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Abstract. In this contribution the concept how to solve the problem of
comparability in the interval-valued fuzzy setting and its application in
medical diagnosis is presented. Especially, we consider comparability of
interval-valued fuzzy sets cardinality, where order of its elements is most
important. We propose an algorithm for comparing interval-valued fuzzy
cardinal numbers (IVFCNs) and we evaluate it in a medical diagnosis
decision support system.
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1 Introduction

Many new methods and theories behaving imprecision and uncertainty have
been proposed since fuzzy sets were introduced by Zadeh [26]. Extensions of
classical fuzzy set theory, intuitionistic fuzzy sets [3] and interval-valued fuzzy
sets [22,25] are very useful in dealing with imprecision and uncertainty (cf. [5]
for more details). In this setting, different proposals for comparability relations
between interval-valued fuzzy sets have been proposed (e.g. [23,30]). However,
the motivation of the present paper is to propose a new methods to compa-
rability between interval-valued fuzzy sets (and their special type which are
interval-valued fuzzy cardinal numbers) taking into account the widths of the
intervals. We assume that the precise membership degree of an element in a given
set is a number included in the membership interval. For such interpretation,
the width of the membership interval of an element reflects the lack of precise
membership degree of that element. Hence, the fact that two elements have the
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same membership intervals does not necessarily mean that their corresponding
membership values are the same. This is why we have taken into account the
importance of the notion of width of intervals while proposing new algorithms.

Additionally, these developments are made according to the standard partial
order between intervals, but also with respect to admissible orders [6], which are
linear.

The paper is organized as follows. In Sect. 2 basic information on interval-
valued setting are recalled. Especially, orders in interval setting and aggregation
operators based on them are considered. Afterwards, in Sect. 3 we propose algo-
rithm to compare interval values and finally in Sect. 4 we present mentioned
methodology for comparing IVFCNs in the decision making used in the Ova-
Expert system (intelligent decision support system for the diagnosis of ovarian
tumors) (see [12,13,29]).

2 Preliminaries

Firstly, we recall some facts from interval-valued fuzzy set theory.

2.1 Orders in the Interval-Valued Fuzzy Settings

Definition 1 (cf. [22,25]). An interval-valued fuzzy set IVFS ˜A in X is a map-
ping ˜A : X → LI such that ˜A(x) = [A(x), A(x)] ∈ LI for x ∈ X, where

˜A ∩ ˜B =
{〈x,

[

min{A(x), B(x)},min{A(x), B(x)}]〉 : x ∈ X
}

,

˜A ∪ ˜B =
{〈x,

[

max{A(x), B(x)},max{A(x), B(x)}]〉 : x ∈ X
}

and
LI = {[x, x] : x, x ∈ [0, 1], x ≤ x}.

The well-known classical monotonicity (partial order) for intervals is of the form

[x, x] ≤LI [y, y] ⇔ x ≤ y, x ≤ y,

where [x, x] <LI [y, y] ⇔ [x, x] ≤LI [y, y] and (x < y or x < y).

In LI the operations joint and meet are defined respectively

[x, x] ∨ [y, y] = [max(x, y),max(x, y)],

[x, x] ∧ [y, y] = [min(x, y),min(x, y)].

Note that the structure (LI ,∨,∧) is a complete lattice, with the partial order
≤LI , where

1 = [1, 1] and 0 = [0, 0]

are the greatest and the smallest element of (LI ,≤LI ), respectively.
We are interested in extending the partial order ≤LI to a linear order, solving

the problem of existence of incomparable elements. We recall the notion of an
admissible order, which was introduced in [6] and studied, for example, in [2] and
[27]. The linearity of the order is needed in many applications of real problems,
in order to be able to compare any two interval data [7].
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Definition 2 (cf. [6]). An order ≤Adm in LI is called admissible if it is linear
and satisfies that for all x, y ∈ LI , such that x ≤LI y, then x ≤Adm y.

