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Tom Vercauteren2 , Sébastien Ourselin2 , David Choi3 ,

and Marc Modat2

1 Wellcome/EPSRC Centre for Interventional and Surgical Sciences,
University College London, Gower Street, London WC1E 6BT, UK

d.drobny.17@ucl.ac.uk
2 School of Biomedical Engineering & Imaging Sciences, King’s College London,

King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
{marta.ranzini,a.isaac,tom.vercauteren,
sebastien.ourselin,marc.modat}@kcl.ac.uk

3 University College Hospital, London NW1 2BU, UK
d.choi@ucl.ac.uk

Abstract. Different pathologies of the vertebral column, such as scol-
iosis, require quantification of the mobility of individual vertebrae or of
curves of the spine for treatment planning. Without the necessary mobil-
ity, vertebrae can not be safely re-positioned and fused. The current clin-
ical workflow consists of radiologists or surgeons estimating angular dif-
ferences of neighbouring vertebrae from different x-ray images. This pro-
cedure is time consuming and prone to inaccuracy. The proposed method
automates this quantification by deforming a CT image in a physiologi-
cally reasonable way and matching it to the x-ray images of interest. We
propose a proof of concept evaluation on synthetic data. The automatic
and quantitative analysis enables reproducible results independent of the
investigator.

Keywords: Spine · Vertebra · Mobility quantification · 3D-2D
registration · Volume-projection registration

1 Introduction

Spine mobility quantification (SMQ) describes the measurement of angles
between vertebrae and their change between different positions, in order to eval-
uate the mobility of individual vertebrae. It is, for example, performed for sco-
liosis patients to determine whether vertebrae have the required mobility to be
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realigned and fused to improve the curvature of the spine. SMQ is typically
evaluated manually based on x-ray images. The clinician measures the angles
between neighbouring vertebrae in x-ray images acquired in two opposite and
extreme positions, for example flexion and extension. The change of the angular
difference from one position to the other informs about the mobility of those
vertebrae. Manual measurements are subjective and prone to errors, especially
when a 3D movement is assessed by rotations within one plane only.

In many clinical cases a CT image is available which could be used for 3D-2D
registration. This could help automating SMQ by aligning the CT image to the
X-ray target pose and deriving the SMQ values from the applied deformation.

Registration of CT volumetric images to x-ray projection images is a relevant
task also for several other clinical applications, such as the automated localisa-
tion of an interventional image with respect to the pre-operative CT data. Specif-
ically, this approach can be used in image-guided spine surgery where the target
vertebra has to be identified reliably [3]. According to Mody et al. more than
0.3% of spine surgery procedures have been affected by wrong-level errors which
can have a severe negative impact on the patient [5]. This demonstrates the
difficulty of vertebra identification even for experienced surgeons. After robust
identification, a precise registration further enables navigated surgery which typ-
ically makes use of intra-operative CT (iCT) imaging. A reliable and accurate
3D-2D registration for interventional x-ray images could thus decrease errors
in surgical procedures, improve accuracy of image-guided interventions or oth-
erwise maintain accuracy while decreasing radiation exposure to patients and
clinicians, compared to using iCT imaging.

Previous work in volume-projection registration (of the spine) predominantly
considers rigid registration frameworks [3,4,8,9,11]. This reduces the complexity
of this ill-posed problem but limits the potential accuracy and applications, as it
cannot capture local deformations of soft tissue related to different positions of
the subject. Non-rigid advances have been mostly focused on other body parts,
for example, on lung movement [12], and might be unrealistic in rigid anatomical
structures such as bones.

To overcome the limitations of existing methods used for spine applications,
we suggest a locally rigid registration framework based on the works of Arsigny et
al. [1]. The proposed framework extends the poly-rigid transformation model
to ensure the preservation of local rigidity during articulated movement and
relies on a novel regulariser to enforce physiologically reasonable transformations.
It enables better matching of images acquired with different patient position,
e.g. flexion and extension, or pre-operative supine and intra-operative prone.
Furthermore, the parametrisation of our model can be directly used to quantify
relative positions of the vertebrae, for example for SMQ.

