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Abstract. In the paper Jin et al. [8] the authors introduced a general-
ized phi-transformation of aggregation functions. This is a kind of two-
step aggregation. This transformation was further developed in Jin et
al. [9] into a Generalized-Convex-Sum-Transformation. A special case of
the proposed Generalized-Convex-Sum-Transformation is the well-known
*-product, also known as the Darsow product of copulas. This approach
covers also the discrete Choquet integral. In this paper we study the
monotone systems of functions, particularly the case when functions in
these systems are just two-valued.
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1 Introduction

Jin et al. in [8] introduced a generalized ϕ-transformation of aggregation func-
tions. This method is based on a so-called parametrized chain and an aggrega-
tion function F . The original aggregation function A is transformed into A〈F,c〉,
where c is a vector-function and F (c(t)) = t. This method was modified by the
same authors in [9] into a generalized-convex-sum-transformation. A special case
of this generalized-convex-sum-transformation is the well-known ∗-product, also
known as Darsow product, see [4]. As it is shown in [9], this method general-
izes the discrete Choquet integral. The transformation is based on systems of
monotone functions as follows (we illustrate here the transformation of binary
aggregation functions)

AF(x, y) =

1∫

0

A(fx(t), gy(t))dt,

where F is the pair of monotone systems of functions {fx}x∈[0,1], {gy}y∈[0,1]. This
means that the particular choice of the pair F of monotone systems of functions
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{fx}x∈[0,1], {gy}y∈[0,1] influences the resulting transform AF of the (in this case)
binary aggregation function A.

In this contribution we will study the case when the systems of functions
{fx}x∈[0,1], {gy}y∈[0,1] are two-valued, i.e., fx(t) ∈ {0, 1} and gy(t) ∈ {0, 1} for
all x, y, t ∈ [0, 1].

After recalling some preliminary notions and results in Sect. 2, in Sect. 3 we
provide the results of our study. Finally, conclusions are given in Sect. 4.

2 Preliminaries

In this section we recall some basic definitions and known facts on aggregation
functions. In the second part we provide basic idea of the generalized-convex-
sum-transformation that was introduced in [9].

2.1 Basic Definitions and Known Facts

In this contribution we will deal with (n-ary) aggregation function on [0, 1].
For more details including definitions and discussion concerning examples and
properties of aggregation functions we recommend [1,2,7,10,12].

Some distinguished families of n-ary aggregation functions are given in the
following definition.

Definition 1 ([7]). An n-ary aggregation function A is said to be

(1) an n-ary semi-copula if e = 1 is its neutral element,
(2) a t-norm if it is an associative and symmetric semi-copula,
(3) dual to a semi-copula if e = 0 is a neutral element,
(4) a t-conorm if it is associative and symmetric and dual to a semi-copula,
(5) an n-ary quasi-copula if it is a 1-Lipschitz semi-copula, i.e.,

|A(x1, . . . , xn) − A(y1, . . . , yn)| ≤
n∑

i=1

|xi − yi|.

Definition 2 ([12]). An n-ary aggregation function Cn : [0, 1]n → [0, 1] is said
to be an n-ary copula if it is an n-ary semi-copula which is n-increasing, i.e., if
for all x(0) ∈ [0, 1]n and x(1) ∈ [0, 1]n such that x(0) ≥ x(1) the following holds

∑
(i1,...,in)∈I

(−1)
∑n

k=1 ikCn(x(i1)
1 , . . . , x(in)

n ) ≥ 0, (1)

where I = {0, 1}n.

Lemma 1 ([12]). Every copula C is 1-Lipschitz.

Proposition 1 ([12]). Let C be a binary copula (or a quasi-copula). Then for
every (x, y) ∈ [0, 1]2

max(0, x + y − 1) ≤ C(x, y) ≤ min(x, y). (2)
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Let us remark that the functions related to the lower and upper bound occur-
ring in inequality (2) are denoted by

W (x, y) = max(0, x + y − 1), M(x, y) = min(x, y) (3)

and are called the lower and upper Fréchet-Hoeffding bounds, respectively. In the
theory of t-norms the function W is usually denoted by TL and M is denoted
by TM and are called the Łukasiewicz and minimum t-norm, respectively.

2.2 Generalized-Convex-Sum-Transformation

In this section we briefly recall some definitions and results from [9] explaining
the construction method using transformation of a given aggregation function A
by an n-tuple of monotone systems of functions Fn. The notion of a monotone
system of functions is crucial in the construction method in question.

