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Abstract. This presentation introduces the theory leading to solution
methods for differential algebraic equations (DAEs) under interval uncer-
tainty in which the uncertainty is in the initial conditions of the differen-
tial equation and/or the entries of the coefficients of the differential equa-
tion and algebraic restrictions. While we restrict these uncertainties to
be intervals, other types of uncertains like generalized uncertainties such
as fuzzy intervals are done in a similar manner albeit leading to more
complex analyses. Linear constant coefficient DAEs and then interval
linear constant coefficient problems will illustrate both the theoretically
challenges and solution approaches. The way the interval uncertainty
is handled is novel and serves as a basis for more general uncertainty
analysis.

Keywords: Interval analysis · Differential algebraic equations ·
Constraint interval

1 Introduction

This presentation introduces interval differential-algebraic equations. To our
knowledge, the publication that is closest to our theoretical approach is [11],
in which an interval arithmetic, they call ValEncIA, is used to analyzed interval
DAEs. What is presented here and what is new is that we solve the interval
DAE problem using the constraint interval representation (see [6,7]) to encode
all interval initial condition and/or interval coefficients. It is shown that this
representation has theoretical advantages not afforded to the usual interval rep-
resentation. The coefficients and initial values are, for this presentation, constant
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to maintain the article relatively short. However, the approach in which there are
variable coefficients and/or initial values can easily be extend and this is pointed
out. Since we transform (variable) interval coefficients to (variable) interval ini-
tial values, it is, in theory, a straight forward process, albeit more complex.

The constraint interval representation leads to useful numerical methods as
will be demonstrated. The limitations of this publication prohibit the full devel-
opment of the methods. The initial steps are indicated. What is presented here
does not deal directly with what is called validated methods (see [9,10] for exam-
ple). However, when the processes developed here are carried out in a system
that accounts for numerical errors using outward directed rounding, for example,
in INTLAB or CXSC, then the results will be validated. We restrict ourselves to
what is called (see below) semi-explicit DAEs. That is, all problems are assumed
to have been transformed to the semi-explicit form. However, our approach is
much wider.

The general form of the semi-explicit DAE is

ý = F (y(t), t), y(t0) = y0 (1)

G(y(t), t) = 0. (2)

While the focus is incorporating (constant) interval uncertainties in (1), and (2),
generalized uncertainties as developed in [8], can be analyzed in similar fashion.
Note that the variable (and constant) interval coefficient/initial value is a type
of generalized uncertainty and fits perfectly in the theory that is presented.

2 Definition and Properties

One can also think of the implicit ODE with an algebraic constraint,

F (y(t), y′(t), t) = 0, y(t0) = y0 (3)
G(y(t), t) = 0, (4)

as a semi-explicit DAE as follows Let

y′(t) = z(t)
F (y(t), z(t), t) = 0,

G(y(t), t) = 0,

This will increase the number of variables. However, this will not be the approach
for this presentation. Our general form will assume that the DAE is in the semi-
explicit form (1), (2).

Given an implicit differential equation (3), when ∂F
∂y is not invertible, that

is, we do not have an explicit differential equation, at least theoretically, in the
form (1), (2)), we can differentiate (4) to obtain

∂G

∂y
(y(t), t)y′(t) +

∂G

∂t
(y(t), t) = 0. (5)
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If ∂G
∂y (y, t) is non-singular, then (5) can be solved explicitly for y

′
as follows.

y′ =
[
∂G

∂y
(y(t), t)

]−1
∂G

∂t
(y, t) (6)

F (y(t),
[
∂G

∂y
(y(t), t)

]−1
∂G

∂t
(y(t), t), t) = 0 (7)

G(y(t), t) = 0 (8)

and (6), (7), and (8) is in the form (1), (2) and the DAE is called an index 1
DAE.

This not being the case, that is, ∂G
∂y (y(t), t) is singular, then we have the form

F (y(t), y′(t), t) = 0,
∂G

∂y
(y(t), t)y′ +

∂G

∂t
(y(t), t) = 0,

which can be written as
H(y(t), y′(t), t) = 0

and we again differentiate with respect to y′ and test for singularity. If the partial
of H can be solved for y

′
, then we have an index-2 DAE. This process can be

continued, in principle, until (hopefully) y′ as an explicit function of y and t is
found.

DAEs arise in various contexts, in applications. We present two types of
problems where DAEs arise - the simple pendulum and unconstrained optimal
control, that illustrate the main issues associated with DAEs. Then we will show
interval uncertainty in the DAEs using some of these examples. Our solution
methods for the interval DAEs are based on what is developed for the examples.

