
Conditioning and Dilation with Coherent
Nearly-Linear Models

Renato Pelessoni(B) and Paolo Vicig

University of Trieste (DEAMS), 34123 Trieste, Italy
{renato.pelessoni,paolo.vicig}@deams.units.it

Abstract. In previous work [1] we introduced Nearly-Linear (NL) mod-
els, a class of neighbourhood models obtaining upper/lower probabilities
by means of a linear affine transformation (with barriers) of a given
probability. NL models are partitioned into more subfamilies, some of
which are coherent. One, that of the Vertical Barrier Models (VBM),
includes known models, such as the Pari-Mutuel, the ε-contamination or
the Total Variation model as special instances. In this paper we study
conditioning of coherent NL models, obtaining formulae for their natural
extension. We show that VBMs are stable after conditioning, i.e. return
a conditional model that is still a VBM, and that this is true also for the
special instances mentioned above but not in general for NL models. We
then analyse dilation for coherent NL models, a phenomenon that makes
our ex-post opinion on an event A, after conditioning it on any event in
a partition of hypotheses, vaguer than our ex-ante opinion on A.

Keywords: Conditioning · Coherent imprecise probabilities ·
Nearly-Linear models · Dilation

1 Introduction

Among special imprecise probability models, neighbourhood models [10, Sec.
4.6.5] obtain an upper/lower probability from a given (precise) probability P0.
One reason for doing this may be that P0 is not considered fully reliable. Even
when it is, P0(A) represents a fair price for selling event A, meaning that the
buyer is entitled to receive 1 if A is true, 0 otherwise. A seller typically requires
a higher price than P0(A), P (A) ≥ P0(A), for selling A. The upper probability
P , to be interpreted as an infimum selling price in the behavioural approach to
imprecise probabilities [10], is often obtained as a function of P0.

Recently, we investigated Nearly-Linear (NL) models [1], a relatively simple
class of neighbourhood models. In fact, they derive upper and lower probabili-
ties, P and P respectively, as linear affine transformations of P0 with barriers,
to prevent reaching values outside the [0, 1] interval. As proven in [1], some
NL models are coherent, while other ones ensure weaker properties. The most
important coherent NL models are Vertical Barrier Models (VBM), including
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several well-known models as special cases, such as the Pari-Mutuel, the Total
Variation, the ε-contamination model, and others.

In this paper we explore the behaviour of coherent NL models when con-
ditioning. Precisely, after recalling essential preliminary notions in Sect. 2, in
Sect. 3 the events in the (unconditional) domain of P , P are conditioned on
an event B, and the lower/upper natural extensions E, E of P ,P on the new
(conditional) environment are computed. The natural extension is a standard
inferential procedure in the theory of imprecise probabilities [10], which gives
the least-committal coherent extension of a lower (upper) probability. Since
P (P ) is 2-monotone (2-alternating) in a coherent NL model, E (E) is given
by easy-to-apply formulae and is 2-monotone (2-alternating) too. An interest-
ing result is that VMBs are stable after conditioning: the conditional model
after applying the natural extension is still a VBM. We show that this property
extends also to the mentioned special VBMs: conditioning each special VBM
model returns a special VBM model of the same kind. By contrast, the property
does not hold for other NL models. In Sect. 4 we explore the phenomenon of
dilation, where, given a partition of events B, it happens for some event A that
E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B), for all B ∈ B\{∅}. This means that our a
posteriori evaluations are vaguer than the a priori ones. We derive a number of
conditions for dilation to occur or not to occur. Section 5 concludes the paper.

2 Preliminaries

In this paper we shall be concerned with coherent lower and upper probabilities,
both conditional and unconditional. Coherent means in both cases Williams-
coherent [11], in the structure-free version studied in [6]:

Definition 1. Let D �= ∅ be an arbitrary set of conditional events. A condi-
tional lower probability P : D → R is coherent on D iff ∀n ∈ IN,∀s0, s1, . . . , sn ≥
0,∀A0|B0, A1|B1, . . . , An|Bn ∈ D, defining G =

∑n
i=1 siIBi

(IAi
− P (Ai|Bi)) −

s0IB0(IA0 − P (A0|B0)), B =
∨n

i=0 Bi (IA: indicator of event A), it holds that
max{G|B} ≥ 0.

A similar definition applies to upper probabilities. However, when considering
simultaneously lower and upper probabilities, they will be conjugate, i.e.

