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Abstract. We consider objects associated with a fuzzy set-based rep-
resentation. By using a classic method of measurement theory, we char-
acterize dissimilarity relations agreeing with a particular class of fuzzy
dissimilarity measures. Dissimilarity measures in the considered class are
those only depending on the attribute-wise distance of fuzzy description
profiles. In particular, we analyze the subclass of weighted Manhattan
dissimilarity measures.
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1 Introduction

Many situations in daily life or in science need to distinguish between sev-
eral objects. Therefore, similarity and dissimilarity measures are important to
evaluate a degree of resemblance between two or more objects. Many similar-
ity/dissimilarity measures are available in the literature and the choice of one
of them is done each time two images, cases, objects, situations, texts or data
must be compared.

We are interested in measuring the similarity/dissimilarity of general objects
characterized by a profile formed by a finite number of attributes or features.
Then any object is identified by a vector which is binary (if the features can
only belong or not to the object) or, as it has been more recently preferred, with
elements in [0, 1] (if a partial degree of membership is accepted). In this setting,
one can simply compare the vectors, rather than the objects themselves. For that,
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many papers on this subject present in the literature (see for instance [5,7,10])
discuss about the opportunity of considering as dissimilarity measure a (pseudo)
distance function or a measure of comparison, as studied in [1] generalizing
Tversky’s contrast model [11] (for a general parametrised form, see [5]). Usually
the comparison is made for a particular environment and “a posteriori” (on the
basis of the obtained results), focusing on one or more specific properties.

With the purpose to provide conscious reasons to use a particular similarity
measure on the basis of the semantics behind this choice, in [2–4] we charac-
terized two classes of similarity measures using the paradigm of measurement
theory. These classes are very large and contain as particular cases almost all the
known measures in the sense of Tversky’s contrast model and its generalizations.
The study starts from the concept of comparative similarity and provides the
conditions related to the primitive idea of similarity which are accepted when
choosing a measure of this class.

The aim of this paper is to make an equivalent study for dissimilarity mea-
sures which only depend on the distances between the degrees of membership
of two objects, related to any feature. This class contains many distances (for
instance, the Manhattan distance, the Minkowski distance, and the weighted
Euclidean distance). The particular subclass of the weighted Manhattan dis-
tance (depending on a vector of parameters) is then considered and is completely
characterized by the comparative dissimilarity agreeing with one element of such
class.

2 Preliminaries

Let H be a set of p attributes hk, (k ∈ I = {1, . . . , p}), each of which being
present in an object with a degree of membership μk(·) ∈ [0, 1].

Assume that the attributes in H are ordered increasingly according to indices
in I. Let Y = [0, 1]p be the set of all fuzzy description profiles: objects are
identified through vectors X = (x1, . . . , xp) ∈ Y, where xi ∈ [0, 1] expresses the
degree of membership of attribute i in the considered object. In other words,
fuzzy description profiles in Y can be regarded as membership functions of fuzzy
subsets of the ordered set H of p attributes. Let us stress that Y is endowed with
the partial order relation ≤ defined component-wise.

Since the attributes can be expressed by a vague characterization, we can
regard each of them as a fuzzy subset of a corresponding hidden variable. So
each X ∈ Y is a projection of the Cartesian product of p possibly fuzzy subsets
of p variables. For instance if the attributes h1 and h2 represent a person as
“old” and “fat”, every X = (x1, x2) is a projection of the Cartesian product
of the fuzzy sets “old” and “fat” of variables “age” and “weight”, both taking
values in R.

We denote by X ⊂ Y the set of crisp description profiles, i.e., X = {0, 1}p,
and for any X ∈ Y, we consider the support sX = {i : xi > 0}, so, in particular,
0 is the fuzzy description profile with sX = ∅. More generally, if ε ∈ [0, 1], then
ε denotes the element of Y whose components are all equal to ε.
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For every 0 ≤ δ ≤ xi and 0 ≤ η ≤ 1 − xi we denote by x−δ
i the value

xi − δ, and by xη
i the value xi + η, and consider the elements of Y: X−δ

k =
(x1, . . . , x

−δ
k , . . . , xp), and Xη

k = (x1, . . . , x
η
k, . . . , xp).

Given X,Y ∈ Y, we denote by U = |X − Y | the element of Y whose k-th
component is uk = |xk − yk|, while W = Xc is the element of Y, whose k-th
component is wk = 1 − xk, which is referred to as the complement of X.

