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Abstract. In this paper we tackle a variant of the job shop scheduling
problem where task durations are uncertain and only an interval of pos-
sible values for each task duration is known. We propose a genetic algo-
rithm to minimise the schedule’s makespan that takes into account the
problem’s uncertainty during the search process. The behaviour of the
algorithm is experimentally evaluated and compared with other state-
of-the-art algorithms. Further analysis in terms of solution robustness
proves the advantage of taking into account interval uncertainty during
the search process with respect to considering only the expected process-
ing times and solving the problem’s crisp counterpart. This robustness
analysis also illustrates the relevance of the interval ranking method used
to compare schedules during the search.

Keywords: Job shop scheduling · Interval processing time · Genetic
algorithms · Robustness

1 Introduction

Scheduling plays an important role in most manufacturing and production sys-
tems as well as in most information processing environments, transportation and
distribution settings and, more generally, in service industries [24]. One of the
most relevant problems in scheduling is the job shop, both because it is consid-
ered to be a good model for many practical applications and because it poses
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a challenge to the research community due to its complexity. This complexity
is the reason why approximate methods and, in particular, metaheuristic search
techniques, are especially suited for solving the job shop [28].

Traditionally, it has been assumed that scheduling problems are determinis-
tic. However, for many real-world problems design variables such as processing
times may be subject to perturbations or changes, dependent on human factors,
etc. The most common approach to handling uncertainty is that of stochas-
tic scheduling, modelling the duration of tasks by probability distributions [24].
However, not only does this present some tractability issues, but also, probability
distributions are better suited to model variability of repetitive tasks instead of
uncertainty due to lack of information [8]. Alternatively, fuzzy scheduling mod-
els uncertain durations as fuzzy numbers or fuzzy intervals, that is, possibility
distributions representing more or less plausible values, in an approach that is
computationally more appealing and presupposes less knowledge [9]. A third
and simpler way of representing uncertainty for activity durations are intervals.
Interval uncertainty is present as soon as information is incomplete and it does
not assume any further knowledge. Also, it represents a first step towards solv-
ing problems in the other uncertain frameworks. Indeed, an interval can be seen
as a uniform probability distribution or the support of an unknown probability
distribution [1]. Also, an interval not only is a particular case of a fuzzy interval,
but also the α-cuts of fuzzy intervals are intervals, so a fuzzy scheduling problem
can be decomposed in multiple interval scheduling problems.

Despite its interest, research on the job shop scheduling problem with interval
activity durations is still scarce. In [15] a job shop scheduling problem with inter-
val processing times is considered and a population-based neighborhood search
(PNS) is presented to optimize the makespan. A genetic algorithm is proposed
in [16], but with the objective of minimising the total tardiness with respect to
job due dates. Different variants of multiobjective interval job shop problems
are considered in [17] and [19]. The former incorporates non-resumable jobs and
flexible maintenance to the problem and proposes a multi-objective artificial
bee colony algorithm to minimise both the makespan and the total tardiness.
The latter considers a dual-resource constrained job shop with heterogeneous
resources, and a dynamical neighbourhood search is proposed for lexicographic
minimisation of carbon footprint and makespan. Finally, we find a flexible job
shop problem with interval processing times in [18], where a shuffled frog-leaping
algorithm is adopted to minimise the makespan. Uncertain activity durations are
also modelled as intervals in scheduling problems other than the job shop and its
variants in [1,11,20,26]. At a more theoretical level, several attempts have been
made to study how to compute earliest and latest starting times of all activities
and, therefore, critical paths, over all duration scenarios in an activity-on-node
network where the duration of every activity is an interval. This is essential to
devise successful local search methods, as shown in deterministic job shop. A
summary of the main results together with a thorough literature review can be
found in [3].