P (A|B) = 1 − P (Ac|B). (1)

Equation (1) lets us refer to lower (alternatively upper) probabilities only.
When D is made of unconditional events only, Definition 1 coincides with

Walley’s coherence [10]. In general, a (Williams-)coherent P on D has a coherent
extension, not necessarily unique, on any set of conditional events D′ ⊃ D.

The natural extension E of P on D′ is the least-committal coherent extension
of P to D′, meaning that if Q is a coherent extension of P , then E ≤ Q on D′.
Further, E = P on D iff P is coherent [6,10].

In this paper, we shall initially be concerned with unconditional lower prob-
abilities (P (·)) and their conjugates (P (·)).
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Coherence implies that [10, Sec. 2.7.4]

if A ⇒ B,P (A) ≤ P (B), P (A) ≤ P (B) (monotonicity)

P (A) + P (B) ≥ P (A ∨ B). (2)

The domain D of P (·), P (·) will often be A(IP ), the set of events logically
dependent on a given partition IP (the powerset of IP , in set theoretic language).

A lower probability P , coherent on A(IP ), is 2-monotone if P (A ∨ B) ≥
P (A) + P (B) − P (A ∧ B), ∀A,B ∈ A(IP ). Its conjugate P is 2-alternating,
meaning that P (A ∨ B) ≤ P (A) + P (B) − P (A ∧ B), ∀A,B ∈ A(IP ).

2-monotone and 2-alternating coherent imprecise probabilities have some spe-
cial properties [8–10]. In particular,

Proposition 1. ([9, Thm. 7.2],[10, Sec. 6.4.6]). If P is a coherent 2-monotone
lower probability on A(IP ) and P is its conjugate, given B ∈ A(IP ) such that
P (B) > 0, then, ∀A ∈ A(IP ),

E(A|B) =
P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
(3)

E(A|B) =
P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
(4)

E is 2-monotone (E is 2-alternating) on A(IP )|B = {A|B : A ∈ A(IP )}, where
B is fixed. E, E are conjugate.

2.1 Nearly-Linear Models

Nearly-Linear models have been defined in [1], where their basic properties have
been investigated.

Definition 2. A Nearly-Linear Model is a couple (P , P ) of conjugate lower and
upper probabilities on A(IP ), where ∀A ∈ A(IP ) \ {∅, Ω}

P (A) = min{max{bP0(A) + a, 0}, 1}, (5)

P (A) = max{min{bP0(A) + c, 1}, 0} (6)

and P (∅) = P (∅) = 0, P (Ω) = P (Ω) = 1.
In Eqs. (5), (6), P0 is an assigned (precise) probability on A(IP ), while

b > 0, a ∈ R, c = 1 − (a + b). (7)

It has been shown in [1, Sec. 3.1] that NL models are partitioned into three
subfamilies, with varying consistency properties. Here we focus on the coherent
NL models, which are all the models in the VBM subfamily and some of the HBM
(to be recalled next), while, within the third subfamily, P and P are coherent
iff the cardinality of IP is 2 (therefore we neglect these latter models).
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Definition 3. A Vertical Barrier Model (VBM) is a NL model where (5), (6)
specialise into

P (A) = max{bP0(A) + a, 0}, ∀A ∈ A(IP ) \ {Ω}, P (Ω) = 1 (8)

P (A) = min{bP0(A) + c, 1}, ∀A ∈ A(IP ) \ {∅}, P (∅) = 0 (9)

0 ≤ a + b ≤ 1, a ≤ 0 (10)

and c is given by (7) (hence c ≥ 0).
In a Horizontal Barrier Model (HBM) P , P are given by Definition 2, hence

by (5), (6), (7) ∀A ∈ A(IP ) \ {∅, Ω}, where a, b satisfy the constraints

a + b > 1, b + 2a ≤ 1 (11)

(implying a < 0, b > 1, c < 0).

Proposition 2. ([1]) P , P are coherent and 2-monotone, respectively 2-alter-
nating in any VBM; in a HBM they are so iff P is subadditive (i.e. P (A) +
P (B) ≥ P (A ∨ B), ∀A,B ∈ A(IP )).