Let us now consider a comparative dissimilarity that is a binary relation �
on Y2, with the following meaning: for all X,Y,X ′, Y ′ ∈ Y, (X,Y ) � (X ′, Y ′)
means that X is no more dissimilar to Y than X ′ is dissimilar to Y ′.

The relations ∼ and ≺ are then induced by � in the usual way: (X,Y ) ∼
(X ′, Y ′) stands for (X,Y ) � (X ′, Y ′) and (X ′, Y ′) � (X,Y ), while (X,Y ) ≺
(X ′, Y ′) stands for (X,Y ) � (X ′, Y ′) and not (X ′, Y ′) � (X,Y ).

If � is assumed to be complete, then ∼ and ≺ are the symmetric and the
asymmetric parts of �, respectively.

Definition 1. Let � be a comparative dissimilarity and D : Y2 → R a
dissimilarity measure. We say that D represents � if and only if, for all
(X,Y ), (X ′, Y ′) ∈ Y2, it holds that{

(X,Y ) � (X ′, Y ′) =⇒ D(X,Y ) ≤ D(X ′, Y ′),

(X,Y ) ≺ (X ′, Y ′) =⇒ D(X,Y ) < D(X ′, Y ′).

As is well-known, if � is complete, the above conditions can be summarized
as follows:

(X,Y ) � (X ′, Y ′) ⇐⇒ D(X,Y ) ≤ D(X ′, Y ′).

3 Basic Axioms

Given a comparative dissimilarity relation � on Y2, in the following we propose
a set of axioms that reveal to be necessary and sufficient for � to have a dissim-
ilarity measure representation inside a suitable class of dissimilarity measures.

(FD0) � is a weak order on Y2 (i.e., it is a complete and transitive binary
relation on Y2).

We note that the completeness of relation � can be removed and required
only in some specific cases: we assume it for simplicity.

The next axiom requires the comparative degree of dissimilarity to be inde-
pendent of the common increment of presence/absence of the features in the
objects of a pair. In fact, what is discriminant is the difference between the
membership degrees of each feature.

(FD1) For all X,Y ∈ Y, for all k ∈ I, for all ε ≤ min(xk, yk), it holds:

(X,Y ) ∼ (X−ε
k , Y −ε

k ).
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The next example shows a situation of three pairs that the axioms (FD0)
and (FD1) require to be equivalent.

Example 1. Let us consider a comparative dissimilarity among apartments in
New York, described by the following attributes:

– a = it is small;
– b = it is centrally located;
– c = it has a modern kitchen;
– d = it has a panoramic view;
– e = it is near a metro station.

Given the fuzzy description profiles below, axioms (FD0) and (FD1) require
that one must retain (X,Y ) ∼ (X ′, Y ′) ∼ (X ′′, Y ′′).

H a b c d e
X 0.5 0.4 0.9 0.6 0.1
Y 0.4 0.8 0.3 0.8 0.2
X ′ 0.3 0.2 0.6 0.2 0.05
Y ′ 0.2 0.6 0.2 0.4 0.15
X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1

The next axiom is a local strong form of symmetry.

(FD2) For all X,Y ∈ Y, for all k ∈ I, denoting X ′
k = (x1, . . . , yk, . . . , xp) and

Y ′
k = (y1, . . . , xk, . . . , yp), it holds:

(X,Y ) ∼ (X ′
k, Y ′

k).

Example 2. Refer to the features in Example 1 and consider the fuzzy description
profiles below.

H a b c d e
X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1
X ′′′ 0.1 0.4 0.6 0.2 0.1
Y ′′′ 0 0 0 0 0

Accepting axioms (FD0) and (FD2) implies to set (X ′′, Y ′′) ∼ (X ′′′, Y ′′′).

As the following proposition shows, for a transitive complete relation, local
symmetry implies symmetry. We note that the transitivity is necessary and that
the converse does not hold.

Proposition 1. Let � a comparative dissimilarity on Y2. If � satisfies axioms
(FD0) and (FD2), then, for every X,Y ∈ Y one has: (X,Y ) ∼ (Y,X).

Proof. The proof trivially follows by applying at most p times (FD2) and
(FD0). �
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The next proposition shows that under axioms (FD0) and (FD1), all pairs
of identical fuzzy description profiles are equivalent.

