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Abstract. Re-identifying locations of interest in pre- and post-operative
images is a hard identification problem, as the anatomical landscape
changes dramatically due to tumor resection and tissue displacement.
Classical image registration techniques oftentimes fail in vicinity of the
tumor, where the enclosing structures are massively altered from one
scan to another. Still, locations nearby the tumor or the resection cav-
ity are the most relevant for evaluating tumor progression patterns and
for comparing pre- and post-operative radiomic signatures. We address
this issue by exploring a Reinforcement Learning (RL) approach. An
artificial agent is self-taught to find the optimal path towards a target
driven by a feedback signal from the environment. Incorporating anatom-
ical guidance, we restrict the agent’s search space to surgery-unaffected
structures only. By defining landmarks for each patient individually, we
aim to obtain a patient-specific representation of its differential radiomic
features across different time points for enhancing image alignment. Esti-
mated landmarks reach a remarkable mean distance error around 3mm.
In addition, they show a high agreement with expert annotations on a
challenging dataset of MR scans from the brain before and after tumor
resection.

Keywords: Reinforcement Learning · Image registration · Image
alignment · Differential radiomics · Brain tumor

1 Introduction

The most effective treatment for progression delay in aggressive primary brain
tumors is tumor resection, usually followed by radiation therapy or chemother-
apy [4]. When evaluating the post-operative scans, the areas that show signs of
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tumor re-growth are compared to the same areas in the pre-operative scans. As
there is almost always a shift in brain tissue as well as tumor- and resection-
induced intensity changes, conventional image registration techniques oftentimes
fail when it comes to map the differing structures, see Fig. 1. We aim to evaluate
local patterns with anatomical guidance for a better adaption in this task. We
perform re-identification of landmarks for making use of quantitative radiomic
approaches, since radiomics intend to improve image analysis by extracting large
amounts of quantitative features [8]. In order to detect reference points before
and after tumor resection, we use individual landmarks for each patient, repre-
senting locations prone to progression. Redetecting these landmarks automat-
ically in follow-up scans may simplify future image alignment for the same
patient. Therefore, we define multiple patient-specific landmarks around the
tumor and take a first step towards differential radiomic feature extraction and
therefore, a more precise alignment of the resection-affected regions.

(a) pre-operative (b) post-operative (c) registered

Fig. 1. 2D zoom into tumor-/resection-affected regions in (a) a pre-operative scan,
(b) the corresponding post-operative scan and (c) the result of a standard image
registration

Recent literature shows a variety of approaches towards localization of
anatomical landmarks in medical images. Li et al. [9] developed a patch-based
CNN for landmark localization combining regression and classification for the
detection of both single and multiple landmarks simultaneously by involving
Principle Component Analysis (PCA). Zheng et al. [19] evolved a two-step
approach combining a shallow network with a deep network for efficient land-
mark detection. Another two-stage approach was proposed by Zhang et al. [18]
comprising a patch-based CNN regression model followed by another CNN for
predicting landmarks in an end-to-end manner. For the first time, Ghesu et
al. [6] introduced Deep RL for localizing anatomical landmarks using Q-learning.
Their method is further developed by exploring multiple scales in [5,7]. In [11],
Maicas et al. adopt this method and extend it to the more complex detection
of breast lesions. There, adaptive bounding boxes are leveraged to train the
agent. Alansary et al. [2] presented a multi-scale strategy by iteratively training
their agent using action steps with different sizes on multiple scales. Addition-
ally, they evaluate several Q-Learning approaches as there are Double, Dueling
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and Dueling Double Q-Learning. A variant of their approach towards automatic
view planning is shown in [1] and an extension towards the detection of multiple
landmarks simultaneously in [15].

