives rise to
different, although related, sequencing constraints on the methods.

StMungo is a bridge between session types and typestates, by translating
multiparty session types (MPST) [29] written in the Scribble language [41] into
typestate specifications for Java classes. The key steps are given in the following:

– Scribble is used as a specification language for global protocols (or global
types) describing communication among all involved participants in a com-
munication protocol in a distributed system.

– The Scribble tools are used to validate and project a global type into local
protocols (or local types) for each participant involved.

– StMungo translates Scribble local types into typestate specifications for Java
classes, describing the Java object protocols, namely the permitted sequences
of method calls of an object.

– StMungo also generates an API implementation for each participant, which
follows its typestate specification, described in the previous step.

At this stage we can run the Mungo tool. The key ideas and steps behind
Mungo are given in the following:

– Typestate specifications are expressed as annotations of Java classes, so there
is no change to the language itself.

– Linear typing is used to control aliasing, so that there is no possibility of
inconsistent views of an object’s state.

– The Mungo typechecker checks that method calls are performed following the
object’s protocol, as specified by its associated typestate.

– If Mungo typechecking is successful and no errors are reported, then the code
is compiled with javac and run as standard Java code.

– The Mungo typechecker is formalised inspired by session types theory and the
resulting type system is proved correct via the standard theorems of progress
and subject reduction [34,35].

In the remainder of this tutorial paper we will describe the StMungo Sect. 2
and Mungo Sect. 3 tools via a real-world case study, the HTTP protocol.

Typechecking Java Protocols with [St]Mungo 211

In Sect. 4 we give step-by-step instructions on how to run the tools. In Sect. 5
we discuss related work and in Sect. 6 we conclude the paper and discuss future
work.

2 StMungo

The StMungo tool is a Java-based transpiler implemented using the ANTLR
v4.5 framework [6]. StMungo acts as a bridge between multiparty session types
and typestate specifications. In particular it is the link between the Scribble
specification language [27,41] and the Mungo tool Sect. 3. StMungo is the first
tool to provide a practical embedding of Scribble multiparty session types into
an object-oriented language with typestates.

In order to better understand the StMungo tool, we need to describe both
the Scribble language and the typestate specifications. Let’s start with Scribble.

The Scribble specification language is an implementation of multiparty ses-
sion types (MPST) [29,41]. Participants in a distributed system communicate
among each other by sending and receiving messages and following a predefined
communication protocol. Such protocol is given as a global protocol (or global
type) in Scribble. The Scribble tools can perform validation and projection of
a global protocol. First, we must check if the specified global protocol is valid,
meaning if it is correct with respect to transmitted data; there are no deadlocks
within the global protocol; there are no un-notified participants for example,
regarding session termination, and so on. These checks follow the MPST the-
ory [29]. Once a global protocol is validated, with Scribble tools we can project
it into local protocols (or local types) for each participant in the system.

The HTTP Protocol Case Study. Let us illustrate the notions of global and local
protocols using our HTTP case study. HTTP (HyperText Transfer Protocol) [22]
is the underlying data protocol used by the World Wide Web defining how
messages are formatted and transmitted, and what actions servers and clients
may take in response to various methods, such as GET, PUT or POST. An HTTP
session is a sequence of network request-response transactions, initiated by the
client sending a request over a TCP connection to a particular port of a server.
Upon receiving the request, the server listening on that port sends back a status
line, such as “HTTP/1.1 200 OK”, and a message of its own. The structure of
the request and response messages exchanged is rich and complex, lending itself
to be further specified through session types. Hence, we represent the HTTP
global protocol in the style of Hu [31] where an HTTP request and response are
broken down respectively into sending and receiving a request line – request,
followed by zero or more header-fields – host or usera terminated by a new-line.
This fine grained representation of the protocol is made possible by the message
being broken down via TCP bit streams, in a manner that is transparent to the
parties involved.

The global protocol for HTTP specified in Scribble is given in Listing 1.1.
Line 1 contains the module declaration, made up of an optional package prefix

212 A. L. Voinea et al.

i.e., http, and the name of the file containing the module, Http. Line 2 contains
a payload type declaration type <java>..., which gives an alias (str) to a
data type (String) from an external language java which can be used in the
payload of a message signature. A module can contain zero or more global protocol
declarations, consisting of a protocol signature (line 4), choices (lines 5 and 27),
message passing (line 6), and recursion (line 7). Lines 11–46 model a correctly
formatted client request and lines 49–91 a server response.