Proposition 2. Let � be a comparative dissimilarity on Y2. If � satisfies
axioms (FD0) and (FD1), then for every X ∈ Y one has: (1, 1) ∼ (X,X) ∼
(0, 0).

Proof. For every X ∈ Y, in particular X = 1, apply p times axiom (FD1) taking
ε = xk and then use (FD0). �

The following axiom is a boundary condition. It provides a natural left lim-
itation: “the elements of each pair (X,Y ) are at least dissimilar to each other
as an element of the pair is from itself”. On the other hand, for the right limi-
tation it is not enough to refer to any pair (X,Xc) formed by a profile and its
complement, but it is required that the profile X is crisp, or equivalently that
the supports of X and Xc are disjoint.

(FD3)
a) for every X,Y ∈ Y,

(X,X) � (X,Y ) and (Y, Y ) � (X,Y ),
b) for every X ∈ X and Y ∈ Y,

1) (X,Y ) � (X,Xc),
2) if (Y,Z) � (Y, Y c) for any Z ∈ Y, then Y ∈ X .

The following is a monotonicity axiom.

(FD4) For all X,Y ∈ Y, for all k ∈ I, such that xk ≤ yk, for all 0 < ε ≤ xk and
0 < η ≤ 1 − yk, it holds:

(X,Y ) � (X−ε
k , Y ) and (X,Y ) � (X,Y η

k ).

The following Theorem 1 shows that the introduced axioms are necessarily
satisfied by any comparative dissimilarity agreeing with a dissimilarity measure,
taking into account the distances of the degree of membership of each feature in
the compared fuzzy description profiles. The same axioms become necessary and
sufficient together with the following structural axiom (Q), known as Debreu’s
condition [6], which assures the representability of a weak order � by a real
function.

(Q) There is a countable ≺-dense set Z ⊆ Y2 (i.e., for all (X,Y ), (X ′, Y ′) ∈ Y2,
with (X,Y ) ≺ (X ′, Y ′), there exists (X ′′, Y ′′) ∈ Z, such that (X,Y ) ≺
(X ′′, Y ′′) ≺ (X ′, Y ′)).

We need to precise that we adopt as fuzzy inclusion the classic concept intro-
duced by Zadeh [12], as follows: if X,Y are fuzzy sets of a set C = {z1, . . . , zn},
then

X ⊆ Y if and only if μX(zk) ≤ μY (zk) for every zk ∈ C. (1)

In particular, in our case, we have that X ⊆ Y if and only if every component
of X is smaller than or equal to the same component of Y , i.e. every attribute
is no more present in X than it is in Y . So, X ⊆ Y can be written as X ≤ Y ,
where the inequality is component-wise.
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Theorem 1. Let � be a comparative dissimilarity relation on Y2. Then, the
following statements are equivalent:

(i) � satisfies (FD0)–(FD4) and (Q);
(ii) there exists a function (unique under increasing transformations) Φ : Y2 →

[0, 1] representing � in the sense of Definition 1 and a function ϕ : Y → R

such that:
a) Z ⊆ Z ′ =⇒ ϕ(Z) ≤ ϕ(Z ′), for every Z,Z ′ ∈ Y;
b) ϕ(0) = 0, and ϕ(1) = 1;
c) for all X,Y ∈ Y:

Φ(X,Y ) = Φ(|X − Y |, 0) = ϕ(|X − Y |).
Proof. We first prove that (i) =⇒ (ii). Axioms (FD0) and (Q) are sufficient
conditions for the existence of a function Φ : Y2 → [0, 1] representing � [8].
Now, applying at most p times (FD1) with ε = min(xi, yi) and at most p

2 times
(FD2) we get, by (FD0), that (X,Y ) ∼ (|X − Y |, 0). Then, since Φ represents
� we have Φ(X,Y ) = Φ(|X −Y |, 0). Thus it is sufficient to define, for all Z ∈ Y,
ϕ(Z) = Φ(Z, 0).

We now prove the validity of statement a) of condition (ii). Let Z = |X−Y | ⊆
Z ′ = |X ′ − Y ′|. Among the pairs respectively equivalent to (Z, 0) and (Z ′, 0)
there are two pairs in the hypotheses of axiom (FD4) for at least one index.
So, from (FD4) condition a) follows. Condition b) follows by axiom (FD3), by
considering that |X − Y | = 0 is obtained if and only if X = Y and |X − Y | = 1
is obtained if and only if X = Y and Y = Xc and X ∈ X . Then it is sufficient
to recall that Φ is unique under increasing transformations.