We demonstrate a proof of concept for spine mobility quantification based
on simulated data using our registration framework. Rotation angles can be
determined with high precision which motivates further development of this
approach.
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2 Methods

The proposed registration framework enables the recovery of spine movement
via 3D-2D registration and the quantification of differential movement between
neighbouring vertebrae. The underlying transformation model uses the poly-
rigid approach which combines n local sets of rigid parameters l = {l1, .., ln)
into a single smooth deformation field [1]. It requires a set of non-overlapping
regions Ri which, in our case, are given by a binary mask for each vertebra i.
Based on the regions, individual weight maps wi are computed that define the
local influence of each rigid transformation Ti.

2.1 Registration Framework

The registration algorithm finds an optimal choice of parameters p = (g, l), with
global affine transformation parameters g and local rigid transformation param-
eters l, that describes the relationship between the reference x-ray image X and
the CT volume V via the transformation T . The transformation T combines the
poly-rigid transformation Tpr(x, l) with a global affine transformation A(x, g):

T (x,p) = A(x, g) ◦ Tpr(x, l). (1)

To enable the comparison of 3D and 2D images, a projection P is used:

P : R3 �→ R
2. (2)

The distance measure D describes the dissimilarity of the images and is combined
with a regulariser R to form the objective function F :

F [X ,V,p] = D
[
X ,P

[
T (V,p)

]]
+ α R(p). (3)

The parameter α controls the ratio between both terms and thus adjusts the
influence of the regularisation. Minimisation of D makes the appearance of the
images more similar while R promotes a anatomically realistic transformation.

The numerical optimisation of F is performed iteratively via a gradient
descent solver. In each step a subset of transformation parameters is evaluated,
global rigid followed by local rigid parameters for each region, one at a time.
Optimising only a subset of parameters reduces the complexity of the partial
derivatives and empirically leads to a more stable behaviour of the model.

For increased robustness to local minima and to increase the capture range, a
multi-resolution approach is applied that performs the optimisation on multiple
levels – from coarse to fine. The framework also enables 3D-3D registration of a
volume V to a reference volume Vref . In this case the projection step is omitted
and the objective function is therefore:

F3D−3D[Vref ,V,p] = D
[
Vref , T (V,p)

]
+ α R(p). (4)
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2.2 Poly-rigid Transformation Model

The poly-rigid transformation model is based on a set of local rigid transforma-
tion parameters li with associated weight maps wi defining its local influence
for each region i. To combine the different local rigid transformations Ti into a
single one, an ad hoc solution is the weighted average of the transformations’
displacement fields. This does not preserve local behaviours and can lead to fold-
ing, i.e. breaking of the topology, which is to be avoided in most medical image
processing.

Arsigny et al. proposed a method that provides a combined transformation
that is invertible and thus does not lead to folding [1]. The local rigid trans-
formations Ti are by definition homomorphisms, i.e. invertible. The average of
infinitesimal small downscaled homomorphisms is also invertible as the displace-
ment gets close to zero. The composition of homomorphisms is also a homo-
morphism so that the full scale transformation recovered by composition of the
infinitesimal transformations is a homomorphism as well. The transformation
T (t, x) is parametrised as a velocity field and integrated over time t ∈ [0, 1]. At
time t = 0 the transformation is the identity and at t = 1 it is Tpr.