1 module http.Http;

2 type <java > "java.lang.String" from "rt.jar" as str;

3

4 global protocol Http(role C, role S){

5 choice at C{ // Request

6 request(str) from C to S; //GET / HTTP /1.1

7 rec X{ choice at C{

8 host(str) from C to S;//Host: www.google.co.uk

9 continue X;

10 }or{

11 userA(str) from C to S;//User -Agent :...

12 continue X;

13 }or{

14 acceptT(str) from C to S;// Accept: text/html ...

15 continue X;

16 }or{

17 ... //other header fields

18 body(str) from C to S;

19 }}}

20 // Response

21 httpv(str) from S to C;//HTTP /1.1

22 choice at S{

23 200(str) from S to C;//200 OK

24 }or{

25 404(str) from S to C;//404 Bad Request

26 }

27 rec Y{

28 choice at S{

29 date(str) from S to C;//Date: ...

30 continue Y;

31 }or{

32 server(str) from S to C;// Server :...

33 continue Y;

34 }or{

35 strictTS(str) from S to C;//Strict -Transport -Security

36 continue Y;

37 }or{

38 ...//other header fields

39 body(str) from S to C;

40 }}}

Listing 1.1. HTTP Global Protocol

Using the Scribble tools, we can project the HTTP global protocol onto local
protocols for the server S and the client C. In this tutorial we will focus only
on the client side as we will interact with real-world HTTP servers. The local
protocol for the HTTP client C, given in Listing 1.2, describes the behaviour of
this role. The _C in the protocol name indicates that C is the local endpoint. For
simplicity, we limit this protocol to the GET command only, with the rest being
represented in a similar manner.

Typechecking Java Protocols with [St]Mungo 213

1 ...

2 local protocol Http_C(role C, role S) {

3 choice at C {

4 request(str) to S;

5 rec X { choice at C {

6 host(str) to S;

7 continue X;

8 } or {

9 userA(str) to S;

10 continue X;

11 } or {

12 acceptT(str) to S;

13 continue X;

14 } or {

15 ...//other header fields

16 body(str) to S;

17 }}}

18 httpv(str) from S;

19 choice at S {

20 200(str) from S;

21 } or {

22 404(str) from S;

23 }

24 rec Y { choice at S {

25 date(str) from S;

26 continue Y;

27 } or {

28 server(str) from S;

29 continue Y;

30 } or {

31 strictTS(str) from S;

32 continue Y;

33 } or {

34 ...//other header fields

35 body(str) from S;

36 }}}

Listing 1.2. HTTP Client Protocol

The client can send a request line request (line 4), followed by zero or
more header-fields—host, or userA and so on. The server responds with a line
containing the HTTP version—httpv (line 18) followed by the status of the
request, either—200 for a found resource, or—404 for a bad request. The server
can choose zero or more header-fields to follow this message with. The StMungo
tool takes in input a Scribble local protocol for a role and translates it into a
typestate specification for a Java API skeleton. This translation is based on the
principle that each role in the multiparty session communication following its
local protocol, can be abstracted as a Java class following its typestate specifica-

214 A. L. Voinea et al.

tion. A typestate is a state machine defining the permitted sequence of method
calls of a Java object, thus defining the object’s protocol.

The HTTP Protocol Case Study (Continued). Running StMungo on the HTTP
client protocol Listing 1.2 produces the following files, where C at the beginning
of each file name stands for client.

1. CProtocol.protocol: the typestate specification representing the HTTP
client’s local protocol. The send and receive operations are translated as Java
methods (Listing 1.3 below in this section).

2. CRole.java: the Java API implementing the HTTP client. This class imple-
ments the typestate CProtocol over Java sockets (Listing 1.4, Sect. 3).

3. CMain.java: this can be an optional file. It gives a minimum logic of the
client CRole and provides a main() method (Listing 1.5, Sect. 3).

The typestate specification CProtocol.protocol for the HTTP client is
given in Listing 1.3.