Thus, VBMs and (partly) HBMs ensure very good consistency properties, while
being relatively simple transformations of an assigned probability P0. Further,
a VBM generalises a number of well-known models. Among them we find:

• if a + b = 0, the vacuous lower/upper probability model [10, Sec. 2.9.1]:

PV (A) = 0,∀A �= Ω, PV (Ω) = 1,

PV (A) = 1,∀A �= ∅, PV (∅) = 0;

• if a = 0, 0 < b < 1 (hence c = 1 − b > 0), the ε-contamination model or
linear-vacuous mixture model [10, Sec. 2.9.2], here b = 1 − ε:

P ε(A) = (1 − ε)P0(A), ∀A �= Ω, P ε(Ω) = 1,

P ε(A) = (1 − ε)P0(A) + ε, ∀A �= ∅, P ε(∅) = 0;

• if b = 1 + δ > 1, a = −δ < 0 (hence c = 0), the Pari-Mutuel Model [4,7], [10,
Sec. 2.9.3]:

PPMM (A) = max{(1 + δ)P0(A) − δ, 0},

PPMM (A) = min{(1 + δ)P0(A), 1};

(12)

• if b = 1, −1 < a < 0 (hence c = −a), the Total Variation Model [2, Sec. 3],
[7, Sec. 3.2]:1

PTV M (A) = max{P0(A) + a, 0} ∀A �= Ω,PTV M (Ω) = 1,

PTV M (A) = min{P0(A) − a, 1} ∀A �= ∅, PTV M (∅) = 0.

(13)

1 Note that PTV M (A) ≤ PTV M (A), ∀A, since a < 0.
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3 Conditioning Coherent Nearly-Linear Models

Given a coherent NL model (P , P ) on A(IP ) and an event B ∈ A(IP ) \ {∅},
assumed or known to be true, we look for the natural extensions E(A|B), E(A|B)
of P , P respectively, for any A ∈ A(IP ). In other words, P , P are extended on
A(IP )|B.

When P (B) = 0, we determine E, E quickly thanks to Proposition 3, which
follows after a preliminary Lemma, stated without proof in a finite setting in [7].

Lemma 1. Let P : D → R be a coherent lower probability on D, non-empty
set of unconditional events, and B ∈ D, B �= ∅ such that P (B) = 0. Let also
S = {Ai|B}i∈I be a set of events such that Ai ∈ D, B �⇒ Ai, ∀i ∈ I. Then, the
lower probability P ′ defined by

P ′(E) = P (E), ∀E ∈ D, P ′(Ai|B) = 0, ∀i ∈ I,

is a coherent extension of P on D ∪ {Ai|B}i∈I .

Proof. Firstly, since A ∧ B ⇒ B and P (B) = 0, we can extend in a unique way
P on D ∪ {Ai ∧ B}i∈I preserving coherence, letting P (Ai ∧ B) = 0, ∀i ∈ I.

To prove coherence of P ′, take Ej ∈ D (j = 1, . . . , n), Ak|B ∈ S (k =
1, . . . ,m) and n + m real coefficients sj (j = 1, . . . , n), tk (k = 1, . . . , m), such
that at most one of them is negative, and define

G =
n∑

j=1

sj(IEj
− P ′(Ej)) +

m∑

k=1

tkIB(IAk
− P ′(Ak|B)).

According to Definition 1, we have to prove that max{G|H} ≥ 0, where H = Ω
if n > 0, H = B otherwise. We distinguish two cases.

(a) Let n = 0, hence G =
∑m

k=1 tkIBIAk
. If tk ≥ 0, ∀k = 1, . . . ,m, G ≥ 0

and max{G|H} = max{G|B} ≥ 0. Otherwise, if tk < 0 and tk ≥ 0, ∀k =
1, . . . , m, k �= k, then max{G|H} ≥ max{tkIBIAk

|B} = max{tkIAk
|B} = 0,

where the last equality holds because Ac
k

∧ B �= ∅ (since B �⇒ Ak).
(b) If n > 0, G =

∑n
j=1 sj(IEj

− P ′(Ej)) +
∑m

k=1 tkIBIAk
=

∑n
j=1 sj(IEj

−
P (Ej)) +

∑m
k=1 tk(IAk∧B − P (Ak ∧ B)). Then, max{G|H} = max{G} ≥ 0,

applying Definition 1 to the coherent extension of P on D ∪ {Ai ∧ B}i∈I . ��
Proposition 3. Let P : D → R be a coherent lower probability on D, non-empty
set of unconditional events, and B ∈ D, B �= ∅ such that P (B) = 0. Then the
natural extension E of P on D ∪ {Ai|B}i∈I , where Ai ∈ D, ∀i ∈ I, is given by
E(F ) = P (F ), ∀F ∈ D and, ∀i ∈ I, by

E(Ai|B) = 1 if B ⇒ Ai, E(Ai|B) = 0 otherwise. (14)