Let us consider now the implication (ii) =⇒ (i). Every binary relation � rep-
resentable by a real function satisfies axiom (FD0) and (Q) [8]. We must prove
that � satisfies axioms (FD1)–(FD4): taking into account representability of
� by Φ we deduce that condition c) in (ii) implies (FD1) and (FD2) whereas
condition a) implies (FD3). To prove axiom (FD4) it is sufficient to consider
that Φ assigns 1 to all and only the elements of the equivalence class of (1, 0),
i.e. only to the pairs (X,Xc) with X ∈ X . Similarly, Φ assigns 0 to all and only
the elements of the equivalence class of (0, 0), i.e. to the pairs (X,X) for every
X ∈ Y. �

4 Representation by a Weighted Manhattan Distance

Condition (ii) of Theorem 1 identifies a too wide and therefore too general class
of functions. In the following we will study the relations representable by the
elements of a particular subclass of functions Φ that is the class of the weighted
Manhattan distances.

Definition 2. A weighted Manhattan distance is a function Dα : Y2 → R

parameterized by α = (α1, . . . , αp) with αk ≥ 0 and
∑p

k=1 αk = 1, defined, for
every X,Y ∈ Y, as

Dα (X,Y ) =
p∑

k=1

αk|xk − yk|.
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The next axiom will represent “the constraint accepted” to obtain that the
function representing our comparative dissimilarity � belongs to this particular
subclass.

4.1 Rationality Principle

(R) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y

′
1), . . . , (X ′

n, Y ′
n) ∈ Y2

with (Xi, Yi) � (X ′
i, Y

′
i ), i = 1, . . . , n, for all λ1, . . . , λn > 0 it holds:

n∑
i=1

λi|X ′
i − Y ′

i | ≤
n∑

i=1

λi|Xi − Yi| =⇒ (Xi, Yi) ∼ (X ′
i, Y

′
i ), i = 1, . . . , n.

The above axiom has an easy interpretation. First of all it requires to evaluate
as equally dissimilar every pairs (X,Y ) and (|X − Y |, 0). Moreover, it asserts
that if you have n pairs (Xi, Yi) of fuzzy profiles and you judge the elements of
each of them no more dissimilar than those of other n pairs (X ′

i, Y
′
i ), with at

least a strict comparison, combining in a positive linear combination the first
and the second you cannot obtain two vectors Z and Z ′ such that the fuzzy
description profiles W = Z∑n

i=1 λi
and W ′ = Z′

∑n
i=1 λi

satisfy W ′ ≤ W .
In the next example we provide a comparative dissimilarity assessment which

violates the above rationality principle.

Example 3. Referring to the features in Example 1, let us consider the following
profiles:

H a b c d e
X1 1/2 1 1/4 3/4 1/10
Y1 1/2 2/3 1/4 1/2 1/10
X2 1 1 1/6 1/2 1/2
Y2 1/2 1 1/6 1/2 1/2
X3 2/3 2/3 1/3 0 1/4
Y3 1/6 1 1/3 0 1/4
X4 1/8 1 1/2 1/2 0
Y4 1/8 1 1/3 1/4 0
X5 1 1/8 0 0 1
Y5 1/2 1/8 0 1/4 1
X6 0 1/2 1/3 0 0
Y6 0 1/6 1/3 0 2/3
X7 1/4 1/6 1/6 1 1/3
Y7 1/4 1/6 0 1 1
X8 0 1/3 1/4 3/4 0
Y8 1/2 0 1/4 1/2 0

Suppose now to assign the following reasonable relation: (X1, Y1) ≺ (X2, Y2),
(X3, Y3) ≺ (X4, Y4), (X5, Y5) ≺ (X6, Y6), (X7, Y7) ≺ (X8, Y8).
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It is easy to prove that the relation violates axiom (R). By trivial computa-
tions, taking all λi’s equal to 1, one obtains

|X1 − Y1| + |X3 − Y3| + |X5 − Y5| + |X7 − Y7| = (1, 2/3, 1/6, 1/2, 2/3) =
|X2 − Y2| + |X4 − Y4| + |X6 − Y6| + |X8 − Y8|.