1 typestate CProtocol {

2 State0 = {void send_REQUESTToS (): State1}

3 State1 = {void send_requestStrToS (String): State2}

4 State2 = {void send_HOSTToS (): State3 ,

5 void send_USERAToS (): State4 ,

6 void send_ACCEPTTToS (): State5 ,

7 ... //send other labels

8 void send_BODYToS (): State12}

9 State3 = {void send_hostStrToS (String): State2}

10 State4 = {void send_userAStrToS(String): State2}

11 ... //send other main messages

12 State12 = {void send_bodyStrToS (String): State13}

13 State13 = {String receive_httpvStrFromS (): State14}

14 State14 = {Choice1 receive_Choice1LabelFromS ():

15 <_200: State15 , _404: State16 >}

16 State15 = {String receive_200StrFromS (): State17}

17 State16 = {String receive_404StrFromS (): State17}

18 State17 = {Choice2 receive_Choice2LabelFromS ():

19 <DATE: State18 , SERVER: State19 ,

20 STRICTTS: State20 , ..., BODY: State28 >}

21 State18 = {String receive_dateStrFromS (): State17}

22 State19 = {String receive_serverStrFromS (): State17}

23 State20 = {String receive_strictTSStrFromS (): State17}

24 ...

25 State28 = {String receive_BODYStrFromS (): end}}

Listing 1.3. Typestate Specification

A typestate is a state machine (Fig. 1) with states labelled State0 (initial
state), State1, State2 . . . Each state offers a set of methods that must be a
subset of the methods defined by the class; each method specifies a transition to
a successor state, such that when called at runtime allows the object to change
state as specified by its typestate.

Typechecking Java Protocols with [St]Mungo 215

Fig. 1. State machine for CProtocol

216 A. L. Voinea et al.

The send and receive operations given in the client’s local protocol are trans-
lated as typestate methods in CProtocol.protocol. For example, the message
request(str) to S (line 4, Listing 1.2) where the client sends a request mes-
sage of type str to the server, is translated as two method calls due to for-
matting and parsing (lines 2–3 in Listing 1.3). Calling the first method void
send_REQUESTToS() specifying the method and calling the second method void
send_requestStrToS(String) requests the rest of the message of type String

(further details in Sect. 3).
We will comment on the other two files CRole.java and CMain.java in

Sect. 3.

3 Mungo

The Mungo tool is a Java front-end tool used to statically typecheck typestate
specifications for Java classes. The tool is implemented in Java using the ExtendJ
framework [25,38], a meta-compiler based on reference attribute grammars.

Mungo extends a Java class with a typestate specification, which is saved
in a separate file (such as CProtocol.protocol in Sect. 2) and is attached
to a Java class using the annotation @Typestate("ProtocolName"), where "
ProtocolName" names the file where the typestate is defined. The typestate
inference algorithm given by the formalisation of the Mungo tool in [34,35] con-
structs the sequences of methods called on all objects associated with a typestate,
and then checks if the inferred typestate is a subtype of the object’s declared
typestate. The formalisation of the typestate inference system and its sound-
ness properties are beyond the scope of this paper and the reader is referred to
[34,35].

Source files are typechecked in two phases: first, according to the standard
Java type system, and then to the typestate type system via Mungo. The source
files can then be compiled using standard javac and executed in the standard
Java runtime environment.

The typestate specification generated from StMungo together with the
Mungo typechecker can guide the user in the design and development of dis-
tributed multiparty communication-based systems with guarantees of communi-
cation safety and soundness.

We will now describe the use of Mungo via our running example, the HTTP
protocol, and in particular we will do so by commenting on the last two files
CRole.java and CMain.java generated by StMungo for the HTTP client C.

The HTTP Protocol Case Study (Continued). The HTTP client API is given by
Listing 1.4 annotated by the typestate CProtocol, defined in Listing 1.3.

Lines 3–9 define the client’s constructor where the connection phase over Java
sockets takes place. The rest of CRole contains a minimal implementation of the
methods specified in the typestate CProtocol. The methods for sending and
receiving messages contain basic formatting and parsing, which can be further
improved by the programmer.