Definition 3. Let F = {fx}x∈[0,1] be a family of functions such that

1. for every x ∈ [0, 1] fx : [0, 1] → [0, 1] is a Lebesgue integrable function,
2. fx1 ≤ fx2 for x1 ≤ x2,
3. for all z ∈ [0, 1] f0(z) = 0 and f1(z) = 1.

Then F is called a Monotone System of Functions, MSF for brevity.

Example 1. For every x ∈ [0, 1] let fx : [0, 1] → [0, 1] and gx : [0, 1] → [0, 1] be
defined by

fx(t) =

{
0 for x < 1,

1 for x = 1,
gx(t) =

{
0 for x = 0,

1 for x > 0.

Then F = {fx}x∈[0,1] and G = {gx}x∈[0,1] are the least and the greatest Mono-
tone Systems of Functions, respectively.

Definition 4. Let F (i) =
{

f
(i)
x

}
x∈[0,1]

, i = 1, 2, . . . , n, be MSF (Definition 3).

Then Fn = (F (1),F (2), . . . ,F (n)) is called an n-tuple of the Monotone Systems
of Functions, n-MSF for brevity.

Lemma 2 ([9]). Let A : [0, 1]n → [0, 1] be any Lebesgue integrable n-ary aggre-
gation function and Fn = (F (1),F (2), . . . ,F (n)) be an arbitrary n-MSF. Let a
function AFn

: [0, 1]n → [0, 1] be given by

AFn
(x1, . . . , xn) =

∫ 1

0

A
(
f (1)
x1

(t), . . . , f (n)
xn

(t)
)
dt, (4)

where f
(1)
x1 ∈ F (1),. . . , f

(n)
xn ∈ F (n). Then AFn

is an aggregation function.

Definition 5. An n-ary aggregation function AFn
defined by formula (4), where

Fn = (F (1), . . . ,F (n)) is an n-tuple of monotone systems of functions, is said
to be a Generalized-Convex-Sum-Transform of A by Fn, or a GCS-transform in
short.
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Definition 6. (i) Let F = {fx}x∈[0,1] be an MSF. If
1∫
0

fx(t) dt = x is fulfilled

for all x ∈ [0, 1] then F is called a Standard Monotone System of Functions,
or SMSF for brevity.

(ii) Let F (i) =
{

f
(i)
x

}
x∈[0,1]

, i = 1, 2, . . . , n, be an SMSF.

Then Fn = (F (1),F (2), . . . ,F (n)) is called an n-tuple of the Standard Mono-
tone Systems of Functions, or n-SMSF for brevity.

Remark 1. It follows directly from Definition 3 and 6 that the set containing all
the MSF and SMSF is convex.

Example 2 ([9]). Consider an SMSF F = {fx}x∈[0,1] such that

fx(t) =

{
1 for x ∈ ]0, 1] and t ∈ [0, x],
0 otherwise.

(5)

Denote x(0) = 0 and A(fx1(t), . . . , fxn
(t)) = A(1{(i),...,(n)}) for t ∈ ]

x(i−1), x(i)

]
.

Then for an arbitrary n ≥ 2, an arbitrary n-ary aggregation function A and the
n-tuple Fn = (F , . . . ,F) the following holds

AFn
(x) =

∫ 1

0

A(fx1(t), . . . , fxn
(t))dt

=
∫ x(1)

0

A(1{(1),...,(n)})dt +
∫ x(2)

x(1)

A(1{(2),...,(n)})dt + · · · +

+
∫ x(n)

x(n−1)

A(1{(n)})dt

=x(1)mA({(1), . . . , (n)}) + (x(2) − x(1))mA({(2), . . . , (n)}) + · · · +
+ (x(n) − x(n−1))mA({(n)}) = ChmA

(x),

where mA : 2{1,...,n} → [0, 1] is a capacity given by mA(E) = A(1E), (·) :
{1, . . . , n} → {1, . . . , n} is any permutation satisfying x(1) ≤ x(2) ≤ · · · ≤ x(n),
and ChmA

is the Choquet integral (see [3,6]) with respect to the capacity mA.
This fact shows that our construction method can be seen as a significant exten-
sion of the Choquet integrals.