The next theorem shows that, for a complete �, condition (R) implies all
the axioms from (FD0) to (FD4). Nevertheless, since condition (R) deals with
finite sets of pairs, condition (Q) is not guaranteed to hold, so (R) does not
assure representability of � on the whole Y2.

Theorem 2. Let � be a complete comparative dissimilarity relation on Y2 sat-
isfying (R). Then � is transitive and axioms (FD1)–(FD4) hold.

Proof. To prove transitivity suppose that we have (X,Y ) � (X ′, Y ′), (X ′, Y ′) �
(X ′′, Y ′′) and (X ′′, Y ′′) ≺ (X,Y ). Then we have

|X − Y | + |X ′ − Y ′| + |X ′′ − Y ′′| = |X ′ − Y ′| + |X ′′ − Y ′′| + |X − Y |,
contradicting (R). The proof of the other cases is similar.

To prove (FD1) and (FD2) it is sufficient to note that |X − Y | = |X−ε
k −

Y −ε
k | = |X ′

k−Y ′
k|. Condition a) of (FD3) follows immediately from the inequality

|0| = |X − X| = |Y − Y | ≤ |X − Y |. To prove condition b) let us consider that
for all and only X ∈ X one has |X − Xc| = 1 ≥ |X − Y |. Similar considerations
prove (FD4). �

4.2 Representability Theorems

In the following we consider nontrivial relations �, i.e., we assume that there
exist (X,Y ), (X ′, Y ′) with (X,Y ) ≺ (X ′, Y ′).

Theorem 3. Let � be a nontrivial complete comparative dissimilarity relation
on a finite F ⊂ Y2. Then, the following statements are equivalent:

(i) � satisfies (R);
(ii) there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and

∑p
k=1 αk = 1

such that, for all (X,Y ), (X ′Y ′) ∈ F , it holds that

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′).

Proof. Since F is finite, the binary relation � amounts to a finite number of
comparisons. Consider the sets

S = {((X,Y ), (X ′, Y ′)) ∈ Y2 : (X,Y ) ≺ (X ′, Y ′)},

W = {((X,Y ), (X ′, Y ′)) ∈ Y2 \ S : (X,Y ) � (X ′, Y ′)},

with s = cardS and w = card W, and fix two enumerations S =
{((Xj , Yj), (X ′

j , Y
′
j ))}j∈J and W = {((Xh, Yh), (X ′

h, Y ′
h))}h∈H with J =

{1, . . . , s} and H = {1, . . . , w}.
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Condition (ii) is equivalent to the solvability of the following linear system⎧⎨
⎩

Aβ > 0,
Bβ ≥ 0,
β ≥ 0,

with unknown β ∈ R
p×1, and A ∈ R

s×p and B ∈ R
w×p, where the s rows of A

are the vectors |X ′
j −Y ′

j |− |Xj −Yj |, for all j ∈ J , while the w rows of B are the
vectors |X ′

h − Y ′
h| − |Xh − Yh|, for all h ∈ H. Indeed, if we have a weight vector

α satisfying (ii), then setting β = αT we get a solution of the above system. On
the converse, if β is a solution of the above system, then defining αk = βk∑p

i=1 βi
,

we get a weight vector α satisfying (ii).
By the Motzkin theorem of the alternative [9], the solvability of the above

system is equivalent to the non-solvability of the following system⎧⎨
⎩

μA + νB ≤ 0,
μ,ν ≥ 0,
μ = 0,

with unknowns μ ∈ R
1×s and ν ∈ R

1×w. In particular, the first inequality
reduces to∑

j∈J

μj(|X ′
j − Y ′

j | − |Xj − Yj |) +
∑
h∈H

νh(|X ′
h − Y ′

h| − |Xh − Yh|) ≤ 0,

thus the non-solvability of the above system is equivalent to condition (R). �

Remark 1. We note that, in the hypotheses of previous theorem, if
(X,Y ), (X ′, Y ′) ∈ F and it holds |X − Y | < |X ′ − Y ′| then it must be (X,Y ) ≺
(X ′, Y ′). In particular, if (0, 0), (1, 0) ∈ F , then it must be (0, 0) ≺ (1, 0).