Proof. Since P is coherent on D, we have E(F ) = P (F ), ∀F ∈ D.
Let j ∈ I. If B ⇒ Aj , Aj |B = B|B, hence coherence of E implies E(Aj |B) =

1. If B �⇒ Aj , by Lemma 1, P can be extended on Aj |B, letting P (Aj |B) = 0.
Since E is the least-committal coherent extension of P , we get 0 ≤ E(Aj |B) ≤
P (Aj |B) = 0, hence E(Aj |B) = 0. ��
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Proposition 3 ensures that:

• E(A|B) = 0 if B �⇒ A, E(A|B) = 1 if B ⇒ A (just take Ai = A in (14));
• E(A|B) = 1 if B �⇒ Ac, E(A|B) = 0 if B ⇒ Ac (just take Ai = Ac in (14)

and apply conjugacy).

Let us now assume P (B) > 0.
Then, E, E are given by the next

Proposition 4. Let (P , P ) be a coherent NL model on A(IP ). For a given B ∈
A(IP ) such that P (B) > 0, we have that

E(A|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 iff P (A ∧ B) = 0
bP0(A ∧ B) + c

bP0(B) + 1 − b
(∈]0, 1[) iff P (Ac ∧ B), P (A ∧ B) ∈]0, 1[

1 iff P (Ac ∧ B) = 0

(15)

E(A|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 iff P (Ac ∧ B) = 0
bP0(A ∧ B) + a

bP0(B) + 1 − b
(∈]0, 1[) iff P (A ∧ B), P (Ac ∧ B) ∈]0, 1[

0 iff P (A ∧ B) = 0

(16)

Proof. We derive first the expression (15) for E(A|B).
Since P is 2-alternating, we may apply Eq. (3). There, E depends on P (A∧B)

and P (Ac ∧ B), which cannot be simultaneously 0: by (2), this would imply
0 = P (Ac ∧ B) + P (A ∧ B) ≥ P (B), hence P (B) = 0. Further,

P (Ac ∧ B) = 1 → P (A ∨ Bc) = 0 → P (A ∧ B) = 0,

P (A ∧ B) = 1 → P (Ac ∨ Bc) = 0 → P (Ac ∧ B) = 0,
(17)

using in both derivations conjugacy first, monotonicity then.
Thus, only the following exhaustive alternatives may occur:

(a) P (A ∧ B) = 0
(b) P (Ac ∧ B) = 0
(c) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[.

It is immediate from (3) that E(A|B) = 0 iff P (A∧B) = 0 and that E(A|B) = 1
iff P (Ac ∧ B) = 0. Otherwise, E(A|B) ∈]0, 1[. Precisely, from (3), (5), (6), (7)

E(A|B) =
bP0(A ∧ B) + c

bP0(A ∧ B) + c + bP0(Ac ∧ B) + a
=

bP0(A ∧ B) + c

bP0(B) + 1 − b
.

Turning now to E(A|B), its value in Eq. (16) may be obtained simply by con-
jugacy, using E(A|B) = 1 − E(Ac|B) and (15). ��
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For the VBM, it is productive to write E(A|B), E(A|B) as follows:

Proposition 5. Let (P , P ) be a VBM on A(IP ). For a given B ∈ A(IP ), with
P (B) > 0, we have that

E(A|B) = max{bBP0(A|B) + aB , 0},∀A ∈ A(IP ) \ {Ω}, E(Ω|B) = 1 (18)

E(A|B) = min{bBP0(A|B) + cB , 1}, ∀A ∈ A(IP ) \ {∅}, E(∅|B) = 0 (19)

aB =
a

bP0(B) + 1 − b
, bB =

bP0(B)
bP0(B) + 1 − b

, cB = 1 − (aB + bB). (20)

Moreover, it holds that bB > 0, aB ≤ 0, 0 < aB + bB ≤ 1.

Proof. Preliminarily, note that the denominator in (20) is positive. In fact, by
assumption P (B) > 0, meaning by (8) that bP0(B) + a > 0. Using (7) and
recalling that c ≥ 0 in a VBM, it holds also that

bP0(B) + 1 − b = bP0(B) + a + c > 0.

Given this, let us prove (18) (the argument for (19) is analogous or could be
also derived using conjugacy and will be omitted). For this, recalling (16), it is
sufficient to establish that

(i) bBP0(A|B) + aB ≤ 1, with equality holding iff P (Ac ∧ B) = 0;
(ii) bBP0(A|B) + aB ≤ 0 iff P (A ∧ B) = 0;

(iii) bBP0(A|B) + aB =
bP0(A ∧ B) + a

bP0(B) + 1 − b
∈]0, 1[ iff P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.