Proposition 1 (cf. [6]). Let B1, B2 : [0, 1]2 → [0, 1] be two continuous aggre-
gation functions, such that, for all x = [x, x], y = [y, y] ∈ LI , the equalities
B1(x, x) = B1(y, y) and B2(x, x) = B2(y, y) hold if and only if x = y. If the
order ≤B1,2 on LI is defined by x ≤B1,2 y if and only if

B1(x, x) < B1(y, y) or (B1(x, x) = B1(y, y) and B2(x, x) ≤ B2(y, y)),

then ≤B1,2 is an admissible order on LI .

Example 1 (cf. [6]). The following are special cases of admissible linear orders
on LI :

– The Xu and Yager order:

[x, x] ≤XY [y, y] ⇔x + x < y + y or (x + x = y + y and x − x ≤ y − y).

– The first lexicographical order (with respect to the first variable), ≤Lex1

defined as:

[x, x] ≤Lex1 [y, y] ⇔ x < y or (x = y and x ≤ y).

– The second lexicographical order (with respect to the second variable), ≤Lex2

defined as:

[x, x] ≤Lex2 [y, y] ⇔ x < y or (x = y and x ≤ y).

– The αβ order, ≤αβ defined as:

[x, x] ≤αβ [y, y] ⇔Kα(x, x) < Kα(y, y) or

(Kα(x, x) = Kα(y, y) and Kβ(x, x) ≤ Kβ(y, y))

for some α �= β ∈ [0, 1] and x, y ∈ LI , where Kα : [0, 1]2 → [0, 1] is defined as
Kα(x, y) = αx + (1 − α)y.

The orders ≤XY , ≤Lex1 and ≤Lex2 are special cases of the order ≤αβ with
≤0.5β (for β > 0.5), ≤1,0, ≤0,1, respectively. The orders ≤XY , ≤Lex1, ≤Lex2,
and ≤αβ are admissible linear orders ≤B1,2 defined by pairs of aggregation func-
tions, namely weighted means. In the case of the orders ≤Lex1 and ≤Lex2, the
aggregations that are used are the projections P1, P2 and P2, P1, respectively.

Remark 1. In the later part we will use the notation ≤ both for the partial or
admissible linear order, with 0 and 1 as minimal and maximal element of LI ,
respectively. Notation ≤LI will be used while the results for the admissible linear
orders will be used with the notation ≤Adm.
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2.2 Interval-Valued Aggregation Functions

Let us now recall the concept of an interval-valued aggregation function, or an
aggregation function on LI , which is an important notion for many applications.
We consider interval-valued aggregation functions both with respect to ≤LI and
≤Adm. In many papers we may find the study of properties and possible applica-
tions of interval-valued operators/aggregation functions (e.g. [4,5,7,14,18,20]).

Definition 3 (cf. [16,27]). An operation A : (LI)n → LI is called an interval-
valued aggregation function if it is increasing with respect to the order ≤ (partial
or total) and

A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

A special class of interval-valued aggregation functions is the one formed by
the so-called representable interval-valued aggregation functions.

Definition 4 (cf. [9,11]). An interval-valued aggregation function A : (LI)n →
LI is said to be representable if there exist aggregation functions A1, A2 :
[0, 1]n → [0, 1] such that

A(x1, . . . , xn) = [A1(x1, . . . xn), A2(x1, . . . , xn)]

for all x1, . . . , xn ∈ LI , provided that A1 ≤ A2.

Example 2. Lattice operations ∧ and ∨ on LI are examples of representable
aggregation functions on LI with respect to the partial order ≤LI , with A1 =
A2 = min in the first case and A1 = A2 = max in the second one. However,
∧ and ∨ are not interval-valued aggregation functions with respect to ≤Lex1,
≤Lex2 or ≤XY .

The following are other examples of representable interval-valued aggregation
functions with respect to ≤LI .

– The representable arithmetic mean:

Amean([x, x], [y, y]) = [Amean(x, y), Amean(x, y)] = [
x + y

2
,
x + y

2
].

– The representable geometric mean:

Agmean([x, x], [y, y]) = [Agmean(x, y), Agmean(x, y)] = [
√

xy,
√

xy].

Representability is not the only possible way to build interval-valued aggre-
gation functions with respect to ≤LI . Moreover, we may built interval-valued
aggregation functions with respect to the other orders, i.e. ≤Adm.