Typechecking Java Protocols with [St]Mungo 217

1 @Typestate("CProtocol")

2 public class CRole {

3 public CRole () { ...// Bind the sockets and accept a client

4 connection

5 try { // Create the read and write streams

6 socketSIn = new BufferedReader (...);

7 socketSOut = new PrintWriter (...) ;}

8 catch (IOException e) {...}}

9 public void send_REQUESTToS (){this.socketSOut.print("GET")

;}

10 public void send_requestStrToS (String payload){this.

socketSOut.println(payload);}

11 ... // Define all other send methods in CProtocol

12 public String receive_httpvStrFromS ()() {

13 String line = "";

14 try {line = this.socketSIn.readLine ();}

15 catch (IOException e) {...}

16 return line;}

17 public Choice1 receive_Choice1LabelFromS () {

18 try {stringLabelChoice1 = this.socketSIn.readLine ();}

19 catch (IOException e) {...}

20 switch (stringLabelChoice1) {

21 case "200":

22 return Choice1._200;

23 case "404":

24 default:

25 return Choice1._404 ;}}

26 public String receive_200StrFromS () {

27 String line = "";

28 try {line = this.socketSIn.readLine ();}

29 catch (IOException e) {...}

30 return line;}

31 public String receive_404StrFromS () {

32 String line = "";

33 try {line = this.socketSIn.readLine ();}

34 catch (IOException e) {...}

35 return line;}

36 .../* Define all other receive methods in CProtocol */}}}

Listing 1.4. Client API

Lines 8–9 define the two methods for sending the initial, mandatory, request
line—send_REQUESTToS (for the method, i.e.“GET”) and send_requestStrToS
(for the rest of the message). Lines 11–34 define methods for receiving the first
line in a response, composed of the HTTP version—receive_httpvStrFrom and
the status. The method in line 16 Choice1 receive_Choice1LabelFromS cap-
tures the status. This method returns a Choice1 type, which is an enumerated
type defined as:

1 enum Choice1 {_200 , _404;}

For each choice there is an enumerated type, named by StMungo according
to the position of the choice in the sequence of choices within the local protocol.

218 A. L. Voinea et al.

The values of the enumerated type are the names of the first message in each
branch of the choice, for example for Choice1 they are _200 or _400. Thus, the
method receive_Choice1LabelFromS receives a message which represents one
of the two status codes, and it returns the corresponding enum value.

Let’s move now onto the CMain.java given in Listing 1.5. CMain.java con-
tains a minimal implementation of the client endpoint using the CRole class to
communicate with the server endpoint. Below we give the main method, omit-
ting any auxiliary methods generated by StMungo. The code is modified from
the generated version by adding the request and host messages needed to request
the home page from www.google.co.uk.

1 public static void main(String [] args) {

2 CRole currentC = new CRole ();

3 String sread = // input REQUEST

4 if ("REQUEST".equals(sread)) {

5 currentC.send_REQUESTToS ();

6 currentC.send_requestStrToS ("/ HTTP /1.1");

7 _X: do { sread = // input header choice

8 switch (sread) {

9 case ("HOST"):

10 currentC.send_HOSTToS ();

11 currentC.send_hostStrToS ("www.google.co.uk");

12 continue _X;

13 ... // other cases corresponding to header fields

14 case ("BODY"):

15 currentC.send_BODYToS ();

16 currentC.send_bodyStrToS ("/r/n");

17 break _X;

18 }} while (true);}

19 currentC.receive_httpvStrFromS ();

20 switch (currentC.receive_Choice1LabelFromS ()) {

21 case _200:

22 currentC.receive_200StrFromS ();

23 break;

24 case _404:

25 currentC.receive_404StrFromS ();

26 break ;}

27 _Y:do {

28 switch (currentC.receive_Choice2LabelFromS ()) {

29 case DATE:

30 currentC.receive_dateStrFromS ();

31 continue _Y;

32 ... // other cases corresponding to the header fields

33 case BODY:

34 currentC.receive_bodyStrFromS ();

35 break _Y;}

36 } while (true);}

Listing 1.5. Client Implementation

In line 2 we create a new HTTP client, currentC, and proceed by showing the
code for a small correctly formatted request, with the initial, mandatory request
line messages being sent first (lines 5–6); then among the recursive choice cases

Typechecking Java Protocols with [St]Mungo 219

we show the code for sending the the host field (lines 10–11), before concluding
the request by an empty body (lines 15–16). Then currentC will receive the
response status line (lines 19–26) followed by recursive choice cases for the fields
to be received from the server (lines 27–36).

