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Abstract. The main property of disjunction is substitutability, i.e., the
fully satisfied predicate substitutes the rejected one. But, in many real–
world cases disjunction is expressed as the fusion of full and optional
alternatives, which is expressed as OR ELSE connective. Generally, this
logical connective provides a solution lower than or equal to the MAX
operator, and higher than or equal to the projection of the full alter-
native, i.e., the solution does not go below any averaging function and
above MAX function. Therefore, the optional alternative does not influ-
ence the solution when it is satisfied with a degree lower than the degree
of full alternative. In this work, we propose further generalization by
other disjunctive functions in order to allow upward reinforcement of
asymmetric disjunction. Finally, the obtained results are illustrated and
discussed.

Keywords: Asymmetric disjunction · Averaging functions ·
Probabilistic sum · �Lukasiewicz t–conorm · Generalization · Upward
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1 Introduction

One of the key properties of disjunction is commutativity, i.e., the order of
predicates is irrelevant. The full substitutability means that at least one predicate
should be met [7]. In technical systems, it is a desirable property, because if one
unit fails, the others substitute its functionality. But, in evaluating records from
a large data set, a larger number of records might be selected and moreover a
significant proportion of them might get the ideal evaluation score. An example is
searching for a house which has spacious basement or spacious attic or suitable
tool–shed for storing the less–frequently used items. Such query might lead to
the over–abundant answer problem. This problem was discussed in [3], where
several solutions have been proposed. People often consider disjunction as the
left–right order of predicates (alternatives), that is, the first predicate is the full
alternative, whereas the other ones are less relevant options [10,13], or formally
P1 OR ELSE P2 OR ELSE P3.
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In the above example, predicates might not be the equal substitutes for a
particular house buyer. In such cases, the substitutability should be more restric-
tive. If an entity fails to meet the first predicate, but meets the second one, it
is still considered as a solution, but as a non–ideal one (the evaluation degree
should be lower than the ideal value, usually denoted as 1). This observation
leads to the intensified disjunction. The literature offers two approaches: bipolar
and asymmetric. The bipolar form of OR ELSE connective consists of the pos-
itive pole, which expresses the perfect values (full alternative) and the negative
pole expressing the acceptable values. This approach has been examined in, e.g.,
[4,12].

In this work, the focus is on the latter. Asymmetric disjunction has been
proposed by Bosc and Pivert [2], where authors suggested weighted arithmetic
mean for reducing the strength of substitutability of the optional alternative. The
axiomatization of averaging functions for covering a larger scale of possibilities
for disjunctive asymmetric behaviour is proposed by Hudec and Mesiar [9]. This
work goes further by examining possibilities for replacing MAX function by any
disjunctive function and therefore extending asymmetric disjunction to cover
diverse managerial evaluation tasks based on the disjunctive principle of human
reasoning.

The structure of paper is as follows: Sect. 2 provides the preliminaries of
aggregation functions. Section 3 is dedicated to the formalization of averaging
and disjunctive functions in OR ELSE, whereas Sect. 4 discusses the results, and
emphasizes strengths and weak points. Finally, Sect. 5 concludes the paper.

2 Preliminaries of Aggregation Functions

Disjunction belongs to the large class of aggregation functions, i.e., functions
A : [0, 1]n → [0, 1] which are monotone and satisfy the boundary conditions
A(0, ..., 0) = 0 and A(1, ..., 1) = 1, n ∈ N. The standard classification of aggrega-
tion functions is due to Dubois and Prade [6]. Namely, conjunctive aggregation
functions are characterized by A(x) ≤ min(x), disjunctive by A(x) ≥ max(x),
averaging by min(x) ≤ A(x) ≤ max(x), and remaining aggregation functions
are called mixed, where x is a vector, x = (x1, ..., xn).

In this work, we denote by Av averaging aggregation functions, and by Dis
disjunctive aggregation functions. More, Av2 is the set of bivariate averaging
functions, whereas Dis2 represents the set of bivariate disjunctive functions.
Note that if the arity of a considered aggregation is clear (mostly n = 2), we will
use notation Av instead of Av2, and Dis instead of Dis2.