The weighted average of the downscaled transformations is computed as

T

(
1
m

,x

)
=

n∑
i=1

wi(x)Ti(x)
1
m , (5)

where T
1
m describes the m-th matrix square root of the rigid transformation

matrix T . m has to be chosen such that the downscaled velocity field is close
enough to zero [1]. This average function needs to be upscaled to get the wanted
poly-rigid transformation Tpr:

Tpr(x) = T (1, x) = T

(
1
m

,x

)m

. (6)

Arsigny et al. use an efficient scaling-and-squaring scheme to integrate the
final transformation [1]. However, to maintain the desired rigid properties for
each region, the weights need to be updated after each integration step as sug-
gested by Porras et al. [6]. Therefore we use the following Euler integration
scheme:
For j = 2, ..,m

w
(j)
i (x) = wi

(
T (j−1)

(
1
m , x

))

T (j)
(

1
m , x

)
=

n∑
i=1

w
(j)
i (x)T

1
m
i (x)

T
(

j
m , x

)
= T

(
j−1
m , x

)
◦ T (j)

(
1
m , x

)
(7)

The superscript ·(j) indicates that the corresponding term is updated in step j.
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Fig. 1. Weight maps of the three lowest lumbar vertebrae. A vertebra in between other
vertebrae has mostly influence perpendicular to the spine. The bottom vertebra (in this
experiment the sacrum is not modelled as a rigid region) dominates the weights in the
lower part of the image as the other vertebrae are further away and affect it less.

2.3 Weight Map Computation

Poly-rigid transformation models require weight maps wi which define the spatial
influence of multiple transformations Ti. Our model’s weight computation is
based on non-overlapping regions Ri, that represent a spine segmentation.

In the region based weight computation of Porras et al. [6], each weight
w approximates the following values: w(x) = 1 if x is within the region,
0 < w(x) < 1 otherwise. This implies that each region has a global influence
and the rigid properties of a region are not preserved anywhere. To guaran-
tee the rigid transformation of a region, weights with following properties are
required.

wi(x) =

⎧
⎪⎨
⎪⎩

1, if x ∈ Ri

0, if x ∈ Rk, k ∈ {1, .., n} \ i

v, v ∈ R, 0 < v < 1, elsewhere
(8)

The computation of the weight map can be split into three steps. First,
creating a smooth weight map that is 1 within a region and decreases outside:

wa
i (x) =

1
exp (s ∗ EDTi(x))

, (9)

where EDT denotes the Euclidean Distance Transform of the binary mask of
region Ri in mm (i.e. the distance to the nearest voxel of this region). The slope
constant s controls how quickly the weight decays and is fixed for all regions
throughout the computations.

To set the influence of all other regions Rk to 0 within region Ri, we multiply
each region’s weight by the complementary weight of all other regions:

wb
i (x) = wa

i (x)
n∏

k=1
k �=i

(1 − wa
k(x)) . (10)
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Normalising the weights wb
i to recover the maximal value of 1 within each region

yields the final weight maps wi that fulfil Eq. (8):

wi(x) =
wb

i (x)
n∑

k=1

wb
k(x)

. (11)

Figure 1 shows example weight maps computed for a CT slice containing the
lowest lumbar vertebrae. This example visualises that within a region (i.e. a
vertebra) the weight is one, smoothly decaying when moving away from it, and
zero in each other region.

2.4 Regularisation

In order to guide the behaviour of the transformation model in a way that is
closer to anatomical spine movement, we introduce a set of regularisation terms.
These soft constraints penalise parameters that are in unexpected value ranges.
The regulariser must have little influence while the parameters are within the
expected value range and steeply increase when outside. Therefore the general
form of each soft constraint C used is:

C(q) = γ |q − b|c , (12)

where b is the absolute upper bound for the value q and the exponent c controls
how steep the penalty term increases.

Firstly, the parameters of the global affine registration g are limited as we
assume the general direction of x-ray acquisition is known and thus, the volume
should not translate or rotate too much away from the expected view.

Rg(g) = C(|gtrans|) + C(|grot|) (13)

Secondly, the local rigid parameters l are constrained via the parameter dif-
ference of pairs of neighbouring vertebrae, separate for rotation and translation:

Rl(l) =
n∑

i=2

C(|ltransi − ltransi−1 |) + C(|lroti − lroti−1|) (14)

This way neighbouring vertebrae cannot translate or rotate too far from their
initial relative position. This constraint guarantees that the spine moves consis-
tently and retains its integrity.

