
Analyzing Non-deterministic Computable
Aggregations

Luis Garmendia1(B) , Daniel Gómez2(B) , Luis Magdalena3(B) ,
and Javier Montero4(B)

1 Facultad de Informática, Universidad Complutense de Madrid,
Madrid, Spain

lgarmend@fdi.ucm.es
2 Facultad de Estudios Estad́ısticos, Universidad Complutense de Madrid,

Madrid, Spain
dagomez@estad.ucm.es

3 ETSI Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
luis.magdalena@upm.es

4 Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid,
Madrid, Spain

monty@mat.ucm.es

Abstract. Traditionally, the term aggregation is associated with an
aggregation function, implicitly assuming that any aggregation process
can be represented by a function. However, the concept of computable
aggregation considers that the core of the aggregation processes is the
program that enables it. This new concept of aggregation introduces the
scenario where the aggregation can even be non-deterministic. In this
work, this new class of aggregation is formally defined, and some desir-
able properties related with consistency, robustness and monotonicity
are proposed.

Keywords: Aggregation · Computable aggregation · Nondeterministic
aggregation

1 Introduction

Aggregation is a fundamental part of any decision, compression or summarization
process of complex information [1–4]. For many years, aggregation has become
one of the most relevant topics in soft computing, with multiple applications
to decision making, artificial intelligence, data science, and image processing
among many others. Aggregation processes have been associated in literature
with aggregation functions. An aggregation process was usually represented by
means of a function or a family of functions so that the aggregation result asso-
ciated to a vector of elements was obtained through the image of the vector by
the function.

Supported by PGC2018-096509-B-I00 research national project.

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 551–564, 2020.
https://doi.org/10.1007/978-3-030-50143-3_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_43&domain=pdf
http://orcid.org/0000-0003-3429-8434
http://orcid.org/0000-0001-9548-5781
http://orcid.org/0000-0001-7639-8906
http://orcid.org/0000-0001-8333-2155
https://doi.org/10.1007/978-3-030-50143-3_43

552 L. Garmendia et al.

However, this association between aggregation processes and functions was
broken in [5] with the definition of computable aggregations. In that paper, the
authors put the emphasis in the programs enabling the aggregation processes,
not necessarily being expressed in funct terms of functions. In that sense, the core
of an aggregation process is the program allowing its computation, and not only
the function that describes it. Given a function that describes an aggregation
process, it can be implemented in many ways and the way in which this process is
carried out is relevant. This new idea of aggregation, allow us to classify classical
aggregation operators according to their algorithmic complexity [5], or to classify
aggregation functions according to new ideas of recursivity [6,7] in terms of the
programs instead of the functions.

The rupture between functions and aggregation operators opens the domain
of aggregation processes to a field not yet analyzed in this discipline: non-
deterministic computable aggregations. Aggregation processes where the same
input can produce different outputs. This type of aggregation is very common
in statistics, where, due to the volume of information to be processed, it is fre-
quent to choose a representative sample on which the aggregation is operated.
Obviously, replicating the process does not imply obtaining the same sample
and consequently the result can change. Obviously, these types of aggregation
processes can never be modeled by functions, as a result of the intrinsic defi-
nition of function. But leaving the well known arena of functions, studying the
desirable properties for these new concept of aggregations represents a significant
challenge.

The present paper focuses on the definition of properties related to robust-
ness, stability, boundary conditions, and monotony, on nondeterministic com-
putable aggregations.

2 Preliminaries

2.1 Aggregation Operators

Aggregation is a fundamental part of science. The process of aggregating the
information is a key tool for most knowledge based systems. In general, we can
say that aggregation has the aim of merging different pieces of information to
come to a conclusion or a decision. Several research communities consider this
kind of tools, such as multi-criteria community, decision-sensor fusion commu-
nity, decision making community, data mining community, among many others.

