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Abstract. A large amount of labelled data (absolute information) is
usually needed for an ordinal classifier to attain a good performance.
As shown in a recent paper by the present authors, the lack of a
large amount of absolute information can be overcome by addition-
ally considering some side information in the form of relative informa-
tion, thus augmenting the method of nearest neighbors. In this paper,
we adapt the method of nearest neighbors for dealing with a specific
type of relative information: frequency distributions of pairwise compar-
isons (rather than a single pairwise comparison). We test the proposed
method on some classical machine learning datasets and demonstrate its
effectiveness.
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1 Introduction

Typically for ordinal classification there is only absolute information available,
i.e., examples with an associated class label of a fixed ordinal scale. Unfortu-
nately, in real-life applications, it is often the case that the amount of absolute
information available is limited, thus largely impacting the performance of an
ordinal classifier. Fortunately, different types of side information can be addi-
tionally collected and make up for the limitation regarding the little amount of
absolute information available [1,2]. A popular type of such side information is
relative information, i.e., couples of examples without an explicitly given class
label but with an order relation between them.

Interestingly, in real-life applications, relative information with frequency dis-
tributions arises quite commonly. For instance, the emergence of online trans-
action platforms such as Amazon Mechanical Turk offers some possibilities to
distribute evaluation tasks to consumers and collect a large amount of relative
information. However, the order relations from relative information are usually
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less informative than the class labels from absolute information. It is also quite
common for customers to have contradictory order relations for the same cou-
ple of examples. Due to these facts, it is better to consult several customers for
collecting the preference among two examples, thus obtaining for each couple
of examples a frequency distribution of order relations (hereinafter referred to
as relative information with frequency distributions). Hence, how to combine a
small amount of absolute information and a large amount of relative information
with frequency distributions becomes our main goal.

Some related works [3,4] have shown the effectiveness of fusing absolute and
relative information. In the field of ordinal classification, for example, Sader
et al. [5] proposed an ordinal classification method for combining both abso-
lute and relative information to perform prediction tasks. This method needs to
learn many parameters for solving a constrained convex optimization problem.
In a similar direction, our previous work [6] incorporated both types of informa-
tion into the method of nearest neighbors, and proposed an augmented method
for ordinal classification that is non-parametric and easy to explain. However,
this method was designed to deal with just one order relation for each couple of
examples and not with a frequency distribution of order relations. An immediate
extension of this method to the latter setting reduces the study of the nearest
couples of examples to just the nearest couple of examples, thus impacting its
overall performance. To properly address our problem setting, where there is a
small amount of absolute information and a large amount of relative information
with frequency distributions available, we propose a method to incorporate both
types of information into the method of nearest neighbors for ordinal classifica-
tion on the basis of our previous work [6].

The remainder of this paper is organized as follows. In Sect. 2, we formulate
our problem. We propose our method in Sect. 3. In Sect. 4, we perform experi-
ments and analyze the performance. Some conclusions are presented in Sect. 5.

2 Problem Setting

The available data is composed of absolute and relative information. We
denote the input examples by D = {x1,x2, . . . ,xn}. The input examples
xi = (xi1, . . . , xid) belong to the input space X ⊆ R

d and their correspond-
ing class labels yi belong to the output space Y = {C1, C2, . . . , Cr}, where the
class labels are supposed to be ordered as follows: C1 ≺ C2 ≺ . . . ≺ Cr. Absolute
information is collected in a set A = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Although for some examples there is no explicitly given class label, it is
still possible to have some side information in the form of relative informa-
tion. Relative information is typically expressed for a set of couples of exam-
ples C = {(ai,bi), . . . , (am,bm)} ∈ X 2. With each couple (ai,bi), a frequency
distribution (αi, βi) is associated, αi representing the proportion of times that
ai is preferred to bi and βi representing the proportion of times that bi is
preferred to ai. Obviously, αi + βi = 1. Relative information is collected in
a set R = {((a1,b1), (α1, β1)), ((a2,b2), (α2, β2)), . . . , ((am,bm), (αm, βm))}.
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If ((ai, bi), (αi, βi)) belongs to R, then ((bi,ai), (βi, αi)) is supposed also to
belong to R. Note that here we do not consider the case in which ap and bp are
equally preferred. The main characteristic of our problem is that the amount of
absolute information is typically smaller than the amount of relative information,
i.e., n � m.