To ensure that methods of the protocol are called in a valid sequence and
that all possible responses are handled, the CMain implementation is checked
by computing the sequences of method calls that are made on the currentC
object, inferring the minimal typestate specification that allows them, and then
comparing it with the specification declared in CProtocol.

4 How to Run [St]Mungo: A Step-by-Step Tutorial

Scribble ProjectionScribble
Global Protocol

StMungo translationScribble
 Local Protocol

Mungo checkingTypestate Specification
Java API skeleton Implementation

Typestate Specification
Java application

Mungo checking

Implementation

The tools together with the HTTP example and further examples can be
obtained from the [St]Mungo repository [1].

The tools come prebuilt and ready to use as runnable jar files: stmungo.jar
and mungo.jar. In the same repository we also provide the latest release—0.4.3,
of the command line tool for Scribble.

We show how to use these tools via the HTTP example, assuming the root
folder of the repository linked above.

To run the Scribble tool on the global protocol for validation only: ./
scribble-0.4.3/scribblec.sh demos/http/Http.scr

To run the Scribble tool on the global protocol and project the client role:
./scribble-0.4.3/scribblec.sh demos/http/Http.scr -project http C

To run StMungo and obtain the Java prototype implementation: java -jar
stmungo.jar demos/http/Http_C.scr

To run Mungo: java -jar mungo.jar demos/http/CMain.java
Finally, if no errors are reported, the code can be compiled with javac and

run as standard Java code.

5 Related Work

There is a huge and growing literature on session types and other forms of
behavioural types, going back to the original papers on binary session types
[26,28,44] and multiparty session types [29,30]. The BETTY project1 produced
three survey articles: one on foundations of behavioural types [33], one on
behavioural types and security [13] and one on behavioural types in programming

1 COST Action IC1201: Behavioural Types for Reliable Large-Scale Software Systems
(BETTY), www.behavioural-types.eu.

220 A. L. Voinea et al.

languages [5]. The project also produced a book [24] describing implementations
of programming languages and tools based on behavioural types. The ABCD
project2 has produced a list of implementations of session types in programming
languages.

Since the introduction of typestate [42], there have been several projects
to add the concept to practical programming languages. Vault [18,21] is an
extension of C, and Fugue [19] applies similar ideas to C#. Plural [10] is based
on Java and has been used to study access control systems [9] and transactional
memory [8], and to evaluate the effectiveness of typestate in Java APIs [10].
Sing# [20] is an extension of C# which was used to implement Singularity,
an operating system based on message-passing. It incorporates typestate-like
contracts, which are a form of session type, to specify protocols. Bono et al. [12]
have formalised a core calculus based on Sing# and proved type safety.

The Plaid programming language [3,43] proposes a new paradigm of
typestate-oriented programming. Instead of class definitions, a program con-
sists of state definitions containing methods that cause transitions to other
states. Transitions are specified in a similar way to Plural’s pre- and post-
conditions. Like classes, states are organised into an inheritance hierarchy. Recent
work [23,45] uses gradual typing to integrate static and dynamic typestate
checking.

Bodden and Hendren [11] developed the Clara framework, which combines
static typestate analysis with runtime monitoring. The monitoring is based
on the trace matches approach [4], using regular expressions to define allowed
sequences of method calls. The static analysis attempts to remove the need for
runtime monitoring, but if this is not possible, the runtime monitor is optimised.

A challenge in typestate systems is aliasing. State changes to a given object
must be reflected in all references that point to that object, otherwise incon-
sistency can result in violations of type safety. The literature includes sev-
eral approaches to alias control. Some work, including ours, uses linear typ-
ing to forbid aliasing completely. The adoption and focus approach of Vault
and Fugue, and the permission-based approaches of Plural and Plaid, are more
flexible. Militão et al. [36] present an expressive fine-grained system. Crafa and
Padovani [16,40] present an approach to concurrent typestate-oriented program-
ming, allowing objects to be accessed and modified concurrently by several pro-
cesses, each potentially changing only part of their state. Some work [32,39]
combines static checking of typestate (or session type) properties with dynamic
monitoring of (non-)aliasing properties. Balzer et al. [7] augment session types
with points at which locks need to be acquired in order to perform state-changing
operations; this approach has not yet been applied to a typestate system.