Although this is not a necessary assumption, aggregation operators [4,8–11]
are associated to the use of membership functions, and this is the reason why
they are usually defined as follows:

Definition 1 [12]. An aggregation operator is a mapping Ag : [0, 1]n → [0, 1]
that satisfies:

1. Ag(0, 0..., 0) = 0 and Ag(1, 1, .., 1) = 1.
2. Ag is monotonic.

Analyzing Non-deterministic Computable Aggregations 553

Let us observed that this definition presents an aggregation operator as a
function that is linked to the value of n. There is a different function for each
n. Other authors (see [12] for example) present an aggregation operator as a
function that considers any cardinality for the set of items to be aggregated,
defining Ag as a function Ag : ∪n[0, 1]n → [0, 1]]. It is also possible (see for
example [13–15]) to define the concept of family of aggregation functions as a set
{Agn} assuming some additional constraints for the relations between functions
Agk, Agl of different cardinality.

The original definition of aggregation functions work on the unit interval.
This classical definition has been extended to a more general class of situations
replacing the lattice [0, 1] into a more general scenario T . Another extension of
aggregation operators was done by relaxing the monotonicity or boundary condi-
tions. One of these new classes of aggregation operators are the pre-aggregation
functions in which the concept of directional monotonicity was introduced [16].
These pre-aggregations could be extended replacing the unit interval for a gen-
eral T as it is done with the classical aggregation functions. We can find some
interesting studies in this line in [17].

It is even possible in some cases to define aggregation processes going beyond
functions by considering methods that do not match with the concept of function.
To analyze this option let us first remind the concept of Computable aggregation,
as well as that of function.

2.2 Computable Aggregation

In [5], it was introduced the concept of computable aggregation focusing on the
idea that in aggregation processes we should pay our attention in the program
that makes possible the aggregation instead of a generic function that has not
yet been implemented.

Would it make sense to talk about an aggregation process where the consid-
ered function could not be implemented?. From the actual definition of aggrega-
tion operator the answer is yes of course. Or even more, given the same aggrega-
tion function, it is not equivalent at all to implement it in one way or another.
And therefore, it would make sense to analyze the properties of the implementa-
tion (program), although from the functional point of view both implementations
coincide. The main contribution in [5] was to separate the strong association that
existed between “aggregation processes” and explicit functions.

In order to formally introduce computable aggregations it is necessary first
to introduce what we understand by a program, a list and/or an algorithm.

Definition 2. A list L is an abstract data type (ADT) that represents a sequence
of values. A list can be defined by its behavior, and its implementation must
provide at least the following operations: test whether a list is empty, add a
value, remove a value, and compute the length of a list (number of elements).

A list can be defined under a template data type. For example, a list L<[0, 1]>
is a list of values in the space X = [0, 1].

554 L. Garmendia et al.

Another definition that we need to give here is what we understand by algo-
rithm and computer program. These concepts are necessary to formally define
computable aggregations.

Definition 3 [18]. In mathematics and computer science, an algorithm is a
self-contained step-by-step set of operations to be performed.

Algorithms can be expressed in many kinds of notation, including natural lan-
guages, pseudocode, flowcharts, drakon-charts, programming languages or control
tables.

Definition 4 [19]. A computer program, or simply a program, is a sequence
of instructions written to perform a specified task on a computer.

Now, we are able to define the concept of a computable aggregation as it was
defined in [5].

Definition 5. Let L<T> be a finite and non-empty list of n elements with type
T . A computable aggregation is a program P that transform the list L<T>
into an element of T .

3 Non Deterministic Computable Aggregations

It is important to emphasize that the computable aggregation paradigm broad-
ens the set of possible aggregation methods, being in this case not limited to
those methods for which there is a function that explains the aggregation pro-
cess.

In [7], it was demonstrated that any classical aggregation process (aggrega-
tion operators, pre-aggregations, fusion functions or extended fusion functions)
can be implemented by an algorithm and by a program. However the opposite
is not always true.

As was mentioned in [5], given an aggregation operator Ag in any of the
previous settings, it is possible to build a program P that for any list L of T ,
Ag|L|(L) = P (L).