Let A : [0, 1]2 → [0, 1] be an aggregation function.
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– The function A1 : (LI)2 → LI , where

A1(x, y) =
{

[1, 1], if (x, y) = ([1, 1], [1, 1]),
[0, A(x, y)], otherwise

is a non-representable interval-valued aggregation function with respect to
≤LI .

– The function A2 : (LI)2 → LI ([19]), where

A2(x, y) =
{

[1, 1], if (x, y) = ([1, 1], [1, 1])
[0, A(x, y)], otherwise

is non-representable interval-valued aggregation functions with respect to
≤Lex1.

– Amean is an aggregation function with respect to ≤αβ (cf. [2]).
– The following function

Aα(x, y) = [αx + (1 − α)y, αx + (1 − α)y]

is an interval-valued aggregation function on LI with respect to ≤Lex1, ≤Lex2

and ≤XY for x, y ∈ LI and α ∈ [0, 1] (cf. [27]).

3 Subsethood Measure

Subsethood, or inclusion, measures have been studied mainly from constructive
and axiomatic approaches and have been introduced successfully into the theory
of fuzzy sets and their extensions. Many researchers have tried to relax the
rigidity of Zadeh’s definition of subsethood to get a soft approach which is more
compatible with the spirit of fuzzy logic. For instance, Zhang and Leung (1996)
defended that quantitative methods were the main approaches in uncertainty
inference, a key problem in artificial intelligence, so they presented a generalized
definition for subsethood measures, called including degrees.

3.1 Precedence Indicator

We use the notion of an interval subsethood measure for a pair of intervals
with the partial and admissible orders and the width of intervals introduced and
examined in [21].

Definition 5. A function Prec : (LI)2 → LI is said to be a precedence indi-
cator if it satisfies the following conditions for any a, b, c ∈ LI

P1 if a = 1LI and b = 0LI , then Prec(a, b) = 0LI ,
P2 if a < b, then Prec(a, b) = 1LI for any a, b ∈ LI ,
P3 Prec(a, a) = [1 − w(a), 1] for any a ∈ LI ,
P4 if a ≤ b ≤ c and w(a) = w(b) = w(c), then Prec(c, a) ≤ Prec(b, a) and

Prec(c, a) ≤ Prec(c, b), for any a, b, c ∈ LI , where
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w(a) = a − a. (1)

The following construction method is based on the aggregation and negation
functions which play important rule in many applications (e.g. [4,9,11,14]) and
is presented in the next theorem. Recall that an interval-valued fuzzy negation
NIV is an antytonic operation that satisfies NIV (0LI ) = 1LI and NIV (1LI ) = 0LI

([1,10]).

Proposition 2 ([21]). For a, b ∈ LI the operation PrecA : (LI)2 → LI is the
precedence indicator

PrecA(a, b) =

⎧

⎨

⎩

[1 − w(a), 1], a = b,
1LI , a < b,
A(NIV (a), b), otherwise

for a, b ∈ LI and the interval-valued fuzzy negation NIV , such that

NIV (a) = [N(a), N(a)] ≤ [1 − a, 1 − a],

where N is a fuzzy negation and A is a representable interval-valued aggregation
such that A ≤ ∨.
Using the construction methods from Proposition 2 we obtain the following
examples.

Example 3. The following function is an interval subsethood measure with
respect to ≤LI :

PrecAmeanLI
(x, y) =

⎧

⎨

⎩

[1 − w(x), 1], x = y,
1, x <LI y,

[
1−x+y

2 , 1−x+y
2 ], otherwise,

where NIV (x) = [1 − x, 1 − x].
Moreover, the following function is a subsethood measure with respect to ≤Lex2:

PrecAmeanLex2(x, y) =

⎧

⎨

⎩

[1 − w(x), 1], x = y,
1, x <Lex2 y,

[
y

2 , 1−x+y
2 ], otherwise.

Using the interval-valued aggregation function Aα for α ∈ [0, 1], we get the
subsethood measure

PrecAαLex2(x, y) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

[1 − w(x), 1], x = y,
1, x <Lex2 y,
[(1 − α)y,

α(1 − x) + (1 − α)y], otherwise,

where

NIV (x) =
{

1, x = 0,
[0, 1 − x], otherwise

is an interval-valued fuzzy negation with respect to ≤Lex2.
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Remark 2 (cf. [27]). The aggregation Aα preserves the width of the intervals of
the same width.