The extremal elements of Av2 are MAX (which is also called Zadeh’s dis-
junction, OR operator) and MIN (Zadeh’s conjunction, AND operator). To
characterize the disjunctive (conjunctive) attitude of members of Av2, one can
consider the ORNESS measure ORNESS : Av2 → [0, 1] given by

ORNESS(A) = 3 ·
∫ 1

0

∫ 1

0

A(x, y) dy dx − 1 (1)
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Fig. 1. An illustrative example of aggregation functions.

Analogously, the ANDNESS measure ANDNESS : Av2 → [0, 1] character-
izes the conjunctive attitude by

ANDNESS(A) = 2 − 3 ·
∫ 1

0

∫ 1

0

A(x, y) dy dx (2)

More details regarding these measures can be found in, e.g., [8,11]. Obviously,
the disjunctive attitude of MAX is equal to 1, whereas the conjunctive attitude
of MAX is 0. The opposite holds for MIN.

The arithmetic mean is an element of Av having the full compensation effect,
or neutrality [7] (ORNESS and ANDNESS measures are equal to 0.5). There-
fore, the remaining elements of Av have either partial disjunctive or partial
conjunctive behaviour.

The extremal elements of Dis are MAX and drastic sum

SDS(x, y) =
{

max(x, y) for min(x, y) = 0
1 otherwise

where MAX is the only idempotent element. The other elements have upward
reinforcement property [1], like probabilistic sum

SP (x, y) = x + y − xy

and �Lukasiewicz t–conorm

SL(x, y) = min 1, x + y

used in this work.
Analogously, the extremal elements of the set of conjunctive functions (Con)

are drastic product and MIN, where MIN is the only idempotent element. The
other elements have downward reinforcement property.

These observations for the symmetric case are illustrated in Fig. 1, where
predicate P1 is satisfied with 0.8 (x = 0.8) and predicate P2 with 0.2 (y = 0.2).
Generally, P1 and P2 can be any kind of predicates (elementary, compound,
quantified, etc.). Just as reminder, geometric mean is G(x, y) =

√
xy, arithmetic

mean is W = 1
2 (x + y) and quadratic mean is Q(x, y) =

√
0.5x2 + 0.5y2.



438 M. Hudec and R. Mesiar

3 Asymmetric Disjunction

In asymmetric disjunction the first predicate is full alternative, whereas the other
ones are optional. An illustrative example is the requirement: “buy broccoli or
else cauliflower” [9]. If we find neither broccoli nor cauliflower, the score is 0. If
we find both, the score is 1. If we find only broccoli, the score is 1. Finally, if we
find only cauliflower, the score should be less than 1, but better than 0. Thus,
the last option should be managed by an element of Av2, whereas the other
options by an element of Dis2 and therefore we should aggregate both cases.

Contrary, in the frame of two–valued logic, the left–right order of predicates
has been solved by the Qualitative Choice Logic [5]. In that approach, when
first predicate is satisfied, the solution gets value 1; when second is satisfied, the
solution gets value 2; etc. If not a single predicate is satisfied, the solution is 0.
The problem arise when it is integrated into a complex predicate like: P1 AND
P2 AND (P3 OR ELSE P4 OR ELSE P5)., i.e., the overall solution is expected
to be in the unit interval.

3.1 The Formalization of Asymmetric Disjunction

Bosc and Pivert [2] proposed the following six axioms in order to formalize
OR ELSE operator D, where x and y are the values of predicates P1 and P2,
respectively:

A1 D is more drastic than OR operator: D(x, y) ≤ max(x, y), i.e. we are crossing
the border between averaging and disjunctive functions.

A2 D is softer than when only P1 appears, because P2 opens new choices:
D(x, y) ≥ x.

A3 D is an increasing function in its first argument.
A4 D is an increasing function in its second argument.
A5 D has asymmetric behaviour, i.e. D(x, y) �= D(y, x) for some (x, y) ∈ [0, 1]2.
A6 D is equivalent to x OR ELSE (x OR y): D(x, y) = D(x, x ∨ y).

Note that, for the simplicity, sometimes we use the lattice connectives nota-
tion ∨ = MAX and ∧ = MIN.