But let us note that the opposite is not always true. Given a program P , there
exist some situations in which it is not possible to build a function associated to
the program P .

Example 1. Let’s consider a population X of size n (X = {x1, . . . , xn}). Suppose
that the objective of the aggregation process is to estimate the average value of
X. If n is too large considering the available time for computing the aggregation,
a reasonable solution would be to estimate the average value through statistical
sampling. In such a situation, k elements of the population will be drawn at
random to further calculate the average, i e., given the set {x1, ..xn}, we choose
{xi1, . . . , xik} at random, computing the arithmetic mean of these k elements.
Obviously, this aggregation process can’t be defined by means of an explicit
function since the same input does not always produce the same output. This
is a computable aggregation that can’t be modeled as an aggregation function,
and it is important to integrate such a situation in aggregation processes.

Analyzing Non-deterministic Computable Aggregations 555

From previous example we can distinguish between those computable aggre-
gations in which there exist an explicit function, from those in which this explicit
function does not exist. Formally we can partition the set of computable aggre-
gation programs into two groups. In order to establish this partition we will
introduce first the concept of deterministic algorithm and program.

It is important to notice that in this framework, the concept of determinism
is approached in two different ways:

– A determinism that only considers input/output relations.
– A determinism that considers the whole process, including the internal states.

With the first approach, a deterministic algorithm will be an algorithm which,
given a particular input, will always produce the same output. On the other
hand, the second approach assumes also that the underlying machine always
passes through the same sequence of states.

From the point of view of computer programs as implementation of aggre-
gation processes, our interest relies on input-output relations. Consequently we
will focus on the first conception when defining a deterministic program.

Definition 6. A program P is deterministic, or repeatable, if it produces the
very same output when given the same input no matter how many times it is
run.

It would be possible adding to this definition of deterministic program, a
concept similar to the same sequence of states considered for the deterministic
algorithm. In fact, according to [20], in a deterministic program there is at most
one instruction to be executed next, so that from a given initial state only one
execution sequence is generated. This could be a good option in case we were
interested in the verification of a program, being the execution process a key
aspect. But it is obviously too restrictive for our purpose, since we are only
interested in the result of the Program. Consequently, we will consider Defini-
tion 6 as our conception of a deterministic program.

No matter which of the two possible definitions we consider, when applying
a deterministic program P we can refer to the output produced for a particular
input (a list L), as P (L). That is because the same input (L) will always produce
the same output (P (L)), generating a mapping.

Obviously, a program or an algorithm are non-deterministic when they do
not match with the previous definitions.

It is clear according to the definitions that (when having the same app-
roach to determinism) a non-deterministic algorithm will always produce a non-
deterministic program. Consequently, when analyzing if a computable aggrega-
tion is deterministic or non-deterministic we should simply consider the corre-
sponding Program.

Definition 7. A computable aggregation P over the set T is non deterministic
if and only if the program P is non deterministic.

556 L. Garmendia et al.

From this definition we will say that a computable aggregation P is deter-
ministic when the program P is deterministic, implying that the underlying
algorithm is also deterministic.

Let us denote by PD the class of deterministic computable aggregations and
by PND the set of non deterministic computable aggregations.

From now on, we will analyze the case in T = [0, 1].

3.1 Some Non Deterministic Computable Aggregations

It is obvious that in many cases the non-deterministic behavior of a program
relates to an inappropriate coding that generates an unexpected problem. This
is usually the case when we have a deterministic algorithm that being wrongly
programed produces a non-deterministic output. But this is not the kind of
non-determinism we are interested in. Our interest relies on programs describing
aggregation processes that are intrinsically non-deterministic, processes where,
as an example, random or probabilistic decisions are involved.

In this subsection, we will define some interesting cases of non deterministic
computable aggregations (NDCAs).