There is relatively little work combining behavioural types and typestate in
the way that Mungo and StMungo do. The only other research we are aware of
is the API generation approach of Hu [31]. The idea is to translate a Scribble
protocol into a collection of classes for a standard language such as Java [32],

2 EPSRC EP/K034413/1 From Data Types to Session Types: A Basis for Concurrency
and Distribution (ABCD), groups.inf.ed.ac.uk/abcd/.

Typechecking Java Protocols with [St]Mungo 221

F# [37] or Go [15]. Each class represents a particular state in a protocol, with the
methods available in that state. Each method returns the object on which it was
called, but with a different class corresponding to the new state of the object.
Because each state has its own class, standard IDEs can show the programmer
which methods are available; however, for a complex protocol there can be a large
number of classes. Runtime monitoring is used to check absence of aliasing.

For this tutorial we have used an example based on a standard internet
protocol, HTTP. In previous work with Mungo and StMungo we have analysed
SMTP [34,35] and POP3 [17]. Hu et al. also use SMTP [32,37] and HTTP [31]
as case studies.

6 Conclusion and Future Work

We have presented a tutorial on using the [St]Mungo toolchain for static type-
checking of a communication protocols. StMungo connects the Scribble specifi-
cation language, used to define communication protocols, to Mungo by translat-
ing multiparty session types into typestate specifications. Mungo extends Java
with typestate specifications, which annotate classes and define the permitted
sequence of method calls of Java objects. We illustrate the workflow of both tools
through implementing a substantial case study, an HTTP client. We use this
client to communicate with a real-world server, the www.google.co.uk server.

While the toolchain is effective for statically typechecking the correct imple-
mentation of communication protocols, we intend to further improve its features
for distributed programming in Java. On the StMungo side, we will keep it up to
date with any changes in the Scribble specification language. On the Mungo side,
we aim to offer static typechecking of generics and exceptions. To support gener-
ics, method calls on an object whose type is a generic parameter must be type-
checked against the typestate specification of the parameter’s upper bound. To
support typechecking of exception handlers, typestate specifications must define
the state transitions corresponding to exceptions, and check the transitions are
consistent with the states of fields at the point where an exception is thrown.
While existing work on exceptions in session types [14] provides inspiration, the
complexities of Java’s exception mechanism need to be accounted for as well.
Another aim is to improve Mungo’s error messages to better allow debugging.

References

1. Mungo Repository. https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/
2. Mungo Webpage. http://www.dcs.gla.ac.uk/research/mungo/
3. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.

In: OOPSLA Companion, pp. 1015–1022. ACM (2009). https://doi.org/10.1145/
1639950.1640073

4. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: OOP-
SLA, pp. 345–364. ACM (2005). https://doi.org/10.1145/1094811.1094839

5. Ancona, D., et al.: Behavioral types in programming languages. Found. Trends
Program. Lang. 3(2–3), 95–230 (2016). https://doi.org/10.1561/2500000031

https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/
http://www.dcs.gla.ac.uk/research/mungo/
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1145/1094811.1094839
https://doi.org/10.1561/2500000031

222 A. L. Voinea et al.

6. ANTLR Project Homepage. www.antlr.org
7. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session

types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

8. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. In: OOPSLA, pp. 227–244. ACM (2008). https://doi.org/10.1145/
1449764.1449783

9. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA, pp. 301–320. ACM (2007). https://doi.org/10.1145/1297027.1297050

10. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical API protocol checking with
access permissions. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
195–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 10

11. Bodden, E., Hendren, L.J.: The clara framework for hybrid typestate analysis.
STTT 14(3), 307–326 (2012). https://doi.org/10.1007/s10009-010-0183-5

12. Bono, V., Messa, C., Padovani, L.: Typing copyless message passing. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 57–76. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19718-5 4

13. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Math. Struct. Comput. Sci. 26(8), 1352–1394 (2016). https://doi.
org/10.1017/S0960129514000619

14. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
402–417. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 32

15. Castro-Perez, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed pro-
gramming using role-parametric session types in go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019). https://doi.org/10.1145/3290342

16. Crafa, S., Padovani, L.: The chemical approach to typestate-oriented programming.
In: OOPSLA, pp. 917–934. ACM (2015). https://doi.org/10.1145/2814270.2814287