3 0 - 1 Valued Standard Monotone Systems of Functions

In the rest of the paper we will consider only standard monotone systems of
functions F = {fx}x∈[0,1] that fulfill the constraint fx(t) ∈ {0, 1} for all x ∈ [0, 1]
and t ∈ [0, 1]. We will call them 0-1-valued monotone systems of functions,
abbreviation 0-1-SMSF.

Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be 0-1-valued monotone systems of
functions and F = (F ,G) be a pair of 0-1-SMSF. Define CF : [0, 1]2 → [0, 1] by

CF(x, y) =
∫

fx(t)gy(t)dt. (6)
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Let A be a binary aggregation function. Then, obviously

AF(x, y) =
∫ 1

0

A(fx(t), gy(t))dt

=
(
x − CF(x, y)

)
A(1, 0) +

(
y − CF(x, y)

)
A(0, 1) + CF(x, y).

In other words, knowing CF we know the result of the GCS-transform AF of A.
We will focus our attention only to binary aggregation functions and their

GCS-transforms.

Proposition 2. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF
and F = (F ,G). Then, CF defined by formula (6) is a copula.

Proof. Directly by Definitions 3 and 6 we have that CF is a semi-copula. Let us
prove the two-increasingness. Assume x1 ≥ x2 and y1 ≥ y2 be arbitrary elements
of [0, 1]. Then for all t ∈ [0, 1] the following holds

fx1(t) ≥ fx2(t), gy1(t) ≥ gy2(t). (7)

These imply

CF(x1, y1) − CF(x2, y1) =
∫ 1

0

(fx1(t) − fx2(t))gy1(t)dt (8)

CF(x1, y2) − CF(x2, y2) =
∫ 1

0

(fx1(t) − fx2(t))gy2(t)dt. (9)

Formulae (8) and (9) imply

(CF(x1, y1) − CF(x2, y1)) − (CF(x1, y2) − CF(x2, y2))

=
∫ 1

0

(fx1(t) − fx2(t))(gy1(t) − gy2(t)dt,

and by inequalities (7),
∫ 1

0

(fx1(t) − fx2(t))(gy1(t) − gy2(t)dt ≥ 0.

��
Definition 7. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF
and F = (F ,G). Then we denote CF the copula given by Eq. (6) and we say that
CF is generated by F.

The following example illustrates some 0-1-SMSF and the copulas they generate.

Example 3. Denote F̃ = {fx}x∈[0,1] where fx are given by formula (5). Further,
set G1 = { 1gx}x∈[0,1], G2 = { 2gx}x∈[0,1], G3 = { 3gx}x∈[0,1], G4 = { 4gx}x∈[0,1],
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G5 = { 5gx}x∈[0,1], where igx are given by formulae (10), (11), (12), (13) and
(14), respectively:

1gx(t) =

{
1 if t ∈ [0, x

2 ] ∪ [1 − x
2 , 1],

0 otherwise,
(10)

2gx(t) =

{
1 if t ∈ [1−x

2 , 1+x
2 ],

0 otherwise,
(11)

3gx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for: x ≤ 1
2 and t ∈ [0, x],

x ∈ ]
1
2 , 3

4

[
and t ∈ [

0, 1
2

] ∪ [
3
2 − x, 1

]
,

t ≥ 3
4 and t ∈ [

0, x − 1
4

] ∪ [
3
4 , 1

]
,

0 otherwise,

(12)

4gx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for: x ≤ 1
2 and t ∈ [0, x2] ∪ [1 − x + x2, 1],

x ∈ ]
1
2 , 3

4

[
and t ∈ [

0, 1
4

] ∪ [
3
4 , 1

] ∪ [
1 − x, 1

2

]
,

t ≥ 3
4 and t ∈ [

0, x − 1
4

] ∪ [
3
4 , 1

]
,

0 otherwise,

(13)

5gx(t) =

{
1 for t ∈ [

0, x
2

] ∪ [
1
2 , 1

2 (2 − x)
]
,

0 otherwise.
(14)

t

x

1

0

1

0.5

x x
+

y−
1

y
2

0.5

Fig. 1. Left the layout of G1, right the copula CF
(1)

where F
(1) = (F̃ ,G1)

The copula sketched in the right part of Fig. 1 is the so-called tent copula
(see, e.g., [4]).

The following lemma is straightforward.