Definition 8. Given a value p ∈ (0, 1], and given a family of aggregation oper-
ators {Agn : [0, 1]n −→ [0, 1], n ≥ 2} , let us define the computable aggregation
PAg,p as the two steps program that for a given list l = (x1, . . . , xn) ∈ L<[0, 1]>
performs the following actions:

– Step 1. To reduce the list l into another list lp of lower (or equal) dimension
by randomly erasing the elements of the list with probability 1 − p.

– Step 2. To return the value Ag|lp|(lp) if |lp| ≥ 2 and 0 otherwise.

Note that the computable aggregation PAg,p=1 coincides with the program
associated with the family of aggregation operators {Agn, n ≥ 2} and is deter-
ministic since the list lp = l when p = 1.

Obviously, PAg,p as described in Definition 8 is not only a computational
aggregation, it is in fact a generic approach that induces as many different com-
putable aggregation as the possible families of aggregation operators {Agn}. In
particular, we will analyze in this paper three cases: the arithmetic mean, max-
imum and minimum aggregation operators. From now on, we will denote the
three of them as: PM,p, PMax,p and PMin,p described as the sample mean or
average, the sample maximum and the sample minimum respectively.

Another way to build a class of Non deterministic computable aggregations
should be to fix a value k, and randomly select k elements from the list, as those
to be aggregated. Given a list of n elements of [0, 1], l = {x1, . . . , xm} ∈ <[0, 1]>,
let us denote by Selk a program that randomly chooses a sample (without re-
sampling) of k elements of the list if m ≥ k, and maintains the same list in other
case.

Definition 9. Given a family of aggregation operators {Agn n ≥ 2}, the com-
putable aggregation PAg,k, with k ≤ n, is defined as the program that for a given

Analyzing Non-deterministic Computable Aggregations 557

list l of m elements, first applies the procedure l′ = Selk(l), and then computes
the value Ag|l′|(l′).

It is very easy to see that the computable aggregation PAg,k is also a non-
deterministic computable aggregation (being deterministic when k ≥ m). The
main difference with the previous computable aggregation is that here the dimen-
sion of the list to be aggregated is upper bounded by k, consequently the family
of aggregation operators is also bounded in dimension, no matter the dimensions
of the list to be aggregated.

Definition 10. Given a normal distribution N(μ, σ) and a family of aggregation
operators {Agn : [0, 1]n −→ [0, 1], n > 2}, we define the noisy computable
aggregation PN(μ,σ),Ag as the program that for any list l ∈ <[0, 1]>, with
|l| ≤ n, returns PN(μ,σ),Ag = Ag(lN), where lN is the list generated by replacing
each element in l with the same element after being modified by adding noise
generated by the normal distribution (truncated to 0 or 1 in case that the resulting
value was out of the [0, 1] interval).

Definition 11. The pure random computable aggregation PPR is a program that
for any list l ∈ <[0, 1]> returns a random value in [0, 1].

Definition 12. The bounded random computable aggregation PBR is a pro-
gram that for any list l ∈ <[0, 1]> returns a random value in the interval
[Min(l),Max(l)].

Proposition 1. The computable aggregation operators: PM,p, PMax,p, PMin,p

PAg,k, PN(μ,σ),Ag, PPR, PBR are non deterministic computable aggregation oper-
ators if σ > 0 and p < 1.

An example of C++ program P implementing PM,p and PMax,p is described
in Fig. 1.

Fig. 1. An implementation of PM,p and PMax,p in C++.

558 L. Garmendia et al.

4 Exploring Non Deterministic Computable Aggregations

Given a computable aggregation P that aggregates a list l ∈ L<T>, let us
denote by P(l) the theoretical distribution after all possible realizations of the
program P over the fixed list l. Obviously, if P ∈ PD, the associate P(l) for any
list will be a single value. For non deterministic programs, we will have here a
probability distribution P(l) for each fixed value of l.

In general, given a non deterministic computable aggregation P , it is not
possible to know the theoretical distribution P(l). Nevertheless, we could try to
approximate it by making many realizations of P (l). In the following definition
we distinguish between the empirical and theoretical distribution.