An unregularised optimisation step might lead to local rigid parameters that
would move regions into another. The overall poly-rigid transformation avoids
this kind of folding but compromises the rigidity of the underlying transforma-
tions to achieve this. The third regulariser Ro is used to discourage such opti-
misation steps by penalising transformations that cause voxel overlap in order
to achieve diffeomorphic transformations while preserving the local rigidity.

Ro(p) = C
(∣∣{x|x ∈ Ru ∩ Rv, u, v ∈ {1, .., n}, u �= v}

∣∣) (15)

The sum of all individual terms leads to the overall regulariser R as in Eq. (3):

R(p) = Rg(g) + Rl(l) + Ro(p) (16)
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3 Experiments

Data from the Spineweb database which consist of CT images and corresponding
vertebra segmentation have been used for the experiments described in this
work [13]. A CT image is cropped to the lumbar area including six vertebrae
above the sacrum and resampled to a 1 mm isotropic image of 162 × 162 × 312
voxel. The rigid parameters of the vertebrae are user-defined to simulate two
movements: flexion and extension. The original CT image is considered as the
starting position and angles are interpreted as differential angles to this position.
The image axes x, y, and z correspond to the lateral, anterior-posterior, and
superior-inferior patient axis, respectively. X-ray projections are simulated from
the deformed CT images in lateral direction (along the x-axis) and are used
as the reference images X while the initial CT volume is then used as moving
image V. The projection method P used for the synthetic experiments is a basic
averaging of intensity values along a given direction, which can be easily replaced
by other approaches to account for more clinically realistic scenarios, like those
presented by Unberath et al. [7].

Table 1 shows the rotation angles chosen for each vertebra in the flexion and
extension simulation. For this experiment only rotations around the x- and y-
axis are considered, as those are the angles clinically measured for SMQ and
rotations around z-axis are minor in the lumbar spine. The values are in the
typical range observed in clinical practice, for example as reported by Wilke et
al. [10]. Figure 2 shows the flexion, extension and initial position of the synthetic
data as 3D rendered visualisations. The vertebrae are deformed rigidly while the
surrounding soft tissue, like the arteries, are non-linearly deformable.

In our experiment, images in two different poses are target of the registra-
tion: flexion and extension. This resembles the application of SMQ where usually
two opposite extremal positions are compared. For each pose, two experiments
are evaluated: (1) 3D-3D registration—matching the original CT V to the syn-
thetic CT image Vref and (2) 3D-2D registration—matching the CT image V to
the synthetic x-ray image X . Two metrics are used to evaluate the registration
results: the error of the estimated angle difference and the average error of the
recovered displacement field at the location of the vertebrae. The displacement
field error gives information about whether the vertebrae are in the right posi-
tion while the angle errors describe how well the orientation of the vertebrae was
recovered, which is the focus of SMQ.

For performance reasons, the poly-rigid transformation computed by Eq. (7)
is used only as a post processing step and we use the direct weighted average
during the optimisation, as was suggested by Commowick et al. [2]. We used
the mean of squared difference as similarity measure D during our experiments.
The parameters are either motivated by clinical movement ranges or chosen
empirically: four levels of multi-resolution approach, with the finest resolution of
1 mm, the weight constant s = 0.05, the constraint scaling parameter α = 100.
Referring to Eqs. 12 and 16, the first two constraint functions have the exponent
c = 6, scaling γ = 1 and the boundaries b of 20 mm, 30◦ for the global rigid
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Fig. 2. 3D render of the original CT scan (centre), the synthetic CT scan in flexion
(left) and extension (right) (see Supplementary material for animated figure).