Another construction method, which is inspired by the construction presented
for generalization of the subsethood measure at paper [21], presents the following
proposition.

Proposition 3. The operation

Precw(a, b) =
{

1LI , a < b,
[1 − max(w(a), r(a, b)), 1 − r(a, b)], else

is the precedence indicator with respect to ≤, where for a, b ∈ LI

r(a, b) = max{|a − b|, |a − b|}.

3.2 Interval-Valued Fuzzy Cardinal Numbers (IVFCNs)

In this section we briefly introduce main ideas about cardinalities of IVFSs.
More details can be found in the monographs [12,24]. Such numbers are of
great importance in solving decision problems in which uncertainty occurs (see
[8,15,28]). In further part we will use the following notations:

– For given fuzzy set A a symbol [A]i is defined as:

[A]i :=
∨

{t ∈ (0, 1] : |At| ≥ i} for i ∈ N.

– Function f : [0, 1] → [0, 1] is called cardinality pattern if it meets the following
conditions:
1. is nondecreasing i.e. ∀a,b∈[0,1]f(a) ≤ f(b) if a ≤ b,
2. and meets limit conditions f(0) = 0 i f(1) = 1.

– Symbol ∩T means the triangular norm and N the fuzzy negation.

Generalized Fuzzy Cardinal Numbers

1. Generalized cardinal number FGCount is interpreted as a degree to
which fuzzy set A has at least k elements

FGf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k) for k ∈ N.

2. Generalized cardinal number FLCount is interpreter as a degree to
which A includes at most k elements

FLf (k) := N(f([A]k+1)) ∩T N(f([A]k+2)) ∩T · ∩T N(f([A]n)) for k ∈ N.

3. Generalized cardinal number FECount expresses the degree to which A
has exactly k elements where

FEf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k)∩T

N(f([A]k+1)) ∩T N(f([A]k+2)) ∩T . . . ∩T N(f([A]n)) for k ∈ N.

FEf is the intersection of FGf and FLf . It may be perceived as the ‘actual’
generalized cardinal number of a fuzzy set A.
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Fuzzy Cardinality of IVFS. Cardinalities of interval-valued fuzzy sets are
defined in a natural manner using cardinalities of fuzzy sets described in previous
section.

For a finite interval-valued fuzzy set ˜A = [A,A] fuzzy type cardinalities are
defined as interval-valued fuzzy sets in N (see [24]).

Definition 6 (cf. [12,24]).

1. f-FGCount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FGf ( ˜A) = [FGf (A), FGf (A)], (2)

i.e. for k ∈ N:

˜FGf ( ˜A)(k) =[FGf (A)(k), FGf (A)(k)] = [f([A]k), f([A]k)], (3)

where FGf (A) and FGf (A) are the fuzzy cardinalites defined in previous
section.

2. f-FLCount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FLf ( ˜A) = [FLf (A), FLf (A)], (4)

i.e. for k ∈ N:

˜FLf ( ˜A)(k) =[FLf (A)(k), FLf (A(k)] = [1 − f([A]k+1), 1 − f([A]k)], (5)

where FLf (A) and FLf (A) are the fuzzy cardinalities defined in previous
section.

3. f-FECount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FEf ( ˜A) = ˜FGf ( ˜A) ∩ ˜FLf ( ˜A), (6)

i.e. for k ∈ N:

˜FEf ( ˜A)(k) = [f([A]k) ∧ (1 − f([A]k+1)), f([A]k) ∧ (1 − f([A]k+1)]. (7)

To simplify the notations, f-FECount of an IVFS will be denoted by σ̃ and we
will call it Interval-Valued Fuzzy Cardinal Number (in short IVFCN).

Comparability Algorithm of IVFCNs. In many decision-making applica-
tions, an important problem to solve is comparing the cardinalities of IVFSs.

To define algorithm more formally, we need to introduce some basics nota-
tions.