Definition 13. Given a computable aggregation P and given a list l ∈ L<T>,
the distribution of results obtained after n executions of the program P over the
list l, will be referred us the empirical distribution with size n of the program P
over the list l, represented by DPn,l.

Proposition 2. Given a deterministic computable aggregation P , the following
holds:

DPn,l = P(l)

To analyze the aggregation process previously described and implemented by
an NDCA we have several components to consider. There is a list l ∈ L<T>
of elements to be aggregated. There is also a family of aggregation operators
({Agn}) underlying in the non deterministic aggregation process. Finally, two
distributions describe the aggregation process: the theoretical distribution P(l)
and the empirical distribution (DPn,l). It is obvious that the interactions and
relations among these elements will describe and characterize an NDCA.

Some of the questions to be considered are obvious, as the relations between
the properties of both distributions (the theoretical and the empirical). But it
could also be interesting to consider potential relations between some properties
of the list l (analyzed as a distribution) and the corresponding properties of
the theoretical/empirical distribution. Another important question could be to
compare the result produced by the deterministic underlying aggregation, that is
Ag|l|(l), and some properties of the distributions (mean, median, etc) generated
by the NDCA.

As said before, it is in general not possible to know the theoretical distribution
generated by a non deterministic computable aggregation P when applied on a
list l (P(l)). We will replace it with an empirical distribution (DPn,l), and we
need both to have similar properties.

In that sense we can define the concept of robustness of an NDCA as a
measure of the similarity of both distributions (theoretical and empirical).

Definition 14 Robust. A non deterministic computable aggregation P is said
to be Robust, if and only if, for any l ∈ L<[0, 1]>, for any t ∈ [0, 1], and for

Analyzing Non-deterministic Computable Aggregations 559

any ε > 0, there exists n0 such that the absolute difference between the empirical
distribution function

̂DPl,n(t) =
number of elements inDPl,n ≤ t

n

and the real distribution function FP (l)(t) is lower than ε for n ≥ n0.

4.1 Empirically Exploring Non Deterministic Computable
Aggregations

Given a non deterministic computable aggregation P = agg and a list l, Fig. 2
presents a C++ program generating the empirical distribution DPn,l for a list l
with length 1000.

Fig. 2. An implementation of Daggl,n in C++.

Figure 3 presents the empirical distribution (DPn,l) for some of the previously
defined NDCAs1, with n = 1000 and being l a list of 10000 random values2

generated either using a uniform(0,1) distribution or a Normal(0.5,0.1) bounded
in [0, 1]3.

Note that the sample and the noisy mean NDCA have a normal distribution
and the pure random and bounded pure random NDCA have uniform distri-
bution. Note also that the sample min and the sample max NDCA have more
dispersion in the N(0.5, 0.1 population generated list that with the U(0, 1) pop-
ulation generated list.
1 The C++ program could be downloaded from https://github.com/lgarmend/

NonDeterministicComputableAggregations/.
2 The generated population is available in file GeneratedPopulationData.txt,

at https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/
master/GeneratedPopulationData.txt.

3 The executions lists are saved in file GeneratedExecutionsList.txt for the cases of
uniform and Normal population distribution.

https://github.com/lgarmend/NonDeterministicComputableAggregations/
https://github.com/lgarmend/NonDeterministicComputableAggregations/
https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/master/GeneratedPopulationData.txt
https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/master/GeneratedPopulationData.txt

560 L. Garmendia et al.

Fig. 3. Empirical distribution for some NDCAs

5 Characterizing Non Deterministic Computable
Aggregations

Three properties were initially considered in aggregation operators theory: two
boundary conditions plus monotonicity property. Taking into account now that
for a non-deterministic computable aggregation the output for a fixed input
does not necessarily have to be a single-point value, in this section we will try
to extend (or at least give possible extensions) of how these concepts could be
generalized in the context of non deterministic computable aggregations.

In the following definition, we present the pure case in which a computable
aggregation satisfies the boundary conditions and also the idempotent property.
Firs at all, let us denote by la a list with all elements equal to a, i.e la = (a, . . . , a).