3 Linear Constant Coefficient DAEs

Linear constant coefficient DAEs arise naturally in electrical engineering circuit
problems as well as in some control theory problems. A portion of this theory,
sufficient to understand our solution methods, is presented next. The linear
constant coefficient DAE is defined as

Ax′(t) + Bx(t) = f, y(t0) = y0, (9)

where A and B are m × m matrices, x(t) is a m × 1 vector “state function” and
f is a m × 1 function vector, and

A =
[

A1 A2

0 0

]
, B =

[
B1 B2

B3 B4

]
, f =

[
f1
f2

]
,
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so that
[

A1 A2

0 0

] [
x′
1(t)

x′
2(t)

]
+

[
B1 B2

B3 B4

] [
x1(t)
x2(t)

]
=

[
f1
f2

]
.

Note that this is indeed a semi-explicit DAE, where differential part is

x
′
(t) = F (x(t), t) = −A−1(B)x(t) + f(t)

A =
[
A1 A2

]
, B =

[
B1 B2

]
, f =

[
f1
f2

]
,

where the matrix A is assumed to be invertible, and the algebraic part is

G(x(t), t) = B3x1(t) + B4x2(t) = f2.

Example 1. Consider the linear constant coefficient DAE Ax′(t) + Bx(t) = f
where

A =
[

1 1
0 0

]
, B =

[
0 0
2 1

]
, f =

[
t
et

]
.

The ODE part is
x′
1(t) + x′

2(t) = t (10)

and the algebraic part is

G(x(t), t) = 2x1(t) + x2(t) = et. (11)

Integrating the ODE part (10), we get
∫

dx1 +
∫

dx2 =
∫

tdt,

x1(t) + x2(t) =
1
2
t2 + c1. (12)

Solving (11) and (12)

2x1(t) + x2(t) = et

x1(t) + x2(t) =
1
2
t2 + c1

simultaneously, we get

x1(t) = et − 1
2
t2 − c1, (13)

x2(t) = −et + t2 + 2c1. (14)

Example 2. Consider the linear constant coefficient DAE
[

1 0
0 0

]
x′(t) +

[
1 1
1 1

]
x(t) =

[
t
et

]
.
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The ODE part is
x′
1(t) + x1(t) + x2(t) = t (15)

and the algebraic constraint is

G(x(t), t) = x1(t) + x2(t) = et. (16)

Putting (16) into (15) and solving for x′
1, we have

x′
1(t) = t − et

x1(t) =
1
2
t2 − et + c1

x2(t) = 2et − 1
2
t2 − c1.

Remark 1. 1) When, for the m−variable problem, the algebraic constraint can be
substituted into the differential equation, and the differential equation, which is
linear, is integrated, there are m equations in m unknowns. Interval uncertainty
enters when the matrices A and/or B and/or the initial condition y0 are intervals
A ∈ [A], B ∈ [B], y0 ∈ [y0]. This is illustrated.

4 Illustrative Examples

Two DAE examples, beginning with the simple pendulum, are presented next.

4.1 The Simple Pendulum

Consider the following problem (see [4]) arising from a simple pendulum,

x′′(t) = −γx(t), x(t0) = x0, x
′(t0) = x′

0

y′′(t) = −γy(t) − g, y(t0) = y0, y
′(t0) = y′

0 (17)

0 = x2(t) + y2(t) − L2 (mechanical constraint) or

0 = (x′)2 (t) + (y′)2 (t) − y(t)g (energy constraint)

where g is the acceleration due to gravity, γ is the unknown tension in the string,
and L = 1 is the length of the pendulum string. In this example, we will consider
the unknown tension to be an interval [γ] =

[
γ, γ

]
to model the uncertainty of

the value of the tension. Moreover, we will also assume that the initial values are
also intervals. We can restate (17) as a first order system where we will focus on
the mechanical constraint omitting the energy constraint, as follows:

u1(t) = x(t) ⇒ u′
1(t) = u3(t), u1(t0) ∈ [(u1)0]

u2(t) = y(t) ⇒ u′
2(t) = u4(t), u2(t0) ∈ [(u2)0]

u3(t) = x
′
(t) ⇒ u′

3(t) = −u5(t) · u1, u3(t0) ∈ [(u3)0] (18)

u4(t) = y
′
(t) ⇒ u′

4(t) = −u5(t) · u2(t) − g, u4(t0) ∈ [(u4)0]

u5(t) = γ ⇒ u′
5(t) = 0, u5(t0) ∈ [γ] =

[
γ, γ

]
G(u1(t), u2(t), t) = u2

1(t) + u2
2(t) − 1 = 0.
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Note that the uncertainty parameter γ is considered as a part of the differential
equation and is constant (u5) whose initial condition is an interval. This is in
general the way constant interval (generalized) uncertainty in the parameters
is handled. If the coefficient were in fact variable, u′

5(t) �= 0 but a differential
equation itself, for example,

u′
5(t) = h(t)

where h(t) would define how the rate of change of the coefficient is varying with
respect to time. Equation (18) is a standard semi-explicit real DAE and in this
case, with interval initial conditions. How to solve such a system is presented in
Sect. 5.