Lemma 3. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF.
Then
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t

x

0

1

0

0.5

0

x+ y
2 − 1

2

y

0.5

Fig. 2. Left the layout of G2, right the copula CF
(2)

where F
(2) = (F̃ ,G2).
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1

0

0.5 0.75

0.5

0.75
x

y

y
−
1
4

x
+

y−
11

2

0.5 0.75

0.5

0.75

Fig. 3. Left the layout of G3, right the copula CF
(3)

where F
(3) = (F̃ ,G3)

(a) CF = M for F = (F ,F),
(b) if F = (F ,G) generates a copula CF then F = (G,F) generates the copula

CF such that CF(x, y) = CF(y, x),
(c) C F̂ = W for F̂ = (F ,Fd), where Fd = {fd

x}x∈[0,1] and fd
x (t) = 1 − f1−x(t).

Proposition 3. Let F̃ be the 0-1-SMSF defined by formula (5). There exists a
pair of 0-1-SMSF G = (G(1),G(2)) and the copula CG generated by G such that
for arbitrary 0-1-SMSF F = {fx}x∈[0,1] and the pair of 0-1-SMSF F = (F̃ ,F)
we have

CG 
= CF.

Proof. Choose (x, y) ∈ [0, 1]2. Then

CF(x, y) =
∫ x

0

fy(t)dt.

There are three possibilities for the result of CF(x, y).
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t
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0.25

0.5

0.75

0

1

1

x

x
+

y−
1

∗ = x+ y − 3
4

0.5

0.75

0.25 0.5 0.75

y2

1
4

∗
y − 1

4

Fig. 4. Left the layout of G4, right the copula CF
(4)

where F
(4) = (F̃ ,G4)

t

x

1

0

1
0

0.5
x
2

y
2

x+ y
2 − 1

2

x2
+

y −
12

0.5

0.5

Fig. 5. Left the layout of G5, right the copula CG where G = (G1,G5)

1. gy(t) = 0 almost everywhere on the interval [0, x], i.e., λ({t ∈ [0, x]; gy(t) 
=
0}) = 0, where λ is the Lebesgue measure. In this case CF(x, y) = 0.

2. There exists ϕ(y) ∈ [0, 1] such that fy(t) = 1 almost everywhere on the
interval [0, ϕ(y)] and, if x > ϕ(y) fy(t) = 0 almost everywhere on [ϕ(y), x].
Then

CF(x, y) =

{
x if x ≤ ϕ(y),
ϕ(y) if x > ϕ(y).

3. There exists a countable (finite or infinite) system of pairwise disjoint intervals
{[ai, bi]}i∈I such that [ai, bi] ∩ [0, x] 
= ∅, fy(t) = 1 almost everywhere for
t ∈ ⋃

i∈I

and fy(t) = 0 almost everywhere for t ∈ [0, x] \ ⋃
i∈I

. There are two

possibilities:
– bi ≤ x for all i ∈ I, then

CF(x, y) =
∑
i∈I

(bi − ai),
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– there exists j ∈ I such that bj > x, then

CF(x, y) =
∑
i∈I

(bi − ai) − (bj − x).

This gives the following – setting G(1) = G1 and G(2) = G5, where G1 and G5

are defined by formulae (10) and (14), respectively, and G = (G(1),G(2)) (see
also Fig. 5), then the copula CG cannot be generated by any pair of 0-1-SMSF
F = (F̃ ,F). ��
Remark 2. Analysing the proof of Proposition 3 we see that if a copula has a
component that is non-linear in the first variable, then it cannot be generated
by a pair of 0-1-SMSF (F̃ ,F) where F̃ is the 0-1-SMSF defined by formula (5).
Another consequence that can be derived is that the copula CG sketched on
Fig. 5 cannot be generated by a pair of 0-1-SMSF (F̃ ,F) nor by (F , F̃).

A characterization by the second mixed partial derivatives of copulas gener-
ated by pairs of 0-1-SMSF is contained in the following proposition.

Proposition 4. Let F be a pair of 0-1-SMSF and CF the copula generated by
F. Then

∂2CF

∂x∂y
(x, y) = 0 (15)

for all (x, y) ∈ [0, 1]2 where the second mixed partial derivative exists.

Durante et al. [5] have shown that if formula (15) holds for a copula CF then
CF still may have a density.

Finally, we show how we can construct an arbitrary shuffle of M by a pair
of 0-1-SMSF. The family of all shuffles of min is very important, since, as it is
proven in [11], this family is dense in the system of all bivariate copulas.