The operator which meets these axioms is expressed by the function

DA(x, y) = max(x,A(x, y)) (3)

where A ∈ Av2.
As a typical example of OR ELSE operator (3), Bosc and Pivert [2] have

proposed a parametrized class of functions

DBPk(x, y) = max(x, k · x + (1 − k)y) (4)

where k ∈]0, 1] (i.e., A is the weighted arithmetic mean Wk) and BP stands for
the Bosc-Pivert operator. For the asymptotic extremal value k = 0, we get the
disjunction expressed by the MAX function: max(x, y). For k = 0.5 and y ≥ x
we get the non–weighted arithmetic mean W , i.e., DW

BP0.5(x, y) = max(x, x+y
2 ).
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Another example is [9]

DG
BPk(x, y) = max(x,Gk(x, y)) (5)

where Gk is the weighted geometric mean and k ∈]0, 1]. Analogously to (4), we
write

DG
BPk(x, y) = max(x, xk · y(1−k)) (6)

where k ∈]0, 1]. For k = 0.5 we get DG
BP0.5(x, y) = max(x,

√
xy)

Similarly, we can use the other elements of Av, e.g., quadratic mean, where
for k = 0.5 we get

DQ
BP0.5(x, y) = max(x,

√
0.5x2 + 0.5y2) (7)

The asymmetric disjunction considers all Av elements including the extremal
elements MIN and MAX. Obviously,

DMAX
BP0.5 = max(x,max(0.5x, 0.5y)) =

{
max(x, 0.5x) = x for x ≥ y
max(x, 0.5y) for x < y

The analogous observation holds for the extremal element MIN.
Recently, Hudec and Mesiar [9] proposed the axiomatization of asymmet-

ric conjunction and disjunction for continuous as well as non–continuous cases
(P1 OR ELSE P2, but when P2 has a high satisfaction degree it becomes the
full alternative, i.e., broccoli or else cauliflower, but if cauliflower is very ripe,
then it becomes the full alternative), and discussed requirements for associative
behaviour. In all above cases D = MAX. The next example illustrates semantics
of diverse elements of Av.

Example. Let a house buyer has raised conditions regarding the storage space
for the less–frequently or seasonally used items by the condition: spacious base-
ment or else spacious attic. Here x (resp. y) stands for the intensity of spacious-
ness for basement (resp. attic).

The following observations illustrate the suitable elements of Av for several
decision–making requirements:

– The ORNESS measure for MAX is 1, i.e., we have the full substitutability
of alternatives, A = MAX, or disjunction x ∨ y.

– The ORNESS measure for arithmetic mean W is 0.5 (regardless of the num-
ber of predicates), i.e., we model the basic case when attic is less suitable
alternative to basement, A = W.

– The ORNESS measure for geometric mean G is 0.33 (for two predicates),
so we are able to model the situation for an elderly buyer and a quite steep
ladder, to decrease the relevance for the optional alternative, and even reject
house having no basement (all heavy items must be stored in attic), A = G.

– The ORNESS measure for quadratic mean Q is 0.62 (for two predicates),
thus we model the situation for a younger buyer and a less steep stairs, to
increase the relevance for the optional alternative and to still keep attic as a
less convenient than basement, A = Q.
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The solution is shown in Table 1 for several hypothetical houses, where the
solution is lower than or equal to the MAX operator, and higher than or equal
to the projection of the full alternative. Observe that H2 and H8 have the same
suitability degree, but H8 might be considered as a better option.

Table 1. OR ELSE connective expressed by the continuous Bosc–Pivert operators for
arithmetic mean, geometric mean and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7)

H1 0.80 0.80 0.80 0.80 0.80

H2 0.80 0.20 0.80 0.80 0.80

H3 0.20 0.80 0.50 0.40 0.583

H4 1 0.50 1 1 1

H5 0.50 1 0.75 0.707 0.791

H6 0 1 0.50 0 0.707

H7 0.10 0.90 0.50 0.30 0.64

H8 0.80 0.78 0.80 0.80 0.80

H9 0.90 1 0.95 0.949 0.951

H10 0.34 1 0.67 0.58 0.75

H11 0.33 1 0.65 0.548 0.74

H12 0.70 0.10 0.70 0.70 0.70


�

3.2 The Generalization of Asymmetric Disjunction

Axioms A1 and A2 ensure for any OR ELSE operator D its idempotency, i.e.,
D(x, x) = x for all x ∈ [0, 1]. The question is, whether we can apply other
disjunctive functions than MAX in (3), e.g., probabilistic sum or �Lukasiewicz
t–conorm, or whether the idempotency is mandatory.