The recent success of RL in the field of landmark localization [2,5–7,15] in
combination with the ability of RL agents to adapt to a specific environment,
encouraged us to transfer this approach for landmark redetection to pre- and
post-operative brain images. Furthermore, RL has the benefit of being able to
perform on limited training data, which is crucial for our task. Based on the
approach in [2], we further develop the method to consider anatomical guid-
ance and propose the following contributions: First, we present two RL-based
agents. A baseline agent and an extended version of it under anatomical guid-
ance, improving the agent’s ability to adapt to the issue of altering tissue struc-
tures by integrating patient-specific anatomy into our model. Second, we evalu-
ate our approach on a challenging dataset of MR scans before and after tumor
resection, provided by the BraTS challenge [12] and TCIA [3], achieving results
comparable to an expert performance. Additionally, we provide annotations for
this data.

In the following, we present how we utilize Q-Learning in RL (Sect. 2) and
introduce our extension (Sect. 3), before demonstrating the performance of our
approach on a complex data set.

2 Deep Reinforcement Learning Using Q-Learning

In RL, an artificial agent is self-taught by interacting with an environment. In
every step, the agent retrieves a reward from its environment after executing an
action. The final goal of the agent is to find an optimal policy, guiding the agent
from any given state to the target by maximizing future rewards. This can be
formulated as a sequential decision process. RL then is modeled as a Markov
Decision Process (MDP), which defines the interaction between the agent and
its environment. The agent executes an action a ∈ A at state s ∈ S, returning a
reward signal r ∈ R at each time step t [14].

Finding the optimal policy is described by the action-value function Q(s, a),
which is optimized during training and gives the maximum expected discounted
future reward, where the accumulated discounted reward after τ time steps is
defined as

Rτ =
∞∑

τ=0

γτrt+τ+1, (1)

with the discount rate γ ∈ [0, 1] for weighting immediate and future rewards [17].
Using the Bellman optimality equation, the action-value function can be solved
recursively [14]:

Q(s, a) = E

[
r + γ max

a′
Q(s′, a′)

]
, (2)

where s′ and a′ are the possible subsequent state and action.
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Mnih et al. [13] developed the Deep Q-Network (DQN), which approximates

Q(s, a) ≈ Q(s, a; θ), (3)

using a CNN with the network parameters θ. For stability reasons, a target
network Q(θ−) is introduced. It estimates the actual Q-network iteratively by
updating the parameters of the target network only every nth iteration with the
steadily updated Q-network parameters. The loss function reads:

Ln(θn) = Es,a,r,s′

[(
r + γ max

a′
Q(s′, a′; θ−

n ) − Q(s, a; θn)
)2

]
(4)

Experience replay technique [10] is added, training the network using randomly
sampled minibatches from experiences the agent has already gained. This is
stored in an experience replay memory.

The DQN was further improved by Wang et al. [16], separating the network
into two partitions. One handles the state-value function V (s) and the other one
deals with the advantage function A(s, a), see Fig. 2. Both are then combined by
an aggregation layer to provide a single Q-function

Q(s, a) = V (s) + A(s, a). (5)

Here, estimating the state-value function is essential in every time step, while
this is not necessary for the advantage function. Consequently, the dueling net-
work learns the state-value function more accurately, thus improving the network
performance with increasing number of actions.

3 Anatomically Guided RL Agent

Similar to [2], we make use of a Deep Q-Network with dueling architecture,
shown in Fig. 2. Each state in our image environment is modeled as a 3D patch
centered around the current location of the agent, see Fig. 3(a). Hence, the agent
sees a different part of its environment in every time step. Due to the experience
replay technique, we define an experience buffer storing the last four patches,
which the network can see in one iteration, enhancing the agent’s robustness.
We define the action space with the six actions right, left, forward, backward,
up, down. This results in two actions along each axis in positive and negative
direction, a ∈ A = {+x,−x,+y,−y,+z,−z}, thus moving the agent by one
voxel. The reward is defined similar to [6], calculating the relative change in the
distance to the position of the target landmark. Furthermore, we make use of
a search strategy operating on multiple scales [2,5,7] for more robustness and
efficiency.