Definition 15 A computable aggregation P over the set T = [0, 1] is idempotent
if and only P (la) = a for all a ∈ [0, 1].

Definition 16 A computable aggregation P over the set T = [0, 1] satisfies the
two classical boundary conditions if and only the following holds:

– P (l0) = 0.
– P (l1) = 1.

Let us note that if a computable aggregation is idempotent then it satisfies
the two boundary condition.

Analyzing Non-deterministic Computable Aggregations 561

Proposition 3 If the family {Agn} of aggregation operators is idempotent, then
the following holds:

– The computable aggregation PAg,p is idempotent.
– The computable aggregation PAg,k is idempotent.

As a consequence of the previous proposition the following corollary holds.

Corollary 1. The computable aggregations PM,p, PMax,p, PMin,p, PM,k,
PMax,k, PMix,k are idempotent.

Proposition 4. If the family {Agn} of aggregation operators satisfies the bound-
ary conditions then the following holds:

– The computable aggregation PAg,p satisfies the boundary conditions.
– The computable aggregation PAg,k satisfies the boundary conditions.

As a consequence of the previous proposition the following corollary holds.

Corollary 2. The computable aggregations PM,p, PMax,p, PMin,p, PM,k,
PMax,k, PMix,k satisfy the boundary conditions.

Proposition 5. The computable aggregations PBR, PPR, PN(μ,σ) are non idem-
potent and do not satisfy the boundary conditions.

In previous section we introduced robustness as the way to establish that both
the theoretical and the empirical distributions are similar. This idea will allow
us to work on the basis of DPl,n, considering that in most cases the theoretical
distribution is unknown.

We will introduce now the idea of consistency of an NDCA, as the property
that considers how close is the behavior of P , with that of Ag, the underlying
aggregation process considered by the NDCA.

Definition 17 Consistent in φ. A non deterministic computable aggregation
P is said to be robust in φ, if and only if, for any l ∈ L<[0, 1]>, and for any
ε > 0, there exists n0 such that the absolute difference between φ(π(DPl,n)) and
φ(l) is lower than ε for any n ≥ n0, where (π(DPl,n)) is the vector representation
of the set DPl,n.

Proposition 6 If p ∈ (0, 1], the following holds:

– PM,p is Consistent in mean.
– PMax,p is Consistent in Max.
– PMin,p is Consistent in Min.

Proof. For random sample theory, it can be seen that the convergence of
M(π(DPl,n) is M(l), Max(π(DPl,n) is Max(l) and Min(π(DPl,n) is Min(l).

It would be also important to consider how the dispersion of DPl,n evolves
with n. Ideally we would like the dispersion to reduce when n increases.

562 L. Garmendia et al.

Definition 18 Concentrate. A non deterministic computable aggregation P
is said to concentrate when the dispersion of DPl,n decreases (is non increasing)
with n.

Now let us define what we understand as monotonicity in non deterministic
computable aggregation, since for the deterministic the definition can be repro-
duced in the same way. A definition of monotony for any function f : X −→ Y
required first the definition of an order in the spaces X and Y , in such a way
if we have two inputs l, l′ ∈ X with l ≤X l′ then monotonicity implies that
f(l) ≤Y f(l′).

Taking into account this, if we want to define some class of monotonicity in
the case of non-deterministic computable aggregations we have to define first
an order in the input space (the set of possible lists L<[0, 1]>) and also an
order relation in the space of finite subsets of [0, 1]. Let us denote by ˜≤L<[0,1]>

an order between lists and let us denote by ˜≤PF [0,1] an order between finite
sets contained in [0, 1]. Once these two order relations be explicitly defined, the
monotony definition is fixed as follow:

Definition 19 Let ˜≤L<[0,1]> be a partial order on the list set and let ˜≤PF [0,1]

be a partial order on the sets of finite sets contained in [0, 1], then a computable
aggregation P is monotone if and only if given any pair of lists l and l′ with
l ˜≤L<[0,1]>l′ this implies that DPl,n ˜≤PF [0,1]DPl′,n with n large enough.