This paper constitutes a starting point for a systematic study of solving
methods for the interval job shop scheduling problem with makespan minimi-
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sation. We propose a solution for Interval Job Shop Scheduling Problem using
genetic algorithms. The paper is organised as follows. Section 2 briefly describes
the interval job shop scheduling problem. In Sect. 3 the concept of ε-robustness is
introduced to measure the error of the prediction made by the a-priori makespan
compared to the executed makespan with respect to its expected value used in
this work is introduced. Section 4 details the basic schema of a genetic algorithm
and the coding approach. Finally, in Sect. 5 an experimental study is developed
to check the performance of the genetic algorithm in solving this problem. In
addition, we also test if modelling uncertainty as intervals for processing times
during the search process is worth the while and carry out some preliminary
analysis of the influence of the different interval rankings. Some conclusions are
drawn in Sect. 6.

2 The Job Shop Problem with Interval Durations

The classical job shop scheduling problem, or JSP in short, consists in scheduling
a set of jobs J = {J1, . . . , Jn} on a set of physical resources or machines M =
{M1, . . . ,Mm}, subject to a set of constraints. There are precedence constraints,
so each job Jj , j = 1, . . . , n, consists of mj ≤ m tasks (o(j, 1), . . . , o(j,mj)) to be
sequentially scheduled. There are also resource constraints, whereby each task
o(j, l) requires the uninterrupted and exclusive use of a machine νo(j,l) ∈ M for
its whole processing time po(j,l). We assume w.l.o.g. that tasks are indexed from
1 to N =

∑n
j=1 mj , so we can refer to a task o(j, l) by its index o =

∑j−1
i=1 mi + l

and simply write νo, po to refer respectively to its machine and processing time.
The set of all tasks is denoted O = {1, . . . , N}.

A solution to this problem is a schedule s, i.e. an allocation of starting times
for each task, which, besides being feasible (in the sense that all precedence
and resource constraints hold), is optimal according to some criterion, most
commonly minimising the makespan Cmax, that is, the completion time of the
last operation (and therefore, of the whole project).

2.1 Interval Durations

In real-life applications, it is often the case that the time it takes to process a
task is not exactly known in advance; instead, only some uncertain knowledge
about the duration is available. If only an upper and a lower bound of each
duration are known, an uncertain processing time can be represented as a closed
interval of possible values denoted a = [a, a] = {x ∈ R : a ≤ x ≤ a}.

Let IR denote the set of closed intervals. The job shop problem with
makespan mimisation essentially requires two arithmetic operations on IR: addi-
tion and maximum. These are defined by extending the corresponding operations
on real numbers [21], so given two intervals a = [a, a],b = [b, b] ∈ IR,

a + b = [a + b, a + b], (1)

max(a,b) = [max(a, b),max(a, b)]. (2)
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Another issue to be taken into account when processing times take the form
of intervals is that of comparisons. Indeed, if several schedules are available,
the “best” one would be the one with “minimal” value of the makespan (an
interval). However, there is no natural total order in the set of intervals, so an
interval ranking method needs to be considered among those proposed in the
literature [7,14].

In [7], the authors highlight the following three total orders in IR with certain
nice behaviour (called admissibility in that work):

a ≤Lex1 b ⇔ a < b ∨ (a = b ∧ a < b) (3)

a ≤Lex2 b ⇔ a < b ∨ (a = b ∧ a < b) (4)

a ≤Y X b ⇔ a + a < b + b ∨ (a + a = b + b ∧ a − a ≤ b − b) (5)

Both (3) and (4) are derived from a lexicographical order of interval extreme
points while the last one is proposed in [27]. Obviously, all three linear orders
can be used to rank intervals. In [15], a different ranking method is used for the
interval job shop:

a ≤pd b ⇔ P (b ≥ a) ≥ 0.5 ∨ P (a ≥ b) ≤ 0.5 (6)

where P (a ≥ b) is the possibility degree that a is greater or equal than b as
introduced in [13]:

P (a ≥ b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a ≥ b

0.5 · b−a
a−a · b−a

b−b
b ≤ a < b ≤ a

b−a
a−a + 0.5 · b−b

a−a a < b < b ≤ a
b−a
a−a + a−b

a−a · b−a
b−b

+ 0.5 a−b
a−a · a−b

b−b
a < b ≤ a < b

b−a
b−b

+ 0.5 · a−a

b−b
b ≤ a < a < b

1 a ≤ b

(7)