Therefore, a general form of (3) is

DH,A(x, y) = H(x,A(x, y)) (8)

where A ∈ Av and H ∈ Dis, i.e., H : [0, 1]2 → [0, 1] is a disjunctive aggregation
function.

Observe that the idempotency of D in (8) is equivalent to H = MAX, i.e.,
to the original approach proposed by Bosc and Pivert [2].

This structure keeps the asymmetry in the most cases, but not in general.
So, e.g., if H is the second projection (i.e., one keeps the second argument) and
A is symmetric, then also DH,A given by (8) is symmetric. The same claim is
valid if H is symmetric and A is the second projection. The following examples
support this claim:
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DH,MAX(x, y) =
{
H(x, x) if x ≥ y
H(x, y) for x < y

DH,MIN (x, y) =
{
H(x, y) if x ≥ y
H(x, x) for x < y

DSP ,G(x, y) = x +
√
xy − x · √xy

DSP ,A(x, y) = x + (1 − x) · A(x, y)

An interesting class of our operators introduced in (8) is generated by a
generator g : [0, 1] → [0,∞], g being an increasing bijection. Then H given by
H(x, y) = g−1(g(x) + g(y)) is a strict t–conorm, and Ak, k ∈ [0, 1] given by
Ak(x, y) = g−1(k · g(x)+ (1−k) · g(y)) is a weighted quasi–geometric mean. The
related operator DH,Ak

= Dg,k is then given by Dg,k(x, y) = g−1((1+k) · g(x)+
(1 − k) · g(y)).

For g(x) = − log(1 − x) the related strict t–conorm is the probabilistic sum
SP and then Dg,k(x, y) = 1 − (1 − x)1+k · (1 − y)1−k.

For the extremal cases we obtain Dg,0 = SP = H and Dg,1(x, y) = 2x−x2 =
SP (x, x).

As another example, consider g(x) = x/(1 − x). Then H = SH is the t–
conorm dual to the Hamacher product, and then Dg,k(x, y) = ((1 + k)x + (1 −
k)y−2xy)/(1+kx−ky−xy), and Dg,0 = SH , Dg,1(x, y) = 2x/(1+x) = SH(x, x).

In general, DH,A(x, y) ≥ x. Thus, the newly introduced operators DH,A

allow to increase the value x (of the first argument), i.e., x ≤ DH,A(x, y) ≤ 1.
Consequently

0 ≤ DH,A(x, y) − x ≤ 1 − x (9)

The minimal compensation 0 = DH,A(x, y) − x (for any x, y ∈ [0, 1]) is obtained
if and only if H is the first projection, H(x, y) = x, and A ∈ Av2 is arbitrary, or
H = MAX and A is the first projection.

On the other hand, the maximal compensation 1 − x = DH,A(x, y) cannot
be attained if x = y = 0, as then, for any H and A, D(0, 0) = H(0, A(0, 0)) =
H(0, 0) = 0. However, if we insist that for any (x, y) �= (0, 0) the compensa-
tion DH,A(x, y) − x = 1 − x is maximal, then necessarily DH,A = A∗ is the
greatest aggregation function given by A∗(x, y) = 1 whenever (x, y) �= (0, 0) and
A∗(0, 0) = 0.

Obviously, we obtain DH,A = A∗ whenever A = A∗. A similar claim is valid
if H = A∗ and A(0, y) > 0 for any y > 0. Complete proofs will be added into
the full version of this contribution.

For the probabilistic sum Sp (an Archimedean t–conorm) we have

DSp,A(x, y) = x + A(x, y) − x · A(x, y) (10)

and then DSp,A(x, x) = 2x − x2 for an arbitrary A ∈ Av2.
For the �Lukasiewicz t–conorm SL (a nilpotent t–conorm) we have

DSL,A(x, y) = min(1, x + A(x, y)) (11)

and then DSL,A(x, x) = min(1, 2x) for an arbitrary A ∈ Av2.
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Table 2. OR ELSE connective expressed by (10) for arithmetic mean, geometric mean
and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7) SL*