3 Proposed Method

3.1 Existing Method: Fusing Absolute and Relative Information
for Augmenting the Method of Nearest Neighbors

In this subsection, we recall the method proposed in our previous work [6].
Firstly, according to a fixed distance metric d, we find the k nearest neighbor
examples Dk = {xij}k

j=1 of the test example x∗. We see each couple (x∗,xij )
as a new object and look for the � nearest neighbor couples Cj

� = {(aj
q,b

j
q)}�

q=1

of this new object (x∗,xij ). For this process, we compute the distance between
couples according to the product distance metric (see [7], page 83, with p=1),
which is defined as

d∗((u,v), (w, t)) = d(u,w) + d(v, t). (1)

Secondly, we rely on the assumption that a couple and its nearest neighbor
couples have similar order relations. More in detail, for the new object (x∗,xij ),
we focus on the nearest neighbor couple and get its corresponding order relation.
For instance, if the nearest neighbor couple of (x∗,xij ) is (aj

1,b
j
1) and its given

order relation is aj
1 � bj

1, then we assume the same order relation x∗ � xij

for (x∗,xij ). Since the class label of xij is known to be, for instance, Ccj , the
class label of x∗ is expected to be at least Ccj . The same applies to the other
� − 1 neighbor couples. For each among these � relations, we obtain an interval
of potential class labels for x∗. We denote this interval as Ijq = [lIjq , rIjq ], where
j ∈ {1, . . . , k} and q ∈ {1, . . . , �}. For instance, if the given class label of xij is
Ccj and we obtain that the relation for the couple (x∗,xij ) is x∗ � xij according
to its q-th nearest neighbor couple, then the interval of possible values of y∗

is Ijq = [lIjq , rIjq ] = [Ccj , Cr]. Similarly, if the relation is x∗ ≺ xij , then the
interval of possible values of y∗ is Ijq = [lIjq , rIjq ] = [C1, Ccj ].

Finally, we denote by I = (Ijq)j∈{1,...,k},q∈{1,...,�} the list of all the obtained
intervals. We consider the penalty function associated with the median for inter-
vals (see, for instance, Beliakov et al. [8]):

P (I, y) =
k∑

j=1

�∑

q=1

(|lIjq − y| + |rIjq − y|), (2)

where |Ci − Cj | denotes the L1-distance between two class labels Ci and Cj .
Note that the L1-distance metric treats all class labels of the ordinal scale as if
they were equidistant, something that is not always advisable depending on the
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nature of Y. The class label y∗ of x∗ is then determined using the corresponding
penalty-based (aggregation) function:

y∗ = f(y∗) = arg min
y∈Y

P (I, y). (3)

3.2 New Method: Combining Absolute and Relative Information
with Frequency Distributions

The method above only focuses on how to deal with couples provided with only
one order relation. However, in our problem setting, we have relative information
with frequency distributions. More specifically, we have a frequency distribution
of order relations for each (aj ,bj). We use (αj , βj) to characterize this frequency
distribution. In the following, we explain how to deal with such information.

Firstly, we repeat the process above to look for the k nearest neighbor exam-
ples of the test example x∗. We see each couple (x∗,xij ) as a new object, search
for the � nearest neighbor couples, and get their frequency distributions of order
relations. We rely on the same assumption above that a couple and its nearest
neighbor couples have similar order relations. More in detail, if the nearest neigh-
bor couple of (x∗,xij ) is (aj

q,b
j
q) and its frequency distribution is (αj

q, β
j
q), which

implies that a proportion αj
q of times the order relation of (aj

q,b
j
q) is aj

q � bj
q

and a proportion βj
q of times the order relation of (aj

q,b
j
q) is aj

q ≺ bj
q, then in

case the couple (x∗,xij ) needs to be labelled, we would expect that a proportion
αj

q of times the order relation of (x∗,xij ) is x∗ � xij and a proportion βj
q of

times the order relation of (x∗,xij ) is x∗ ≺ xij .
For the new couple (x∗,xij ) in which the given class label of xij is Ccj , we get

αj
q times the interval [Ccj , Cr] and βj

q times the interval [C1, Ccj ] for the potential
class label y∗ of x∗. We repeat this process for the other � − 1 nearest neighbor
couples. Exploiting all k nearest neighbors and � nearest neighbor couples, we
get a list of intervals of potential class labels for x∗. We denote by I the list of
all gathered intervals.