(i) Using (20) and the product rule at the first equality, non-negativity of b, c
in the VBM at the inequality, (7) at the second equality, we obtain:

bBP0(A|B) + aB =
bP0(A ∧ B) + a

bP0(B) + 1 − b

≤ bP0(A ∧ B) + bP0(Ac ∧ B) + a + c

bP0(B) + 1 − b
= 1.

Moreover, bBP0(A|B)+aB = 1 iff bP0(Ac ∧B)+ c = 0, which is equivalent
to P (Ac ∧ B) = 0 by (9) (and since bP0(Ac ∧ B) + c ≥ 0).

(ii) Taking account of the first equality in the proof of (i) above and since
bP0(B) + 1 − b > 0, it ensues that

bBP0(A|B) + aB ≤ 0 iff bP0(A ∧ B) + a ≤ 0 iff P (A ∧ B) = 0.

(iii) Immediate from (i), (ii) and recalling (17) (exchanging there A with Ac).

Elementary computations ensure that bB > 0, aB ≤ 0, 0 < aB + bB ≤ 1. ��
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Proposition 5 proves an interesting feature of a VBM: when all events in A(IP )
are conditioned on the same B, the resulting model is still a VBM. (Note the
this holds also when P (B) = 0: here Proposition 5 does not apply, but from
Proposition 3 we obtain the vacuous lower/upper probabilities, a special VBM.)

We synthesise this property saying that a VBM is stable under conditioning.
A natural question now arises: does a HBM ensure an analogous property?

Specifically, condition on B, with P (B) > 0, the events of A(IP ), which are
initially given a HBM lower probability P . Is it the case that the resulting
E(·|B) is determined by the equation

E(A|B) = min{max{bBP0(A|B) + aB , 0}, 1} (21)

with aB , bB given by (20) and obeying the HBM constraints (11) (and similarly
with P , E(·|B))?

The answer is negative: although E(A|B) may occasionally be obtained from
(21), for instance—as is easy to check—when P (A ∧ B), P (Ac ∧ B) ∈]0, 1[,
∀A ∈ A(IP ) \ {∅, Ω}, this is not true in general, as shown in the next example.

Example 1. Given IP = {ω1, ω2, ω3}, Table 1 describes the values of an assigned
P0, and of P , P obtained by (5), (6) with a = −10, b = 12. Since a, b satisfy
(11) and, as can be easily checked, P is subadditive, (P , P ) is a coherent HBM
by Definition 3 and Proposition 2. Now, take A = ω2, B = ω1 ∨ ω2. From

Table 1. Data for Example 1

ω1 ω2 ω3 ω1 ∨ ω2 ω1 ∨ ω3 ω2 ∨ ω3 ∅ Ω

P0
3
10

3
5

1
10

9
10

4
10

7
10

0 1

P 0 0 0 0.8 0 0 0 1

P 1 1 0.2 1 1 1 0 1

(16), E(A|B) = 0, because P (A ∧ B) = P (ω2) = 0. Yet, since bBP0(A|B) +
aB = bP0(ω2)+a

bP0(ω1∨ω2)+1−b = 14 > 1, Eq. (21) would let us mistakenly conclude that
E(A|B) = 1.

Thus, a coherent HBM differs from a VBM with respect to conditioning on some
event B, being not stable.

It is interesting to note that not only the VBM, but also its special submodels
listed in Sect. 2.1 are stable: conditioning one of them on B returns a model of
the same kind. Let us illustrate this in some detail.

For the linear-vacuous model (PV , PV ), it is well-known [10] that EV (A|B) =
0 if B �⇒ A, while EV (A|B) = 1 if B ⇒ A. Note that this follows also from
Proposition 3, since PV (B) = 0. By conjugacy, EV (·|B) is vacuous too.

With the ε-contamination model, its conditional model is again of the same
type: from (18), (20), we get aB = 0, bB = 1 − εB ∈]0, 1[.
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Turning to the Total Variation Model (TVM) and applying again (18), (20)

bB = 1, aB =
a

P0(B)
< 0

ETV M (A|B) = max
{

P0(A|B) +
a

P0(B)
, 0

}

=
1

P0(B)
max{P0(A ∧ B) + a, 0}. (22)

At first sight, the conditional model differs from a TVM. However, we may easily
write (13) in the form (22):

PTV M (A) =
1

P0(Ω)
· max{P0(A ∧ Ω) + a, 0}. (23)

Comparing (22) and (23) we see that the TVM is stable too under conditioning:
PTV M , ETV M may be thought of as normalised on the P0-probability of what
is currently assumed to be true (Ω first, B then).