A geometrical visualisation of a shuffle of min is quite straightforward. We
choose a natural number n > 1, a system of nods 0 = a0 < a1 < · · · < an = 1
and cut the minimum copula parallel to the y-axis into n strips using those
nods. Then we shuffle the strips (this means we choose a permutation Π :
{1, 2, . . . , n} → {1, 2, . . . , n}) and paste them together in the permuted order.
If we denote bi = ai − ai−1 for i ∈ {1, 2, . . . , n} then choosing a permutation
Π : {1, 2, . . . , n} → {1, 2, . . . , n}, a shuffle of min is given by S = 〈n, (bi)ni=1,Π〉.
Example 4. Set n = 5, the permutation Π by (2, 1, 4, 3, 5) and the nodes are given
by (0, 0.3, 0.4, 0.7, 0.9, 1). Then the corresponding 0-1-SMSF G6 = { 6gx}x∈[0,1]

is given by formula (16) and the shuffle copula is then generated by the pair of
0-1-SMSF F6 = (F̃ ,G6) and displayed in Fig. 6.
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∗

Fig. 6. Left the layout of G6, right the copula CF
(6)

where F
(6) = (F̃ ,G6)

The explicit formula for 0-1-SMSF G6 = {6gx}x∈[0,1] is given by

6gx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for: x ∈ [0, 0.1] and t ∈ [0.3, x + 0.3],
x ∈ [0.1, 0.4] and t ∈ [0, x − 0.1] ∪ [0.3, 0.4],
x ∈ [0.4, 0.6] and t ∈ [0, 0.4] ∪ [0.7, x + 0.3],
x ∈ [0.6, 0.9] and t ∈ [0, x − 0.2] ∪ [0.7, 0.9],
x ∈ [0.9, 1] and t ∈ [0, x],

0 otherwise.

(16)

Shuffles of min are in [11] described in a more general way than we have
illustrated by Example 4. Namely, the shuffles can be combined with flips (a flip
of the minimum copula M is W ). This combination is sketched in Fig. 3. The
following proposition gives a characterization of all shuffles (possibly combined
with flips) of min as special cases of copulas generated by a pair of 0-1-SMSF. In
this case a shuffle of min is given by 〈n, (bi)ni=1,Π, (mi)ni=1〉, where bi denotes the
width of the i-th strip, Π is a permutation of {1, 2, . . . , n} and mi = 1 (m = 0)
if we use the flip (if we do not use the flip) in the square [ai−1, ai]2, where
ai =

∑i
j=1 bj . We skip the proof of Proposition 5 since the construction there is

just a generalization of formulae (12) and (16).

Proposition 5. Set n > 1 a natural number, for i ∈ {1, . . . , n} let bi > 0 be such

that
n∑

i=1

bi = 1, mi ∈ {0, 1} and Π : {1, . . . , n} → {1, . . . , n} be a permutation.

Denote a0 = ã0 = 0 and for i ∈ {1, . . . , n} ai =
i∑

j=1

bj and ãi =
i∑

j=1

bΠ−1(j).

The shuffle of min given by 〈n, (bi)ni=1,Π, (mi)ni=1〉, is generated by the pair of
0-1-SMSF F = (F̃ ,H), where H = {hx}x∈[0,1] is defined by
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hx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x ∈ [0, ã1] and t ∈ A1,

x ∈ [ãi−1, ãi] and t ∈ Ai ∪
i−1⋃
j=1

[ãj−1, ãj ], for 2 ≤ i ≤ n,

0 otherwise,

(17)

where, for i ∈ {1, 2, . . . , n},

Ai =

{
[a−1

Π (i) + ãi−1 − x, aΠ−1(i)] if m = 1,

[a−1
Π (i) − 1, x − (aΠ−1(i) − ãi)] if m = 0.

4 Conclusion

This paper contributes to a study of Generalized-Convex-Sum-Transformation
of (binary) aggregation functions. Particularly, we have studied copulas that can
be generated by pairs of 0-1-SMSF (see formula (6)). Though, the 0-1-SMSF F̃
given by formula (5) is, in a sense, a basic 0-1-SMSF, when we like to generate all
possible copulas by pairs of 0-1-SMSF, it is not sufficient to consider only those
pairs where one of the 0-1-SMSF is F̃ . We have also shown that every shuffle of
the minimum copula (possibly combined with flips) can be generated by a pair
of 0-1-SMSF and in Proposition 5 we have written down an explicit formula for
such 0-1-SMSF.
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