4.2 Unconstrained Optimal Control

We next present the transformation of unconstrained optimal control problems
to a DAE. The form of the general unconstrained optimal control is the following.

max
u∈Ω

J [u] =

1∫
0

L(x(u, t), u, t)dt

subject to:x′(u, t) = f(x, u, t) (19)
x(u, 0) = x0.

x : Rm × R → R
n, u : R → R

m (20)

When Ω is the set of all square integrable functions, then the problem becomes
unconstrained. In this case we denote the constraint set Ω0. The Pontryagin
Maximization Principle utilizes the Hamiltonian function, which is defined for
(19) as

H(x(t), λ, u, t) = λ(t)f(x(t), u, t) + L(x(t), u, t). (21)

The function λ(t) is called the co-state function and is a row vector (1×n). The
co-state function can be thought of as the dynamic optimization equivalent to
the Lagrange multiplier and is defined by the following differential equation:

λ′(t) = −∂H(x(t), λ, u, t)
∂x

(22)

λ(1) = 0.

Under suitable conditions (see [5]), the Pontryagin Maximization Principle
(PMP) states that if there exists an (optimal) function v(t) such that J [v] ≥
J [u] ,∀u ∈ Ω, (the optimal control), then it maximizes the Hamiltonian with
respect to the control, which in the case of unconstrained optimal control means
that

∂H(x(t), λ, v, t)
∂u

= 0, v ∈ Ω0, (23)
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where (23) is the algebraic constraint. Thus, the unconstrained optimal control
problem, (19) together with the differential equation of the co-state, (22), and
the PMP (23) results in a boundary valued DAE as follows:

x′(u, t) = f(x(t), u, t)

λ′(x(t), u, t) = −∂H(x, λ, u, t)
∂x

x(u, 0) = x0

λ(x, u, 1) = 0

G(x(t), λ(t), t) =
∂H(x, λ, u, t)

∂u
= 0.

One example that is well studied is the linear quadratic optimal control problem
(LQP), which is defined for the unconstrained optimal control problem as

max
u∈Ω0

J [u] =
1
2

1∫
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

subject to:x′(t) = Ax(t) + Bu(t) (24)
x(u, 0) = x0,

where An×n is an n × n real matrix, Bn×m is an m × n real matrix, Qn×n is a
real symmetric positive definite matrix, and Rm×m is a real invertible positive
semi-definite matrix. For the LQP

H(x, u, λ, t) = λ(t) (Ax(t) + Bu(t)) +
1
2

(
xT (t)Qx(t) + uT (t)Ru(t)

)

λ′(t) = −∂H(x, λ, u, t)
∂x

= −λ(t)A + Qx(t), λ(1) = 0,

remembering that λ is a row vector. The optimal control is obtained by solving

G(x(t), λ(t), t) =
∂H(x, λ, u, t)

∂u
= λ(t)B + Ru(t) = 0

u(t) = −R−1λ(t)B,

which, when put into the differential equations, yields

x′(t) = Ax(t) − BR−1λ(t)B, x(0) = x0

λ′(t) = Qx(t) − λ(t)A, λ(1) = 0.

This results in the system

y′(t) =
[

x′(t)
λ′(t)

]
=

[
A −BR−1B
Q A

] [
x(t)
λ(t)

]

x(0) = x0, λ(1) = 0

The next section will consider DAEs with interval uncertainty in the coefficients
and in the initial conditions.
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5 Interval Uncertainty in DAEs

This section develops an interval solution method. The interval problem for
non-linear equation considers interval coefficients as variables whose differen-
tial is zero and initial condition is the respective interval. For linear problems,
it is sometimes advantageous to deal with the interval coefficients directly as
illustrated next.

5.1 An Interval Linear Constant Coefficient DAE

Given the linear constant coefficient DAE Ax′(t) + Bx(t) = f , suppose that the
coefficient matrices are interval matrices [A] and [B]. That is,

[A] x′(t) + [B]x(t) = f.