Definition 7. Representative Rep(x) ∈ R of an interval x ∈ LI for α ∈ [0, 1] is
defined as:

Rep(x) = Kα(x) = x + α ∗ w(x), (8)

where w fulfills (1).
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In a special case value of representative of an interval can lead to middle or
bounds of interval:

1. if a = 0 then Rep(x) = x - lower bound of the interval;
2. if a = 1 then Rep(x) = x - upper bound of the interval;
3. if a = 0.5 then Rep(x) = (x + x)/2 - middle of the interval.

To order the IVFCNs we propose the following method inspired on [17] used
in the next section for group decision making.

Algorithm for Ordering of IVFCNs

Step 1 (Inputs). Input data: interval-valued fuzzy cardinal numbers: Xi ∈
IV FCNs, i = {1, . . . , n}, n ∈ N

Xi = {[xk, xk], where k = {1, . . . , m} m ∈ N}.

Step 2 (Representatives). For input data with intervals data, we need the
following process (representatives (see (8))):

Rep(xk) = xk + α ∗ w(xk), where α ∈ [0, 1]

and we obtain xi = {Rep(xk)}.
Step 3 (Aggregations). For m elements support we construct aggregations
matrix with difference aggregation functions Let F = (F1, ...Fm) be a sequence
of m aggregation functions, Fi : [0, 1]m → [0, 1], then we calculate

F1(x1), . . . , Fm(x1)
. . .
F1(xn), . . . , Fm(xn)

for x1, ...xn and we calculate for each 1 ≤ i, j ≤ k the measure of connectivity
for pairs of values xi and xj , i �= j,

CON(xi,xj) =
∑

1≤l≤m

(Fl(xi(t)) − Fl(xj(t))), 1 ≤ t ≤ n.

Step 4 (Selection). For each 1 ≤ i, j ≤ n we find

max
1≤i,j≤n

CON(xi,xj) = CON(xz,xw), 1 ≤ z, w ≤ n;

The element xz is chosen as most appropriate.
We repeat Step Selection by omitting the wining values xz in the next iteration.
If max1≤i,j≤n CON(xi,xj) = CON(xz,xw) = CON(xz′ ,xw′), 1 ≤ z, z′, w, w′ ≤
n, then we find

C1 :=
∑

1≤w≤n

(max(0, CON(xz,xw)))
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and
C2 :=

∑

1≤w′≤n

(max((0, CON(xz′ ,xw′))).

If C1 > C2 then the element xz is chosen as the most appropriate otherwise
the element xz′ is chosen as most appropriate. Otherwise if both C1 and C2 are
equal than xz = xz′ .

As a consequence we obtain the sequence: xz � xz′ � . . . and thus Xz �
Xz′ � . . .. In particular, if we compare only two IVFCNs, i.e two sequences of
representatives x,y, then x � y if CON(x,y) > CON(y,x) else if CON(x,y) <
CON(y,x), then x � y, otherwise they are equivalent.

4 Application in Decision Making

The presented methodology for comparing IVFCNs can be applied in the deci-
sion model used in the OvaExpert system. OvaExpert is an intelligent decision
support system for the diagnosis of ovarian tumors. The system was developed as
a result of joint research of two Polish research centers: the Division of Gyneco-
logic Surgery of the Poznan University of Medical Sciences and the Department
of Imprecise Information Processing Methods, Faculty of Mathematics. More
detailed information about the system can be found in [12].

Figure 1 presents diagram showing OvaExpert counting approach for making
decisions. This method of decision making utilised in the system is based on
voting strategy with counting. On input system gets incomplete information
about patient. In Step 1 many diagnostic models are computed and it results as
IVFS of decisions. Then in Step 2 two IVFSNs are computed (which represents
positive and negative diagnosis). And finally in Step 3 comparison of this two
IVFSNs resulting decision. This step utilize methods presented earlier in this
work.

4.1 Decision Making Algorithm Based on Bipolar Voting Strategy

The idea behind decision algorithm is to use bipolar perspective on IVFS.
Because such an IVFS contains information on uncertainty level, it carries both
information supporting and rejecting the decision. This property of IVFS is used
in decision algorithm. The basic idea behind this algorithm consists of a couple
of steps:

– As an input we have two IVFS’s P and C (representing number of decision’s
Dpro and Dcontra supporting given decision):

P = σ(Dpro) - representing the number of decisions ‘for’;
C = σ(Dcontra) - representing the number of decisions ‘against’;

– To make decisions, we must choose a set that is more numerous e.g. decide if
(or vice versa):

P < C.