Consider now the case where � is a nontrivial complete relation on Y2. In this
case, axiom (R) is not sufficient to assure representability of � by a dissimilarity
measure Dα on the whole Y2. Indeed, axiom (R) guarantees representability
only on every finite subset Y2, by virtue of Theorem 3. This implies that the
parameter α characterizing Dα depends on the particular finite subset F . To
remedy this problem it is necessary to introduce a further axiom which requires
that in each equivalence class (|X − Y |, 0) there must be one pair (ε, 0).

(FD5) For all (X,Y ) ∈ Y2 there exists ε ∈ [0, 1], such that (X,Y ) ∼ (ε, 0).

Theorem 4. Let � be a nontrivial complete comparative dissimilarity relation
on Y2. Then, the following statements are equivalent:

(i) � satisfies (R) and (FD5);
(ii) there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and

∑p
k=1 αk = 1

such that, for all (X,Y ), (X ′Y ′) ∈ Y2, it holds

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′).
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Moreover, the weight vector α is unique.

Proof. The implication (ii) =⇒ (i) is easily proven, therefore we only prove (i)
=⇒ (ii).

For every finite F ⊂ Y2 such that the restriction of � to F is nontrivial, The-
orem 3 implies the existence of a weight vector αF = (αF

1 , . . . , αF
p ) with αF

k ≥ 0
and

∑p
k=1 αF

k = 1, such that the corresponding DαF represents the restriction
of � to F . Notice that, by Remark 1 every finite subset of Y2 containing (0, 0)
and (1, 0) meets nontriviality, as it must be (0, 0) ≺ (1, 0).

Next, axiom (FD5) implies that, for all (X,Y ) ∈ Y2, there exists ε(X,Y ) ∈
[0, 1], such that (X,Y ) ∼ (ε(X,Y ), 0). In particular, denoting by Ek the element
of Y whose k-th component is 1 and the others are 0, we have that there exists
αk ∈ [0, 1] such that (Ek, 0) ∼ (αk, 0). Now, for every (X,Y ), (X ′, Y ′) ∈ Y2 we
consider the finite subset of Y2

F = {(X,Y ), (X ′, Y ′), (ε(X,Y ), 0), (ε(X′,Y ′), 0),

(E1, 0), . . . , (Ep, 0), (α1, 0), . . . , (αp, 0), (0, 0), (1, 0)}.

By the previous point we have that there is a weight vector αF = (αF
1 , . . . , αF

p )
with αF

k ≥ 0 and
∑p

k=1 αF
k = 1 such that

(X,Y ) � (X ′, Y ′) ⇐⇒ DαF (X,Y ) ≤ DαF (X ′, Y ′),
(X,Y ) ∼ (ε(X,Y ), 0) ⇐⇒ DαF (X,Y ) = DαF (ε(X,Y ), 0) = ε(X,Y ),

(X ′, Y ′) ∼ (ε(X′,Y ′), 0) ⇐⇒ DαF (X ′, Y ′) = DαF (ε(X′,Y ′), 0) = ε(X′,Y ′).

Moreover, for all k = 1, . . . , p, we have

(Ek, 0) ∼ (αk, 0) ⇐⇒ DαF (Ek, 0) = αF
k = αk = DαF (αk, 0),

thus we get

ε(X,Y ) =
p∑

k=1

αk|xk − yk| and ε(X′,Y ′) =
p∑

k=1

αk|x′
k − y′

k|.

Hence, there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and
∑p

k=1 αk =
1 such that, for all (X,Y ), (X ′Y ′) ∈ Y2, it holds that

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′),

and such weight vector is unique. Indeed, suppose there exists α′ = (α′
1, . . . , α

′
p)

with α′
k ≥ 0 and

∑p
k=1 α′

k = 1, such that Dα ′ represents � on the whole Y2 and
α′ = α. For k = 1, . . . , p, it holds that

(Ek, 0) ∼ (αk, 0) ⇐⇒ Dα ′(Ek, 0) = α′
k = αk = Dα ′(αk, 0),

reaching in this way a contradiction. �
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5 Conclusions

In this paper we characterize comparative dissimilarities on fuzzy description
profiles, representable by elements of a class of dissimilarity measures only
depending on the attribute-wise distance. This very large class contains all Lp

distances and, in particular, the weighted Manhattan distances. Then, we char-
acterize comparative dissimilarities representable by the latter subclass. Our aim
for future research is to provide a characterization of comparative dissimilarities
representable by other distinguished subclasses.
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