17. Dardha, O., Gay, S.J., Kouzapas, D., Perera, R., Voinea, A.L., Weber, F.: Mungo
and StMungo: tools for typechecking protocols in Java. In: Behavioural Types:
From Theory to Tools. River Publishers (2017)

18. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 59–69. ACM (2001). https://doi.org/10.
1145/378795.378811

19. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

20. Fähndrich, M., et al.: Language support for fast and reliable message-based com-
munication in singularity OS. In: EuroSys, pp. 177–190. ACM (2006). https://doi.
org/10.1145/1217935.1217953

21. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imper-
ative programming. In: PLDI, pp. 13–24. ACM (2002). https://doi.org/10.1145/
512529.512532

22. Fielding, R.T., Reschke, J.F.: Hypertext transfer protocol (HTTP/1.1): message
syntax and routing. RFC 7230, pp. 1–89 (2014)

www.antlr.org
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1007/978-3-642-03013-0_10
https://doi.org/10.1007/978-3-642-03013-0_10
https://doi.org/10.1007/s10009-010-0183-5
https://doi.org/10.1007/978-3-642-19718-5_4
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1007/978-3-540-85361-9_32
https://doi.org/10.1145/3290342
https://doi.org/10.1145/2814270.2814287
https://doi.org/10.1145/378795.378811
https://doi.org/10.1145/378795.378811
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/512529.512532
https://doi.org/10.1145/512529.512532

Typechecking Java Protocols with [St]Mungo 223

23. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented pro-
gramming. ACM Trans. Program. Lang. Syst. 36(4), 12:1–12:44 (2014). https://
doi.org/10.1145/2629609

24. Gay, S.J., Ravara, A. (eds.): Behavioural Types: From Theory to Tools. River
Publishers, Denmark (2017)

25. Hedin, G.: An introductory tutorial on JastAdd attribute grammars. In: Fernandes,
J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp.
166–200. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18023-
1 4

26. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

27. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19056-8 4

28. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

29. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

30. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

31. Hu, R.: Distributed programming using Java APIs generated from session types.
Behavioural Types: from Theory to Tools, pp. 287–308 (2017)

32. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 24

33. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

34. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
mungo and StMungo. In: PPDP, pp. 146–159. ACM (2016). https://doi.org/10.
1145/2967973.2968595

35. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo: a session type toolchain for java. Sci. Comput. Program.
155, 52–75 (2018). https://doi.org/10.1016/j.scico.2017.10.006

36. Militão, F., Aldrich, J., Caires, L.: Aliasing control with view-based typestate.
In: FTfJP@ECOOP, pp. 7:1–7:7. ACM (2010). https://doi.org/10.1145/1924520.
1924527

37. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation of distributed protocols with refinements in F#. In: CC, pp.
128–138. ACM (2018). https://doi.org/10.1145/3178372.3179495

38. Öqvist, J.: ExtendJ: extensible java compiler. In: Programming, pp. 234–235. ACM
(2018). https://doi.org/10.1145/3191697.3213798

39. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-
gram. 27, e4 (2017). https://doi.org/10.1017/S0956796816000289

40. Padovani, L.: Deadlock-free typestate-oriented programming. Program. J. 2(3), 15
(2018). https://doi.org/10.22152/programming-journal.org/2018/2/15

41. Scribble Project Homepage. www.scribble.org

https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/978-3-642-18023-1_4
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.1145/1924520.1924527
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3191697.3213798
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.22152/programming-journal.org/2018/2/15
www.scribble.org

224 A. L. Voinea et al.

42. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. 12(1), 157–171 (1986). https://doi.
org/10.1109/TSE.1986.6312929

43. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state change in
Plaid. In: OOPSLA, pp. 713–732 (2011). https://doi.org/10.1145/2048066.2048122

44. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7 118

45. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual typestate. In: Mezini, M.
(ed.) ECOOP 2011. LNCS, vol. 6813, pp. 459–483. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22655-7 22

https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2048066.2048122
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/978-3-642-22655-7_22

	Typechecking Java Protocols with [St]Mungo
	1 Introduction
	2 StMungo
	3 Mungo
	4 How to Run [St]Mungo: A Step-by-Step Tutorial
	5 Related Work
	6 Conclusion and Future Work
	References