The conjugate of ETV M (A|B) is ETV M (A|B) = 1
P0(B) min{P0(A∧B)−a, 1}.

ETV M (A|B), ETV M (A|B) determine a credal set (i.e. the set of probabilities P
such that ETV M (A|B) ≤ P (A|B) ≤ ETV M (A|B),∀A ∈ A(IP )) still made of all
probabilities at a total variation distance2 from P0 not larger than −a (> 0).
This is like the unconditional TVM, the difference being that any A is replaced
by A ∧ B, i.e. by what remains possible of A after assuming B true.

Conditioning the Pari-Mutuel Model (PMM) on B leads to similar conclu-
sions: the conditional model is again of the PMM type.

Take for instance PPMM (A), given by (12), where b = 1+δ > 1, a = −δ < 0.
From (18), (20) and recalling that PPMM (B) = (1+ δ)P0(B)− δ > 0, we obtain

aB =
−δ

PPMM (B)
< 0, bB = 1 +

δ

PPMM (B)
> 1,

EPMM (A|B) = max{(1 + δB)P0(A|B) − δB, 0}, δB =
δ

PPMM (B)
.

Clearly, aB + bB = 1, and we may conclude that EPMM (·|B) is again a PMM,
with δ replaced by δB . Note that the starting PPMM (·) may be written as

PPMM (A) = max
{

(1 + δ)P0(A|Ω) − δ

PPMM (Ω)
, 0

}

.

Similarly, we obtain

EPMM (A|B) = min{(1 + δB)P0(A|B), 1}.

Note that δB ≥ δ, with equality holding iff P0(B) = 1. As well known [7,10],
δ (hence δB) has the interpretation of a loading factor, which makes a subject
2 On the total variation distance see e.g. [3, Sec. 4.1].
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‘sell’ A (A|B) for a selling price PPMM (A) (EPMM (A|B)) higher than the ‘fair
price’ P0(A) (P0(A|B)). With respect to this kind of considerations, conditioning
increases the loading factor, and the smaller PPMM (B), the higher the increase.
Next to this, conditioning makes both the seller and the buyer more cautious,
in the sense that they restrict the events they would sell or buy.

From the seller’s perspective, we can see this noting that PPMM (A) < 1 iff
P0(A) < 1

1+δ = tΩ . Here tΩ is the threshold to ensure that selling A may be
considered: when P (A) = 1, the seller is practically sure that A will occur. On
the other hand, s/he will find no rational buyer for such a price: in fact, the buyer
should pay 1 to receive at most 1 if A occurs, 0 otherwise. After conditioning,
EPMM (A|B) < 1 iff P0(A|B) < 1

1+δB
= tB ≤ tΩ . When tB < tΩ , the seller may

have the chance to negotiate A, but not A|B, for some events A.
Analogously, a subject ‘buying’ A (A|B) will be unwilling to do so when

PPMM (A) = 0 (when EPMM (A|B) = 0), which happens iff P0(A) ≤ δ
1+δ = tΩ

(iff P0(A|B) ≤ δB
1+δB

= δ
PPMM (B)+δ = tB). Here tB ≥ tΩ , and again conditioning

makes the buyer more cautious, see also Fig. 1.

Fig. 1. 1) Plot of PPMM against P0 before (dashed bold line) and after (continuous
bold line) conditioning. 2) The same for PPMM against P0.

4 Dilation with Coherent Nearly-Linear Models

Given a coherent NL model on A(IP ), B ∈ A(IP ) \ {∅} and an event A ∈ A(IP ),
if we compute E(A|B), E(A|B) it may happen that

E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B). (24)

When Eq. (24) holds, the imprecision of our evaluation on A increases, or at
least does not decrease, after assuming B true. Equation (24) is a condition
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preliminary to dilation, which we shall discuss later on. Next, we investigate
when (24) holds.

Preliminarily, say that (24) occurs trivially when it holds and its three
inequalities are equalities, and that A is an extreme event if either P (A) =
P (A) = 0 or P (A) = P (A) = 1. When referring to extreme events in the sequel,
we shall rule out ∅, Ω (for which no inference is needed).

Next, we investigate if Eq. (24) obtains when: P (B) = 0 (Lemma 2); P (B) >
0 and A is either an extreme event (Lemma 3) or non-extreme (Proposition 7).