H1 0.80 0.80 0.96 0.96 0.96 0.96

H2 0.80 0.20 0.90 0.88 0.9166 0.84

H3 0.20 0.80 0.60 0.52 0.6665 0.84

H4 1 0.50 1 1 1 1

H5 0.50 1 0.875 0.8535 0.8953 1

H6 0 1 0.50 0 0.7701 1

H7 0.10 0.90 0.55 0.37 0.6763 0.91

H8 0.80 0.78 0.958 0.9579 0.9581 0.956

H9 0.90 1 0.995 0.9949 0.9951 1

H10 0.34 1 0.782 0.725 0.833 1

H11 0.33 1 0.755 0.683 0.817 1

H12 0.70 0.10 0.82 0.779 0.85 0.73
∗to compare with the symmetric case Sp = x + y − x · y

For the same data as in Table 1, we have the solution for H = Sp shown in
Table 2, whereas for H = SL the solution is in Table 3.

Observe that houses H2 and H8 are now distinguishable (Table 2), that is,
H8 is preferred due to significantly higher value y. Further, the differences among
averaging functions for H8 are almost negligible (due to high values of x and
y). For H = MAX and H = Sp the optional alternative influences solution also
when y > x, but does not become the full alternative (see, H9, H10, H11 in
Tables 1 and 2).

The feature of �Lukasiewicz t–conorm is reflected in the evaluation. Houses,
which significantly meet full and optional alternatives get value 1 and become
undistinguishable, see Table 3. For H = SL the optional alternative influences
solution also when y > x and moreover becomes the full alternative, especially
for A = Q, compare H10 and H11.

Theoretically, MAX in (3) can be replaced by any disjunctive function. In
such cases, the asymmetric disjunction is more flexible allowing optional alter-
native to influence the solution in all cases, including when y < x. But, we
should keep solution equal to 1 when both alternatives, or only full alternative
assign value 1. When only optional alternative gets value 1, the solution should
be less than the ideal satisfaction, thus nilpotent t–conorm functions are not
suitable. Further, various averaging functions emphasize or reduce the relevance
of optional alternatives as was illustrated in example in Sect. 3.1. Therefore, the
proposed aggregation covers diverse managerial needs in evaluation tasks.
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Table 3. OR ELSE connective expressed by (11) for arithmetic mean, geometric mean
and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7) SL*

H1 0.80 0.80 1 1 1 1

H2 0.80 0.20 1 1 1 1

H3 0.20 0.80 0.70 0.60 0.78 1

H4 1 0.50 1 1 1 1

H5 0.50 1 1 1 1 1

H6 0 1 0.50 0 0.71 1

H7 0.10 0.90 0.60 0.40 0.74 1

H8 0.80 0.78 1 1 1 1

H9 0.90 1 1 1 1 1

H10 0.34 1 1 0.923 1 1

H11 0.33 1 0.95 0.848 1 1

H12 0.70 0.10 1 0.96 1 0.80
∗to compare with the symmetric case SL = min(1, x + y)

4 Discussion

In the literature, we find that the general models of substitutability should not
go below the neutrality, or arithmetic mean W [7]. The asymmetric disjunction
proposed by Bosc and Pivert [2] is inside this frame (ORNESS of W is 0.5 regard-
less of weights). It also does not go above MAX. The asymmetric disjunction
proposed by Hudec and Mesiar [9] goes below W , i.e., A ∈ Av\{MIN,MAX},
but not above MAX (3) to cover further users expectations, and meets axioms
A1–A6. So, these approaches do not support upward reinforcement.

This model considers the whole classes of Av and Dis Fig. 1, i.e., above
MAX and idempotency for upwardly reinforcing evaluated items as disjunction
do (see, Table 2, e.g., H1, H2 and H8 ). In the case of (10), i.e., H = Sp, we
cannot reach solution 1 when x < 1 and y = 1. Thus, the optional alternative
influences solution even when y < x, but does not become the full alternative.

On the other hand, by Eq. (11) the optional alternative in certain situations
becomes a full one, namely when x + A(x, y) ≥ 1 ∧ y > x. Observe that for
A = Wk, we get D(x, y) = min(1, x+kx+(1−k)y) and therefore for x > 1/(1+k),
the solution is equal to 1, regardless of value y. This situation is plotted in Fig. 2.
For instance, for k = 0.5, we have DSL,W (0.7, 0.1) = 1. But, by symmetric
disjunction we have SL(0.7, 0.1) = 0.8. For the completeness Table 3 shows the
solution for disjunction SL.