Although this definition is perfectly valid, it would be interesting to study in
deep different possibilities that will produce different ideas of monotonicity. In
particular, in this article we provide a possible order but others could be defined.

The problem of establishing a possible order among the set of ordered lists
does not seem very complex if we focus on the case in which the lists presents
equal size, since the order relationship coincides with the natural order relation-
ship in [0, 1]k, so we will consider that natural order. The case of order over finite
sets (even if they have the same size) is much more complex.

In this paper, we propose a possible idea of order that is related with a
majority rule. A finite set S ≤T S′ if and only if the following holds:

|{(x, y) ∈ S × S′ / x ≤ y}| ≥ |{(x, y) ∈ S × S′ / y ≤ x}|.

Just to put an example we have that the set S = {0.1, 0.3, 0.5} is lower
than S′ = {0.2, 0.6, 0.7} since from the 9 pairwise comparison the elements of
S′ win in 7 of the cases. Taking into account this consideration the following
monotonicity definition is given:

Definition 20 Tournament monotonicity. A non deterministic computable
aggregation P over the domain T is Tournament monotonic if and only if for
any pair of lists l,l′ of T with the same cardinal such that l ≤ l′ there exist n0

in which the following holds

DPn,l ≤T DPn,l′ for n ≥ n0.

Analyzing Non-deterministic Computable Aggregations 563

6 Conclusions

The definition of Computable aggregation implies a rupture between functions
and aggregation processes allowing the incorporation of a new class of aggre-
gations: the non deterministic computable aggregation. This new class of com-
putable aggregations is characterized by aggregations where the result of the
process could change even if we fix the information that has to be aggregated.
Obviously, no function can model this class of aggregation process since by def-
inition the output of a function is always the same for a fixed input value.

It is important to emphasize that there are many real situation in which the
information is aggregated in a non deterministic way. For example, any inference
based on random sampling is a well-known example of this. If the population
is huge, it is very frequent to obtain a sample and operate over it. But this is
not the only case, any aggregation process in which randomness appear could be
understood as a non deterministic process. Many artificial intelligence or machine
learning aggregation process could be classified also as non deterministic.

In this paper, we have tried to define some desirable properties for these new
class of aggregation process as robustness, stability, boundary conditions, and
monotonicity. This questions open the gate for further research.

Acknowledgment. This research has been partially supported by the Government of
Spain (grant PGC2018-096509-B-I00), the Government of Madrid (grant S2013/ICCE-
2845), Complutense University (UCM Research Group 910149) and Universidad
Politeécnica de Madrid.

References

1. Bouchon-Meunier, B.: Aggregation and Fusion of Imperfect Information, vol. 12.
Physica, Heidelberg (2013)

2. Bustince, H., Herrera, F., Montero, J. (eds.): Fuzzy Sets and Their Extensions: Rep-
resentation, Aggregation and Models. Studies in Fuzziness and Soft Computing,
vol. 220. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73723-0

3. Gómez, D., Montero, J.: A discussion on aggregations operators. Kybernetika 40,
107–120 (2004)

4. Gómez, D., Rojas, K., Montero, J., Rodŕıguez, J., Beliakov, G.: Consistency and
stability in aggregation operators, an application to missing data problems. Int. J.
Comput. Intell. Syst. 7, 595–604 (2014)

5. Montero, J., del Campo, R.G., Garmendia, L., Gómez, D., Rodŕıguez, J.: Com-
putable aggregations. Inf. Sci. 460, 439–449 (2018)

6. González-del-Campo, R., Garmendia, L., Montero, J.: Complexity of increas-
ing phi-recursive computable aggregations. In: XIX Congreso Español sobre Tec-
noloǵıas y Lógica Fuzzy (CAEPIA-ESTYLF), pp. 187–191 (2018)