Lemma 2. Let P (B) = 0. Then,

(a0) If B �⇒ A and B �⇒ Ac, (24) applies.
(b0) If B ⇒ A, (24) occurs, trivially, iff P (A) = P (A) = 1.
(c0) If B ⇒ Ac, (24) occurs, trivially, iff P (A) = P (A) = 0.

Proof. As for (a0), (24) holds because E(A|B) = 0, E(A|B) = 1 by Proposi-
tion 3. By the same Proposition 3, (b0) and (c0) follow easily. ��
Let us suppose now that P (B) > 0. From (15), (16), and since E(·|B) ≥ E(·|B),
the following alternatives may arise:

(a) P (A ∧ B) = 0.
Correspondingly, E(A|B) = E(A|B) = 0.

(b) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[; P (A ∧ B) = 0.
Here E(A|B) ∈]0, 1[, E(A|B) = 0.

(c) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[; P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.
Then, E(A|B), E(A|B) ∈]0, 1[.

(d) P (Ac ∧ B) = 0; P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.
Then, E(A|B) ∈]0, 1[, E(A|B) = 1.

(e) P (Ac ∧ B) = 0.
Correspondingly, E(A|B) = E(A|B) = 1.

(f) P (Ac ∧ B) = P (A ∧ B) = 0.
Here E(A|B) = 0, E(A|B) = 1.

Lemma 3. If P (B) > 0 and A is an extreme event, then (24) occurs trivially.

Proof. If P (A) = P (A) = 0, then P (A ∧ B) = 0 by monotonicity, and from (a)
above E(A|B) = E(A|B) = 0 too. If P (A) = P (A) = 1, then P (Ac) = P (Ac) =
0, hence P (Ac ∧ B) = 0 and E(A|B) = E(A|B) = 1 from (e) above. ��
We still have to establish whether (24) holds assuming that P (B) > 0 and A is
a non-extreme event. Trivially, (24) holds in case (f), while it does not in cases
(a), (e). To see what happens in the remaining instances, let us prove that

Proposition 6. Given a coherent NL model (P , P ), let B ∈ A(IP ), P (B) > 0,
and A ∈ A(IP ), A non-extreme.

(i) If P (A ∧ B), P (Ac ∧ B) ∈]0, 1[, then

E(A|B) ≤ P (A) iff either P0(Bc) = 0 or P (A) ≤ P0(A|Bc).
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(ii) If P (Ac ∧ B), P (A ∧ B) ∈]0, 1[, then

E(A|B) ≥ P (A) iff either P0(Bc) = 0 or P (A) ≥ P0(A|Bc).

Proof. (i) By monotonicity, P (A) ≥ P (A ∧ B) > 0, and P (A) < 1 because
P (A) ≤ P (A ∨ Bc) < 1, the latter inequality holding since (by conjugacy)
P (A ∨ Bc) ∈]0, 1[ iff P (Ac ∧ B) ∈]0, 1[. Which is assumed to be true. Therefore,
by (5), P (A) = bP0(A) + a, while E(A|B) is given by the second line in (16).
Hence,

E(A|B) ≤ P (A) iff
bP0(A ∧ B) + a

bP0(B) + 1 − b
≤ bP0(A) + a. (25)

With some algebraic manipulations on the right-hand side of (25), noting that
by assumption and (2), (5), (6), (7) we have that 0 < P (B) ≤ P (Ac ∧ B) +
P (A ∧ B) = bP0(B) + 1 − b, we obtain

bP0(A ∧ B) + a

bP0(B) + 1 − b
≤ bP0(A) + a iff

bP0(A ∧ B) + a ≤ b2P0(A)(−P0(Bc)) + ab(−P0(Bc)) + bP0(A) + a iff
P0(Bc)(bP0(A)+a) ≤ P0(A) − P0(A ∧ B) = P0(A ∧ Bc) iff

P0(Bc) = 0 or (P0(Bc) > 0 and) bP0(A) + a ≤ P0(A ∧ Bc)
P0(Bc)

= P0(A|Bc),

which proves (i).
(ii) It can be obtained in a very similar way or directly by conjugacy. ��

From Proposition 6, and recalling (15), (16), it follows straightforwardly that

Proposition 7. Let (P , P ) be a coherent NL model on A(IP ), B ∈ A(IP ),
P (B) > 0. For A ∈ A(IP ), A non-extreme, Eq. (24) holds iff

P (Ac ∧ B) = P (A ∧ B) = 0 or P0(Bc) = 0 or P (A) ≤ P0(A|Bc) ≤ P (A). (26)

The left (right) inequality does not apply if E(A|B) = 0 (if E(A|B) = 1).