Table 1. Rotation angles in degree per vertebra used to generate the synthetic images.

flexion extension

vertebra x y z x y z

L1 − 11.00 −5.00 0.00 +10.00 +5.00 0.00
L2 − 8.50 −4.00 0.00 +7.50 +4.00 0.00
L3 − 5.00 −2.00 0.00 +4.00 +2.00 0.00
L4 0.00 0.00 0.00 0.00 0.00 0.00
L5 + 4.00 +1.00 0.00 −3.50 −1.00 0.00

parameters and 8 mm, 7◦ for the local differences, the overlap constraint has
b = c = 1 and γ = 0.001.

4 Results

Our experiments show that with both 3D-3D as well as 3D-2D registration, the
parameters of the synthetic images can be recovered. In Table 2 the quantita-
tive results of all experiments are summarised. Using the 3D-3D registration
higher accuracy was achieved compared to the 3D-2D cases which is due to the
higher information retained in a volume compared to its projection. In the 3D-
3D experiments, the average of the mean absolute angle error was reduced from
the initial 2.47◦ to 0.12◦ and from 2.70◦ to 0.16◦ for extension and flexion respec-
tively. In the 3D-2D case, the respective average errors are 0.59◦ and 0.42◦. The
deformation field error (DFE) is also reported as a measure of registration accu-
racy in Table 2. The DFE confirms the higher accuracy of the 3D-3D approach
compared to the 3D-2D registration.

For the spine mobility quantification the angular difference between the two
positions for each vertebra is of interest. This can be directly derived from the
individual registration results as the difference of the respective angles.
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Table 2. For each experiment, this table shows the mean absolute angle error [in
degrees] per rotation axis, averaged over all vertebrae, as well as combined into a single
average error, the mean and maximum displacement field errors (DFE) [in mm] before
and after registration. The DFEs are evaluated within the spine mask only.

flexion extension

initial 3D-3D 3D-2D initial 3D-3D 3D-2D

error x 5.70 0.11 0.45 5.00 0.06 0.37
error y 2.40 0.06 0.55 2.40 0.07 0.99
error z 0.00 0.31 0.30 0.00 0.23 0.41

average error 2.70 0.16 0.43 2.47 0.12 0.59

average DFE 4.37 0.05 0.52 3.11 0.10 1.71
max DFE 24.32 0.50 2.06 16.13 2.49 11.31

5 Discussion

The non-rigid alignment of a volumetric to a projection image is challenging
because several degrees of freedom affecting the 3D volume have to be recovered
by only comparing 2D images. We presented a framework based on a locally
rigid transformation model that enables 3D-3D and 3D-2D registration of spine
images. These synthetic experiments show that both 3D-3D and 3D-2D registra-
tion can be recovered, demonstrating that the registration with our transforma-
tion model can lead to clinically useful results for spine mobility quantification.

This framework offers the full processing pipeline needed for different appli-
cations and is flexible to adaptations required by the use of real clinical data. We
also introduced simple constraints to guide a consistent movement of the spine
while optimising individual vertebrae parameters iteratively. Our experiments
are limited by only considering synthetic x-ray images generated from deformed
CT scans. Clinical x-ray images are more challenging to register and thus need
specialised image similarity measures. Future work will thus focus on the identi-
fication of a measure suitable for clinical data, and on the benchmarking of the
proposed approach against the current clinical practice on real patient data. Fur-
thermore we will use a higher level parametrisation of the spine shape, e.g. using
principal components of a spine shape model, to optimise the position of multi-
ple vertebrae simultaneously in a consistent way. This will be helpful to capture
larger deformations especially in an extended field of view. Such a model could
also be used to extract population statistics like the principal modes of spine vari-
ability and movement patterns. As the proposed framework proved effective also
for 3D-3D registration, it will be tested on further clinical applications, such as
spine CT-MRI registration. Finally, as this pipeline requires vertebra segmenta-
tions, automated segmentation techniques (e.g. using deep learning approaches)
will be explored to complete the registration framework.
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