Finally, differently to the previous section, here we do not use the notation
Ijq = [lIjq , rIjq ] to represent the interval. More specifically, we now have a pro-
portion αj

q of times the interval [Ccj , Cr] and a proportion βj
q of times the interval

[C1, Ccj ] for each nearest neighbor couple of (x∗,xij ). Thus, the penalty function
associated with the median reads as follows:

P (I, y) =
k∑

j=1

�∑

q=1

βj
q(|C1 − y| + |Ccj − y|) + αj

q(|Ccj − y| + |Cr − y|)

=
k∑

j=1

�∑

q=1

(βj
q |C1 − y| + |Ccj − y| + αj

q|Cr − y|),
(4)

where (aj
q,b

j
q) is the q-th nearest neighbor couple of the couple (x∗,xij ), (αj

q, β
j
q)

is the corresponding frequency distribution and the given class label of the j-th



598 M. Tang et al.

Table 1. Description of the benchmark datasets.

Dataset #Examples #Features #Classes

Real ordinal classification datasets

Tae (TA) 151 54 3

Automobile (AU) 205 26 6

Balance-scale (BS) 625 4 3

Eucalyptus (EU) 736 91 5

Red-wine (RW ) 1599 12 6

Car (CA) 1728 21 4

Discretized regression datasets

Housing5 (HO5) 506 14 5

Abalone5 (AB5) 4177 11 5

Bank1-5 (BA1-5) 8192 8 5

Bank2-5 (BA2-5) 8192 32 5

Computer1-5 (CO1-5) 8192 12 5

Computer2-5 (CO2-5) 8192 21 5

Housing10 (HO10) 506 14 10

Abalone10 (AB10) 4177 11 10

Bank1-10 (BA1-10) 8192 8 10

Bank2-10 (BA2-10) 8192 32 10

Computer1-10 (CO1-10) 8192 12 10

Computer2-10 (CO2-10) 8192 21 10

nearest neighbor xij of x∗ is Ccj . The class label y∗ of x∗ is then determined
using the corresponding penalty-based (aggregation) function:

y∗ = f(y∗) = arg min
y∈Y

P (I, y). (5)

4 Experiments

4.1 Datasets

We perform the experiments on some classical machine learning datasets from
some typical repositories [9–11]. The detailed characteristics of these datasets can
be found in Table 1, including the number of examples, features and classes. All
the features have been properly normalized (by making all the features to have
zero mean and unit standard deviation) to avoid the impact of the scale of fea-
tures. Note that the datasets do not contain relative information with frequency
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distributions. Based on a similar generation process of relative information as the
one described in [6], we generate couples with frequency distributions of order
relations.

More in detail, when comparing two examples for generating a couple (ai,bi),
we randomly sample αi or βi from a uniform distribution. For example, if the real
order relation of these two examples is ai � bi, then we sample αi from a uniform
distribution on [0.5, 1] and set βi = 1 − αi. Similarly, if the real order relation
of these two examples is ai ≺ bi, then we sample βi from a uniform distribution
on [0.5, 1] and set αi = 1 − βi. Thus, we generate a couple ((ai,bi), (αi, βi)).

To test our method, we construct two different datasets for each original
dataset. Based on a similar generation process as in our previous work [6], we fix
10% of the data that will be shared by both datasets for testing. The remaining
90% is used for generating the data for training. We keep 5% of the remaining
90% as absolute information. We use the remaining 95% for generating relative
information following the aforementioned description. Dataset 1 includes just
absolute information. Dataset 2 not only includes the same absolute information
as Dataset 1, but also includes relative information with frequency distributions.
By comparing the performance on these two datasets, we test the impact of
incorporating relative information with frequency distributions.

4.2 Performance Measures

We use the three most common performance measures to evaluate ordinal clas-
sification models [13,14]: the Mean Zero-one Error (MZE), the Mean Absolute
Error (MAE) and the C-index.

The MZE describes the error rate of the classifier and is computed as

MZE =
1
T

T∑

i=1

δ(y∗
i �= yi) = 1 − Acc, (6)

where T is the number of test examples, yi is the real class label and y∗
i is the

predicted class label. Acc is the accuracy of the classifier. The value of MZE
ranges from 0 to 1. It describes the global performance, but it neglects the
relations among the class labels.

The MAE is the average absolute error between yi and y∗
i . If the class labels

are represented by numbers, the MAE is computed as:

MAE =
1
T

T∑

i=1

|yi − y∗
i |. (7)

The value of MAE ranges from 0 to r − 1 (maximum absolute error between
classes). Because the real distances among the class labels are unknown, the
numerical representation of the class labels has a big impact on the MAE per-
formance.

In order to avoid this impact, one could consider the relations between the
real class label and the predicted class label. Here we use the concordance index
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Table 2. Performances on the two newly constructed datasets for each original dataset.
The best results are highlighted in boldface.