7. Magdalena, L., Garmendia, L., Gómez, D., del Campo, R.G., Rodŕıguez, J.T.,
Montero, J.: Types of recursive computable aggregations. In: 2019 IEEE Inter-
national Conference on Fuzzy Systems. FUZZ-IEEE 2019, pp. 1–6. IEEE (2019)

https://doi.org/10.1007/978-3-540-73723-0

564 L. Garmendia et al.

8. Calvo, T., Kolesárová, A., Komorńıková, M., Mesiar, R.: Aggregation operators:
properties, classes and constructions methods. In: Calvo, T., Mayor, G., Mesiar, R.
(eds.) Aggregation Operators. Studies in Fuzziness and Soft Computing, vol. 97,
pp. 3–104. Physica, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1787-
4 1

9. Rojas, K., Gómez, D., Montero, J., Rodŕıguez, J.: Strictly stable families of aggre-
gation operators. Fuzzy Sets Syst. 228, 44–63 (2013)

10. Beliakov, G., Gómez, D., James, S., Montero, J., Rodŕıguez, J.: Approaches to
learning strictly-stable weights for data missing values. Fuzzy Sets Syst. 325, 97–
113 (2017). https://doi.org/10.1016/j.fss.2017.02.003

11. Olaso, P., Rojas, K., Gómez, D., Montero, J.: A generalization of stability for
families of aggregation operators. Fuzzy Sets Syst. 378, 68–78 (2020)

12. Beliakov, G., Pradera, A., Calvo, T.: Aggregations Functions: A Guide for
Practitioners. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
73721-6

13. Cutello, V., Montero, J.: Recursive families of OWA operators. In: Proceedings of
the IEEE International Conference on Fuzzy Systems (FUZZIEEE 1994), Orlando,
USA, pp. 1137–1141 (1994)

14. Cutello, V., Montero, J.: Hierarchical aggregation of owa operators: basic measures
and related computational problems. Uncertainty Fuzziness Knowl.-Based Syst. 3,
17–26 (1995)

15. Cutello, V., Montero, J.: Recursive connective rules. Int. J. Intell. Syst. 14, 3–20
(1999)

16. Lucca, J.G., Dimuro, G.P., Bedregal, B.R.C., Mesiar, R., Kolesárová, A., Bustince,
H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy
Syst. 24(2), 260–272 (2016)

17. Magdalena, L., Gómez, D., Montero, J., Cubillo, S., Torres, C.: Generalized
pre-aggregations. In: Kearfott, R.B., Batyrshin, I., Reformat, M., Ceberio, M.,
Kreinovich, V. (eds.) IFSA/NAFIPS 2019 2019. AISC, vol. 1000, pp. 362–370.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21920-8 33

18. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

19. Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Englewood
Cliffs (1976)

20. Apt, K.R., Olderog, E.-R.: Deterministic programs. In: Apt, K.R., Olderog, E.-
R. (eds.) Verification of Sequential and Concurrent Programs. Graduate Texts in
Computer Science, pp. 47–99. Springer, New York (1997). https://doi.org/10.1007/
978-1-4757-2714-2 3

https://doi.org/10.1007/978-3-7908-1787-4_1
https://doi.org/10.1007/978-3-7908-1787-4_1
https://doi.org/10.1016/j.fss.2017.02.003
https://doi.org/10.1007/978-3-540-73721-6
https://doi.org/10.1007/978-3-540-73721-6
https://doi.org/10.1007/978-3-030-21920-8_33
https://doi.org/10.1007/978-1-4757-2714-2_3
https://doi.org/10.1007/978-1-4757-2714-2_3

	Analyzing Non-deterministic Computable Aggregations
	1 Introduction
	2 Preliminaries
	2.1 Aggregation Operators
	2.2 Computable Aggregation

	3 Non Deterministic Computable Aggregations
	3.1 Some Non Deterministic Computable Aggregations

	4 Exploring Non Deterministic Computable Aggregations
	4.1 Empirically Exploring Non Deterministic Computable Aggregations

	5 Characterizing Non Deterministic Computable Aggregations
	6 Conclusions
	References