The previous results pave the way to considerations on dilation with NL models.
When discussing dilation [2,7], we consider a partition B of non-impossible events
and say that (weak) dilation occurs, with respect to A and B, when

E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B), ∀B ∈ B. (27)

Recall that an event A is logically non-independent of a partition B iff ∃B ∈
B\{∅} such that either B ⇒ A or B ⇒ Ac, logically independent of B otherwise.

We can now introduce several results concerning dilation.

Proposition 8. Let (P , P ) be a coherent NL model on A(IP ), A ∈ A(IP ), B ⊂
A(IP ) \ {∅} a partition.

(j) If A is a non-extreme event logically non-independent of B, dilation does not
occur.
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(jj) If A is an extreme event logically independent of B, dilation occurs.

Proof. (j) Take B ∈ B such that either B ⇒ A or B ⇒ Ac. If P (B) = 0, (24)
does not occur by Lemma 2, either (b0) or (c0). If P (B) > 0, because of the
logical non-independence hypothesis, either A ∧ B = ∅ or Ac ∧ B = ∅, hence
either B = Ac ∧ B or B = A ∧ B, respectively. This rules out case (f), as
assuming it would imply here P (B) = 0. Actually, recalling that A is non-
extreme, case (a) or (e) applies, and (24) does not occur. Thus, the dilation
condition (27) is not satisfied.

(jj) Follows from Lemma 2, (a0) when P (B) = 0, from Lemma 3 otherwise. ��
Dilation is characterised for a non-extreme event A, logically independent of

B, as follows:

Proposition 9. Given a coherent NL model (P , P ) on A(IP ), a partition B ⊂
A(IP ) \ {∅} and A ∈ A(IP ) non-extreme and logically independent of B, dilation
occurs (w.r.t. A, B) iff, ∀B ∈ B such that P (B) > 0, (26) holds, where the left
(right) inequality does not apply if E(A|B) = 0 (if E(A|B) = 1).

Proof. We need not consider those B ∈ B such that P (B) = 0, if any: by
Lemma 2, (a0) they ensure (24). For the others apply Proposition 7. ��
We derive now an interesting sufficient condition for dilation with a VBM,
extending an analogous property of a PMM [7, Corollary 2].

Proposition 10. Dilation for a non-extreme event A, logically independent of
partition B, occurs in a VBM if

P0(A ∧ B) = P0(A) · P0(B), ∀B ∈ B. (28)

Proof. If P (B) = 0, apply Lemma 2, (a0). Otherwise, by Proposition 7, we have
to check that, when P0(Bc) > 0, P (A) ≤ P0(A|Bc) ≤ P (A) holds. Now, if
P (B) > 0, then necessarily by (5) bP0(B) + a > 0, hence P0(B) > 0, because
a ≤ 0 in a VBM. Further, if (28) holds, then P0(A ∧ Bc) = P0(A) · P0(Bc),
hence for those B ∈ B such that P0(Bc) > 0, also P0(A|Bc) = P0(A). Thus, the
condition to check boils down to P (A) ≤ P0(A) ≤ P (A), which always applies
for a VBM. ��
Note that dilation occurs if event A in Proposition 10 is P0-non-correlated with
any B ∈ B.

5 Conclusions

Among coherent NL models, VBMs ensure the property of being stable with
conditioning, as also do several known submodels of theirs, such as the PMM.
This implies also that results found in [5] on natural extensions of (uncondi-
tional) VBMs to gambles still apply here to conditional gambles X|B defined on
the conditional partition IP |B = {ω|B : ω ∈ IP}. By contrast, those HBMs that
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are coherent are generally not stable, thus these models confirm their weaker
properties, in comparison with VBMs, already pointed out, from other perspec-
tives, in [1]. Concerning dilation of A w.r.t. partition B, we have seen that it
may depend on more conditions, such as whether A is extreme or not, or it
is logically independent of B or not, and we supplied several results. In future
work, we plan to study the regular extension [10, Appendix J] of coherent NL
models, determining how its being less conservative than the natural extension
may limit extreme evaluations, as well as dilation. Concepts related to dilation
and not presented here are also discussed in [2] for the ε-contamination and the
Total Variation models, among others. The assumptions in [2] are usually less
general than the present framework. The role of these notions within NL models
is still to be investigated.
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