Dataset MZE MAE 1 – C-index

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

TA 0.5959 0.5839 0.7664 0.6889 0.4549 0.3963

AU 0.6047 0.5395 0.9410 0.7522 0.3804 0.2749

BS 0.2366 0.2080 0.3549 0.3039 0.1817 0.1547

EU 0.6383 0.5693 1.0267 0.8329 0.3275 0.2539

WR 0.4997 0.4914 0.5747 0.5608 0.3338 0.3180

CA 0.2269 0.2205 0.2778 0.2744 0.2440 0.1976

HO5 0.5496 0.5089 0.7456 0.6837 0.2085 0.1871

AB5 0.5937 0.6007 0.8547 0.8750 0.2515 0.2548

BA1-5 0.7187 0.6979 1.1602 1.0993 0.3622 0.3372

BA2-5 0.7761 0.7682 1.4203 1.4043 0.4615 0.4520

CO1-5 0.4159 0.4039 0.4856 0.4707 0.1243 0.1207

CO2-5 0.3727 0.3552 0.4217 0.3948 0.1064 0.0990

HO10 0.7921 0.7468 1.6814 1.4935 0.2367 0.2091

AB10 0.7750 0.7732 1.7603 1.8014 0.2531 0.2571

BA1-10 0.8699 0.8576 2.4688 2.3383 0.3796 0.3522

BA2-10 0.8850 0.8827 2.8525 2.8630 0.4535 0.4497

CO1-10 0.6141 0.6072 1.0158 0.9876 0.1294 0.1256

CO2-10 0.5853 0.5787 0.8784 0.8555 0.1080 0.1051

Median difference −0.0120 −0.02755 −0.01860

p-value 0.00053 0.00329 0.00074

or C-index to represent these relations. The C-index is computed as the pro-
portion of the number of concordant pairs to the number of comparable pairs
(see [15], page 50):

C-index =
1∑

Cp≺Cq
TCp

TCq

∑

yi≺yj

(δ(y∗
i ≺ y∗

j ) +
1
2
δ(y∗

i = y∗
j )), (8)

where TCp
and TCq

are respectively the numbers of test examples with the class
label Cp and Cq, {yi, yj} is the real pair from the test examples, while {y∗

i , y∗
j } is

the corresponding predicted pair. When there are only two different class labels,
the C-index amounts to the area under the Receiver Operating Characteristic
(ROC) curve [16] and ranges from 0.5 to 1. A lower MZE or MAE means a
better performance, while a higher C-index means a better performance. Here, we
replace C-index by (1−C-index) to keep an analogy with the other performance
measures and facilitate the discussion of the results.
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4.3 Performance Analysis

In this subsection, we analyze the performance of the proposed method on the
different datasets listed in Subsect. 4.1. All the experimental results are obtained
by applying ten-fold cross validation. We perform experiments on all datasets,
setting the number k of nearest neighbor examples to 5. Table 2 shows the perfor-
mance on Dataset 1 and Dataset 2. It is clear that the performance on Dataset 2
is better than the performance on Dataset 1 for almost all original datasets
except for AB5 and AB10.

In order to test whether there is a significant difference in performance on
these two datasets, we perform the Wilcoxon signed-rank test [12] at a signifi-
cance level of α = 0.05. If the p-value is smaller than the fixed significance level
of α, then it means that there exists a statistically significant difference between
these two datasets. In Table 2, it can be seen that the p-values for MZE, MAE
and 1−C-index are smaller than α, which means that there exists a statistically
significant difference between the performance on these two datasets obtained
from all original datasets. The experimental results, together with the obtained
p-values and associated point estimates (median differences), show that using
relative information with frequency distributions is meaningful.

5 Conclusions and Future Work

Based on our previous work [6], we have proposed an augmented method for
ordinal classification for the setting in which there exists a small amount of
absolute information and a large amount of relative information with frequency
distributions. Specifically, we adapt the method of nearest neighbors for deal-
ing with relative information with frequency distributions. We have carried out
experiments on some classical ordinal classification or regression datasets. The
experimental results show that the performance improves when relative informa-
tion with frequency distributions is considered, which validates the usefulness of
taking into account relative information with frequency distributions.

We see several interesting future directions for extending this work. On the
one hand, absolute information with frequency distributions is also common.
How to combine both absolute and relative information with frequency distri-
butions for ordinal classification is still an open problem. On the other hand, in
case the amount of relative information is large, it might be necessary to explore
how to select the most informative pairwise comparisons for relative information
in order to reduce the computational complexity of the proposed method.
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