Theoretically, for H = SL we have asymmetric aggregation, but from the
perspective of human logic evaluation of optional alternative it is questionable.
The solution might be penalization when y > x and the solution is equal to 1
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Fig. 2. Asymmetric disjunction by H = SL and A = W0.5.

(when the optional alternative becomes the full one). In general, if D(x, y) =
SL(x,A(x, y)), then considering (9) we assign D(x, y)−x = min((1−x,A(x, y)).

The answer to the question: “is the idempotency mandatory?” is as fol-
lows: The idempotency property may be too restrictive for general purpose of
asymmetric disjunction and therefore other functions than MAX in (3) may be
appropriate to cover diverse requirements in evaluation tasks. We have proven
that for H = Sp and A ∈ Av we have an upwardly reinforced asymmetric dis-
junction. Therefore, H = Sp can be directly used. But, it does not hold for
H = SL where we should adopt penalization. The drastic sum has the theoreti-
cal meaning of an upper bound of Dis without significant applicability. Hence,
the same observation holds for asymmetric disjunction when H = SDS .

Axioms A2–A6 are still valid. Axiom A1 should be relaxed for the generalized
asymmetric disjunction. Generally, we can apply Archimedean t–conorms for H,
but for the nilpotent one, we should consider penalty. The work in this field
should continue in generalization of the other connectives and in evaluation,
which of them correlate with the human reasoning.

In idempotent disjunction, i.e., MAX function, lower values than the maximal
one do not influence solution. In all other functions, lower values somehow influ-
ence the solution. This holds for the symmetric case. We offered this option for
the asymmetric case. In cases when lower values of optional alternative should be
considered, we need this approach. For instance, in aforementioned requirement:
spacious basement or else spacious attic, clearly, a house of 0.7 spaciousness of
basement and 0.4 of attic is better than a house of values (0.7 and 0.3), which
is better than (0.4, 0.7).

Considering the afore results, we propose to entitle this operator as Compen-
satory OR ELSE, due to the integrated asymmetry and compensative effect.

It is worth noting that the asymmetric disjunction can be combined with
the other logic aggregations. For instance, consider buying a house. A buyer
might pose the following requirement: size around 200 m2 AND short distance
to work AND (spacious basement OR ELSE spacious attic) AND (most of
the following requirements: {short distance to theatre, short distance to train
station, low population density, detached garage, etc.} satisfied). In the first step,
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we should calculate matching degrees of asymmetric disjunction and quantified
aggregation, while in the second step we calculate the overall matching degree.

5 Conclusion

It is a challenging task to cover the diverse needs for disjunctively polarized deci-
sion making and evaluation tasks. Hence, practice searches for the robust math-
ematical solutions to cover the whole range of disjunctive aggregation, including
the asymmetric case of full and optional predicates. In order to contribute, the
theoretical part of this work has recognized and formalized requirements for
asymmetric disjunction, which are illustrated on the illustrative examples. The
answer to the question whether the idempotency is mandatory is the following:
The idempotency property may be too restrictive for general purpose of asym-
metric disjunction and therefore other functions than MAX may be appropriate.
We have proven that for H = Sp and A ∈ Av we get an upwardly reinforced
asymmetric disjunction. Therefore, H = Sp can be directly used. But, it does
not hold for H = SL, where we should adopt penalization to keep the solution
equal to 1 when both alternatives, or only the full alternative is satisfied with
value 1.

In the everyday decision making tasks and database queries, asymmetric
disjunction could appear as the whole condition. On the other hand, in the
complex managerial evaluation of entities asymmetric disjunction is just a part
of the overall criterion as is illustrated in Sect. 4. The topics for the future work
should include extending this study for the weighted asymmetric disjunction
case, testing on real–world data sets, and examining the consistency with the
disjunctive managerial decision making and evaluation.
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8. Dujmović, J.: Weighted conjunctive and disjunctive means and their application
in system evaluation. Ser. Math. Phys. 461/497, 147–158 (1974). Univ. Beograd.
Publ. Elektrotechn. Fak, Belgrade

9. Hudec, M., Mesiar, R.: The axiomatization of asymmetric disjunction and con-
junction. Inf. Fusion 53, 165–173 (2020)

10. Karttunen, L.: Presupposition and linguistic context. Theor. Linguist. 1, 181–193
(1974)
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