For equivalency of P and C (see Algorithm. Ordering of IVFCNs) then we do
not make decisions.
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Fig. 1. OvaExpert counting approach for making medical decision

4.2 Results and Discussion

The presented algorithm have been tested on real medical data. These data
described 388 cases of patients diagnosed and treated in the Division of Gyneco-
logical Surgery, Poznan University of Medical Sciences, between 2005 and 2015.
Out of them 61% have been diagnosed as suffering from benign tumours and 39%
as suffering from malign tumours. Moreover, 56% of patients had full diagnostic
(no test required by diagnostic scales was missing), 40% had significant amounts
of missing data varying from (0%, 50%], and for the remaining ones 50% of data
was missing. Detailed description of data used for evaluation can be found in
[12].

The goal of evaluation was to select a decision algorithm that would best
classify malignity cases with the top possible decisiveness.

We tested the algorithm for the weighted average functions of Fi in F (see
Step 3 of Algorithm. Ordering of IVFCNs).

(Weighted Average). We will use the following case of aggregation functions,
i.e. arithmetic weight mean AWw : ([0, 1])m → [0, 1]

AWw(x1, ..., xm) =
∑m

i=1 wixi
∑m

i=1 wi
, (9)

where the adequate vectors w = (w1, ...wm) we generate in the following way: In
the first step divide a sum of supports of both IVFCNs S = supp(P ) ∪ supp(C)
into two equal parts S1 and S2. In the second step compare precedence indicators
from both parts separately in the following way:
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If Prec(P (xi), C(xi)) ≤ Prec(C(xi), P (xi)) on S1

then we generate weights wi from [0.5, 1] otherwise from [0, 0.5];
If Prec(P (xi), C(xi)) > Prec(C(xi), P (xi)) on S2

then we generate weights wi from [0.5, 1] otherwise from [0, 0.5], where:
S1 = [min(S), (max(S) − min(S)/2)], S2 = [(max(S) − min(S))/2,max(S)]
and Prec ∈ {PrecA,Precw} and ≤∈ {≤LI ,≤Adm}.

Evaluation of the Algorithm. We use the following notations for evalu-
ate the results of the classification: Accuracy (acc), Sensitivity (sen), Speci-
ficity (spec) and Precision (prec) (cf. [12]).

Fig. 2. Impact of α selection on decision quality

The Table 1 below presents analysis of different parameters of α (different
methods to calculate representatives). We check values of α by different crite-
ria, i.e., the best acc, sen, spec, prec, respectively. We present the best results
obtained in series of tests for Precw and Xu and Yager linear order. We observe
that we obtained comparable results to [12]. With comparison to OEA base-
line model (which is current decision method in OvaExpert system) we see that
new algorithm give the better results of specificity, but very similar values of
other performance measures (like sensitivity and accurency). Figure 2 shows the
impact of α selection on decision quality. So proposed algorithms are interesting
from point of view possible applications and in other data also may be better
methods to compare IV values.

Table 1. The best evaluation results for different α

F/ crit. of α the best α acc sen spec prec

acc/sen/prec 0.4 85.31 84.88 85.96 90.12

spec 0 80.34 76.21 86.79 90.0

To obtain the best acc and sen values, the α values should be in the range
of [0.15, 0.5], which indicates a strong relationship between these values and the
designated representatives.
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For spec and prec values, the initial range of [0, 0.45] is relatively neutral,
only after exceeding the value of 0.45 for α, the above variables have a decreasing
trend. To obtain the best results for all parameters, the recommended alpha
values should be in the range [0.15, 0.45].

5 Conclusions and Future Plans

In this presentation, we discuss possible algorithms for compare in interval-
valued fuzzy setting, where these notions with widths of intervals involved.
Moreover, new algorithms of comparing and ranking cardinalities of IVFS were
applied in decision making algorithm. In future we will test presented algorithms
for other types data. Moreover, we are currently working on several other types
of ranking methods that uses aggregation functions.
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