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Abstract. OWA operators have been ubiquitous in many disciplines
since they were introduced by Yager in 1988. Aside of some other intu-
itive properties (e.g. monotonicity and idempotence), OWA operators
are known to be continuous and, for some carefully constructed weigh-
ing vectors, very robust in the presence of outliers. In a recent paper, a
natural extension of OWA operators to the setting of multidimensional
data has been proposed based on the use of a linear extension of the prod-
uct order by means of several weighted arithmetic means. Unfortunately,
OWA operators constructed in such a way focus too strongly on the level
sets of one of the weighted arithmetic means. It is here shown that this
focus ultimately results in a forfeit of the properties of continuity and
robustness in the presence of outliers.
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1 Introduction

Back in 1988, Yager introduced OWA operators in the context of decision mak-
ing [12] as a family of functions that lie in between the ‘and’ and the ‘or’ opera-
tors. Formally, an OWA operator simply is the result of applying a symmetriza-
tion process to a weighted arithmetic mean [7] in which the weighted arithmetic
mean is applied to the order statistics of the values to be aggregated rather than
to the values themselves. Aside of symmetry, OWA operators satisfy very natural
properties such as (increasing) monotonicity, idempotence and continuity.

Several families of OWA operators have been studied in the literature [13],
probably centered OWA operators being the most prominent family [14]. Inter-
estingly, some centered OWA operators have been studied in the field of statis-
tics due to their robustness in the presence of outliers, e.g., the median, trimmed
means and winsorized means.
This research has been partially supported by the Spanish MINECO project (TIN2017-
87600-P) and the Research Foundation of Flanders (FWO17/PDO/160).

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 588–593, 2020.
https://doi.org/10.1007/978-3-030-50143-3_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_46&domain=pdf
https://doi.org/10.1007/978-3-030-50143-3_46


OWA Operators for Multidimensional Data 589

The field of multivariate statistics has studied for a long time how to extend
the notion of median to the multidimensional setting [10]. The field of aggrega-
tion theory is also experimenting an increasing interest in this multidimensional
setting. For instance, one can find recent works on penalty-based aggregation of
multidimensional data [5] and on the property of monotonicity for multidimen-
sional functions [6,9]. It is no surprise then that an extension of OWA operators
to the multidimensional setting has been recently proposed by De Miguel et
al. [2] by making use of a linear extension of the product order. Unfortunately,
as we shall see in the upcoming sections, the consideration of a linear extension
of the product order extends OWA operators to the multidimensional setting at
the cost of losing continuity and, if applicable, the robustness in the presence of
outliers.

The remainder of the paper is structured as follows. In Sect. 2, it is discussed
how a linear extension of the product order can be defined by means of several
weighted arithmetic means. Section 3 presents the extension of OWA operators
to the multidimensional setting by De Miguel et al. The strange behaviour of
such extension is discussed in Sect. 4. We end with some concluding remarks in
Sect. 5.

2 Linear Extensions of the Product Order by Means
of Weighted Arithmetic Means

Consider n points x1, . . . ,xn ∈ R
m. The j-th component of the point xi is

denoted by xi(j). The product order ≤m on R
m is defined as xi1 ≤m xi2 if

xi1(j) ≤ xi2(j) for any j ∈ {1, . . . , m}. Obviously, ≤m is not a linear order
on R

m.
As discussed in [2] (see Proposition 2), a linear extension of ≤m can

be defined by means of m linearly independent weighted arithmetic means
M1, . . . ,Mm : Rm → R. More precisely, the linear extension �M of ≤m based
on M = (M1, . . . ,Mm) is defined by xi1 � Mxi2 if xi1 = xi2 or there exists
k ∈ {1, . . . , m} such that

Mj(xi1) ≤ Mj(xi2), for any j ∈ {1, . . . , k − 1},

Mk(xi1) < Mk(xi2).

The most prominent such linear extensions of R
m are the lexicographic

orders �σ [4], where a permutation σ of {1, . . . , n} serves for establishing a
sequential order in which the different components are considered. Formally, for
any j ∈ {1, . . . , k}, Mj is defined as Mj(xi) = xi(σ(j)).

In the two-dimensional case, Xu and Yager’s linear order �XY on R
2 [11]

(induced by M1(xi) = 1
2xi(1) + 1

2xi(2) and M2(xi) = xi(2)) is also very well-
known1 in the context of intervals and intuitionistic fuzzy sets.
1 It is admittedly more common to find an equivalent definition of the order in which
M2 is defined as M2(xi) = xi(2)−xi(1). This equivalent definition is here abandoned
in order to guarantee M2 to be monotone increasing.
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Example 1. Consider x1 = (3, 1), x2 = (1, 3) and x3 = (3, 3). It obviously holds
that x1 ≤2 x3 and x2 ≤2 x3, however, x1 and x2 are not comparable with
respect to ≤2.

If one considers Xu and Yager’s linear order �XY on R
2, it holds that x1 �

XYx2 due to the fact that

M1(x1) =
1
2
x1(1) +

1
2
x1(2) = 2 ≤ 2 =

1
2
x2(1) +

1
2
x2(2) = M1(x2),

M2(x1) = x1(2) = 1 < 3 = x2(2) = M2(x2).

It is concluded that x1 � XYx2 � XYx3.
An illustration of this procedure is given in Fig. 1.