A key feature of our approach is the anatomical guidance. We return a neg-
ative reward r = −1 when the agent steps inside the surgery-affected regions.
Therefore, we provide the segmentation mask to the agent, so the agent learns
to stay in unaffected structures only, see Fig. 3(b). Since this guides the agent
to move towards the target without touching the immense tissue changes inside
the most affected regions, this leads to a policy that is more generalizable to
altering brain tissue.
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4 Experimental Setup

We evaluate our approach on a challenging dataset provided by the BraTS chal-
lenge [12] and TCIA [3]. We use MR image data from 10 patients with brain
tumors, with one scan before and one scan after tumor resection, comprising 20
image volumes in total. All images are skull-stripped, rigidly co-registered and
interpolated to a common resolution of 1 mm3, while the initial resolution is in
the range of 3–8 mm for most sequences. The dataset includes the image volumes
and their corresponding segmentation masks of the tumor- and resection-affected
regions in the pre- and post-operative scans, respectively. For each patient, 3
landmarks in the post-operative scan are annotated by a clinical expert, in vary-
ing distances up to 4 cm around the resection-affected region. The same expert
redetected the landmarks in the corresponding pre-operative scan for generating
ground truth annotations.

Training and Testing. Before training, we crop an initialization box of size
50 × 50 × 50 voxels around the target in the training image, see Fig. 3(a). When
training under anatomical guidance, we exclude the resection mask, see Fig. 3(b).
Then, we randomly initialize the agent inside this region and sample a patch of
size 15 × 15 × 15 voxels, which follows the agent in every step. For every patient
and landmark individually, we train on the respective post-operative scan and
test on the corresponding pre-operative scan, generating patient-specific models.
Similar to [2], we define the terminal state in training as the point, when the
distance between the agent and the target landmark is less or equal to 1 mm.
During testing, the agent is stopped, when it is oscillating around the same
location.

Fig. 2. Our network architecture with a dueling DQN. A 3D patch is sampled around
the current position of the agent and fed to the network, consisting of convolutional
(conv) layers alternating with pooling (pool) layers, followed by a dueling DQN with
fully connected (fc) layers. The network outputs the Q-value for the six possible actions,
whereof the agent selects the one with the highest value.
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Fig. 3. (a) Patch generation. A box of size 50×50×50 is sampled around the target for
initialization reasons. Then, a patch of size 15×15×15 is extracted around the current
position of the agent, representing the current state. (b) Anatomical Guidance. We
provide the segmentation mask to the agent for excluding this region during training.
When stepping inside the masked region, a negative reward is returned, so that the
agent is guided to avoiding affected structures.

Experiments. We use two different agents for each experiment. One is trained
on the baseline method without anatomical guidance, whereas the other one is
anatomically guided. Due to the lack of a validation set, we tune the model on the
respective training image. For each experiment, we then choose the model that
is performing best on the corresponding test image. Although this might lead
to some underestimation regarding the distance error measurements, it makes
sure that we provide the same conditions for the two agents in the different
experiments, leading to comparable results. During evaluation, we define 20 fixed
starting points, typically converging to slightly different final endpoints. Since we
initialize the training agent inside the initialization box, we use the same box for
testing and select the starting points from there. For each of the 20 evaluation
runs per experiment, we calculate the Euclidean distance in mm between the
final location of the agent and the true landmark, which gives us the distance
error, and calculate the mean, for producing comparable results. Subsequently,
for the sake of simplicity, we refer to this mean distance error simply as distance
error.



Reinforced Redetection of Landmark in Brain Scan 87

5 Results

Quantitative results can be observed from Fig. 4(a) and (b), showing the dis-
tance errors in mm for the baseline method (BM), the extended method using
anatomical guidance (AM), as well as another expert’s annotation for compar-
ison. Therefore, we take the landmark annotations of a second expert, when
performing the redetection task manually, and calculate the Euclidean distance
to the ground truth annotations, giving us the distance errors of an expert.
For further comparisons, we calculate additional measurements on the distance
errors, the mean and the median distance as well as the normalized mean and
median, respectively, see Table 1. All measurements are calculated on landmark
level. Qualitative results are presented in Fig. 5, showing a sample redetection
for two different landmarks, where both methods achieve high precision with a
distance error of 0 mm.