Example 3. Consider Example 1, except we have interval entries

[A] =
[

[A1] [A2]
[A3] [A4]

]
, B =

[
[B1] [B2]
[B3] [B4]

]
, f =

[
t
et

]
,

where [A1] = [A2] = [B4] = [0.9, 1.1] , [A3] = [A4] = [B1] = [B2] = [0, 0] , and
[B3] = [1.9, 2.1] . The ODE part is

[0.9, 1.1] x′
1(t) + [0.9, 1.1] x′

2(t) = t (25)

and the algebraic part is

G(x(t), t) = [1.9, 2.1] x1(t) + [0.9, 1.1] x2(t) = et. (26)

Integrating (25) we have

[0.9, 1.1] x1(t) + [0.9, 1.1] x2(t) =
1
2
t2 + c1

which together with (26) forms the interval linear system

[0.9, 1.1] x1(t) + [0.9, 1.1] x2(t) =
1
2
t2 + c1 (27)

[1.9, 2.1] x1(t) + [0.9, 1.1] x2(t) = et. (28)

Using constraint interval (see [8] where any interval [a, b] has the representation
[a, b] = a + λ(b − a)), then[

x1(
−→
λ )

x2(
−→
λ )

]
=

[
0.9 + 0.2λ11 0.9 + 0.2λ12

1.9 + 0.2λ21 0.9 + 0.2λ22

]−1 [
1
2 t2 + c1

et

]

=
1

(0.9 + 0.2λ11) (0.9 + 0.2λ22) − (0.9 + 0.2λ12) (1.9 + 0.2λ21)

×
[

0.9 + 0.2λ22 − (0.9 + 0.2λ12)
− (1.9 + 0.2λ21) 0.9 + 0.2λ11

] [
1
2 t2 + c1

et

]

=

[
− 90.0c1 − 90.0et − 20.0λ12et +20.0λ22c1 +10.0t2λ22 +45.0t2

38.0λ12 − 18.0λ11 +18.0λ21 − 18.0λ22 − 4.0λ11λ22 +4.0λ12λ21 +90.0
190.0c1 − 90.0et − 20.0λ11et +20.0λ21c1 +10.0t2λ21 +95.0t2

38.0λ12 − 18.0λ11 +18.0λ21 − 18.0λ22 − 4.0λ11λ22 +4.0λ12λ21 +90.0

]
,
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where
−→
λ = (λ11, λ12, λ21, λ22). Any instantiation of λij ∈ [0, 1] will yield a valid

solution given the associated uncertainty. However, if one wishes to extract the

interval containing

[
x1(

−→
λ )

x2(
−→
λ )

]
, a global min/max over 0 ≤ λij ≤ 1 would need

to be implemented.

Example 4. Consider the linear quadratic problem with interval initial condition
for x,

max J [u] =
1
2

1∫
0

[
x2(t) + u2(t)

]
dt

subject to:x′(t) = u(t), x(u, 0) =
[
1
2
,
3
2

]
=

1
2

+ γ, (29)

0 ≤ γ ≤ 1. (30)

For this problem,

H(x(t), λ(t), u(t), t) = λ(t)u(t) − 1
2
x2(t) − 1

2
u2(t),

λ′(t) = −∂H(x, λ, u, t)
∂x

= x(t), λ(1) = 0

G(x(t), λ(t), t) =
∂H(x(t), λ(t), v(t), t)

∂u
= λ(t) − v(t) = 0 or v(t) = λ(t).

Thus

x′(t) = λ(t), x(0) =
1
2

+ γ

λ′(t) = x(t), λ(1) = 0.

This implies that

x′′(t) − x(t) = 0

x(t) = c1e
t + c2e

−t

λ(t) = c1e
t − c2e

−t

and with the initial conditions

x(t) =
1
2 + γ

1 + e2
et +

e2( 12 + γ)
1 + e2

e−t,

λ(t) =
1
2 + γ

1 + e2
et − e2( 12 + γ)

1 + e2
e−t,

uopt(t) = v(t) =
1
2 + γ

1 + e2
et − e2( 12 + γ)

1 + e2
e−t.

0 ≤ γ ≤ 1.
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6 Conclusion

This study introduced the method to incorporate interval uncertainty in dif-
ferential algebraic problems. Two examples of where DAEs under uncertainty
arise were presented. Two solution methods with interval uncertainty for the lin-
ear problem and for the linear quadratic unconstrained optimal control problem
were shown. Unconstrained optimal control problems lead to interval boundary-
valued problems, which subsequent research will address. Moreover, more general
uncertainties such as generalized uncertainties (see [8]), probability distributions,
fuzzy intervals are the next steps in the development of a theory of DAEs under
generalized uncertainties.
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