•

•

•

Fig. 1. Graphical representation of the linear extension of the product order based on
M1(xi) = 1

2
xi(1) + 1

2
xi(2) and M2(xi) = xi(2) for the points x1 = (3, 1), x2 = (1, 3)

and x3 = (3, 3). The green area represents the points that lead to values of M1 smaller
than those given by x1 and x2. The blue area represents the points that lead to values
of M2 smaller than that given by x2. The green and blue dashed arrows respectively
represent the direction in which M1 and M2 increase.

3 Extending OWA Operators to the Setting
of Multidimensional Data by Means of a Linear
Extension of the Product Order

OWA operators as defined by Yager [12] for the aggregation of unidimensional
data are characterized by a weighing vector w = (w1, . . . , wn) with wi ≥ 0 for any



OWA Operators for Multidimensional Data 591

i ∈ {1, . . . , n} and
∑n

i=1 wi = 1. In particular, the OWA operator fw : Rn → R

associated with w is defined as

fw (x1, . . . , xn) =
n∑

i=1

wi x(i),

where x(i) denotes the i-th largest value among x1, . . . , xn.
Typical examples of OWA operators are

– the minimum, where w = (0, . . . , 0, 1);
– the mid-range, where w = (12 , 0, . . . , 0, 1

2 );
– the arithmetic mean, where w = ( 1

n , . . . , 1
n );

– the median, where,
if n is odd, w = (0, . . . , 0, 1, 0, . . . , 0), where the 1 appears at the middle
position, or,
if n is even, w = (0, . . . , 0, 1

2 , 1
2 , 0, . . . , 0), where the two 1

2 appear at the
middle positions;

– and the maximum, where w = (1, 0, . . . , 0).

When moving to the setting of multidimensional data, since ≤m is not a
linear order on R

m, it is possible that one cannot simply identify the i-th largest
point among x1, . . . ,xn. De Miguel et al. proposed to consider a linear extension
of R

m in order to straightforwardly extend OWA operators to the setting of
multidimensional data. More precisely, given a linear extension � of the product
order ≤m on R

m, the OWA operator fw,� : (Rm)n → R
m associated with a

weighing vector w = (w1, . . . , wn) and � is defined as follows:

fw,� (x1, . . . ,xn) =
n∑

i=1

wi x(i),

where x(i) denotes the i-th largest point among x1, . . . ,xn according to �.

Example 2. Continue with Example 1. Consider w = (14 , 1
2 , 1

4 ). Due to the fact
that x1 � XYx2 � XYx3, it holds that

fw,�XY (x1,x2,x3) =
1
4
x3 +

1
2
x2 +

1
4
x1 =

1
4
(3, 3) +

1
2
(1, 3) +

1
4
(3, 1) =

(

2,
5
2

)

.

4 A Strange Behaviour

A further look reflects that the computation of the OWA operator fw,�M
:

(Rm)n → R
m associated with a weighing vector w = (w1, . . . , wn) and a linear

extension �M of the product order by means of m weighted arithmetic means M
works as follows. At first R

m is reduced into the unidimensional quotient space
spanned by the level sets of M1. The unidimensional OWA operator fw : Rn → R

associated with w is computed within this unidimensional space and it is only
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in case the order of the points x1, . . . ,xn ∈ R
m is not uniquely determined that

M2, . . . ,Mm are further considered.
This oversimplification of an m-dimensional space into a unidimensional

space leads to two main issues. Firstly, unlike in the unidimensional setting,
OWA operators as defined in the previous section are no longer continuous func-
tions.

Example 3. Continue with Example 2. Consider now x′
2 = (1 − ε, 3) for some

ε > 0. It then holds that x′
2 � XYx1 � XYx3, and, thus,

fw,�XY (x1,x′
2,x3) =

1
4
x3 +

1
2
x1 +

1
4
x′
2 =

1
4
(3, 3) +

1
2
(3, 1) +

1
4
(1 − ε, 3)

=
(

5
2

− ε

4
, 2

)

.

It is concluded that fw,�XY is not continuous.

Even worse, points have such an undesirable freedom of movement within
its own level set of the first weighted arithmetic mean that even very robust
OWA operators in the presence of outliers in the unidimensional setting become
non-robust in higher dimensions.

Example 4. Continue with Example 2. Consider now the weighing vector w′ =
(0, 1, 0) associated with the median. Note that, for any a > 0, it holds that
x1 � XY

(
x2 + (−a, a)

) � XYx3. For instance, let a = 100, it holds that

fw′,�XY (x1,x2,x3) = x2 = (1, 3),

fw′,�XY

(
x1,

(
x2 + (−a, a)

)
,x3

)
= x2 + (−a, a) = (−99, 103) .

It is concluded that fw′,�XY is not robust. Actually, this example implies that the
finite sample breakdown point [3,8] of the median is 1

n in the multidimensional
setting, rather than 1

2 as in the unidimensional setting. This lack of robustness
might not be a big deal in the context of De Miguel et al. [2] since the use of
these OWA operators is restricted to a unit hypercube, however, it definitely
becomes a major problem if dealing with an unbounded domain (as typically is
the case in multivariate statistics [5]).

5 Concluding Remarks

In this paper, a recent extension of OWA operators to the setting of multidi-
mensional data is discussed. As natural as said extension sounds, it is proven to
lead to functions that are neither continuous, nor robust. This is due to the fact
that the use of a linear extension of the product order is inherently linked to a
unidimensional behaviour, and should definitely be abandoned in the multidi-
mensional setting. The use of geometric quantiles [1] instead of linear extensions
of the product order in the construction of OWA operators for multidimensional
data is encouraged by the author. This direction will be further explored in
future work.
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