(a) distance error (b) variance

(c) initial displacement

Fig. 4. Results for the baseline method (BM, green), the extended method with
anatomical guidance (AM, dark blue) and an expert annotation for comparison (light
blue). (a) shows the distance mean errors in mm and (b) the variances in the dis-
tance errors due to the multiple starting points. (c) shows the relation between the
initial expert annotation displacements and the distance errors. The dots represent the
respective offsets of the initial expert annotation for the training and test images in
relation to the corresponding distance errors of BM and AM. (Color figure online)

RL vs Expert. The lowest distance errors for both methods are close to 0 mm,
representing a perfect redetection. The highest lie above 1 cm. Due to the 20
starting points, we achieve variances in the distance errors, tending to increase
with growing errors, see Fig. 4(a) and (b). High variances are caused by some
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Fig. 5. Sample redetection for two different landmarks (top, bottom) in the same
patient. The masked region is marked in red. The landmarks in blue and green, respec-
tively. (Color figure online)

outliers, where the agent gets lost in the environment. However, it is remarkable
that we achieve a variance of 0 in some experiments, which means that the agent
navigates towards the same target from every starting point, demonstrating
high robustness. As Fig. 4(c) shows, the distance errors from BM and AM both
scale with the initial displacements between the ground truth annotations in the
training and test images, when annotated by an expert. That means, a larger
offset between the initial expert landmark annotation in the training and the
test image results in larger distance errors. This makes sense, since larger initial
annotation displacements are linked to larger tissue changes. Nevertheless, the
majority ranges within smaller errors from 0–4 mm. From Table 1, we observe
that the mean of all distance errors is lowest for the comparison expert, while
both BM and AM show high agreement with it. Still, the median of all distance
errors is smaller for BM and AM. A normalization with the initial displacements
leads to similar mean errors of both RL methods and the comparison expert, see
Table 1.

Benefits of Anatomical Guidance. Figure 4(a) and (b) as well as Table 1
show that AM performs more robust than BM, since the outliers have slightly
smaller mean distance errors and variances. Hence, incorporating anatomi-
cal guidance outperforms the baseline agent in average, while showing high
agreement with the comparison expert’s annotations. Our approach achieves
noticeable performance with an average distance error below 3 mm. Moreover,
anatomical guidance provides potential to incorporate additional anatomical
information.
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Table 1. Calculations on the distance errors for BM, AM and an expert annotation.

Mean Median Normalized Normalized

distance [mm] distance [mm] mean median

BM 3.05 1.41 0.79 0.57

AM 2.82 1.53 0.74 0.64

Expert 2.18 2.0 0.75 0.72

6 Conclusion

In this work, we presented a RL framework for landmark redetection in a chal-
lenging dataset of pre- and post-operative brain scans. We evaluated two RL
agents: a basic one exploring the full environment and an extended one guided by
the resection anatomy for finding the optimal path towards the target landmark.
Overall, both approaches showed good results in terms of speed and accuracy,
while the agent under anatomical guidance performs better in average. Therefore,
this approach allows to further develop the guidance by anatomical structures,
especially in analyzing the connection between different time points before and
after tumor resection, for generating a more representative and efficient model
of the anatomical changes. For further automatization, the segmentation masks
can be produced using some segmentation framework, which would be of min-
imal additional effort here and would be needed to be done once for training
only. Additionally, we will invest in finetuning our approach towards a more
robust redetection for eliminating outliers. Moreover, we will further investigate
in generating a dense representation of patient-specific differential radiomics by
localizing multiple landmarks simultaneously, ideally incorporating the spatial
relationships between tumor structures, resection region and landmarks.
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