It can be easily shown that this ranking is equivalent to the one induced by the
interval midpoint:

a ≤MP b ⇔ m(a) ≤ m(b) (8)

where ∀a ∈ IR, m(a) = (a+a)
2 . It coincides with the classical Hurwicz criterion for

interval comparison with α = 1/2 [12], used for interval scheduling in [1]. Also,
since the interval’s midpoint is the expected value of the uniform probability
distribution in that interval, using the midpoint for comparing interval-valued
objective functions is also closely related to the stochastic dominance based on
expectation used in stochastic scheduling [24].

2.2 Interval Schedules

A schedule s establishes an order π among tasks requiring the same machine.
Conversely, given a task processing order π, the schedule s (starting times of all
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tasks) may be computed as follows. For every task o ∈ O with processing time
po, let so(π) and co(π) denote respectively the starting and completion times
of o, let PMo(π) and SMo(π) denote the predecessor and successor tasks of o
in the machine νo according to π, and let PJo and SJo denote respectively the
predecessor and successor tasks of o in its job (PMo(π) = 0 or PJo = 0 if o is
the first task to be processed in its machine or its job). Then the starting time
so(π) of o is an interval given by so(π) = max(sPJo +pPJo , sPMo(π)+pPMo(π)).
Clearly, co(π) = so(π) + po(π). If there is no possible confusion regarding the
processing order, we may simplify notation by writing so and co. The completion
time of the last task to be processed according to π thus calculated will be
the makespan, denoted Cmax(π) or simply Cmax. We obtain an interval-valued
schedule in the sense that the starting and completion times of all tasks and the
makespan are intervals, interpreted as the possible values that the times may
take. However, notice that the task processing ordering π that determines the
schedule is crisp; there is no uncertainty regarding the order in which tasks are
to be processed.

2.3 Problem Formulation

We are now in a position to formulate the Interval Job Shop Scheduling Problem
or IJSP in short, as follows:

min
R

Cmax (9)

subject to: Cmax = max
1≤j≤n

{co(j,mj)} (10)

co = so + p
o
, ∀o ∈ O (11)

co = so + po, ∀o ∈ O (12)
so(j,l) ≥ co(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (13)

so(j,l) ≥ co(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (14)
so ≥ co′ ∨ so′ ≥ co,∀o 	= o′ ∈ O : νo = νo′ (15)
so ≥ co′ ∨ so′ ≥ co,∀o 	= o′ ∈ O : νo = νo′ (16)

where the minimum minR Cmax in (9) is the smallest interval according to a
given ranking R in the set of intervals IR. Constraint (10) defines the makespan
as the maximum completion time of the last task of each job. Constraints (11)
and (12) establish the relationship between the starting and completion time of
each task. Constraints (13) and (14) correspond to precedence relations between
tasks within each job and constraints (15) and (16) establish that the execution of
two tasks requiring the same machine cannot overlap. Notice that the completion
time of each job Jj in the resulting schedule s is the completion time of the last
task in that job, given by Cj = co(j,mj).

The resulting problem will be denoted J |p
o

≤ po ≤ po|Cmax, following the
three-field notation schema for scheduling problems. Clearly, the IJSP is NP-
hard, since setting all processing times to crisp numbers yields the classical JSP,
which is itself NP-hard [24].
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3 Robust Schedules

A solution to the IJSP provides an interval of possible values for the starting
time of each task and, hence, an interval of possible values for the makespan. In
fact, it is impossible to predict what the exact starting and completion times will
be until the project is actually executed. This idea is the basis for a semantics
for fuzzy schedules from [10] by which solutions to a job shop problem with
uncertainty should be understood as a-priori solutions. Only when tasks are
executed according to the ordering π provided by the schedule we shall know
their real duration and, hence, obtain an a-posteriori solution with deterministic
times po ∈ [p

o
, po] for all tasks o ∈ O.

It would be expected that the predictive schedule does not differ much from
the actual executed one. This is strongly related to the idea of robust schedule as
one that minimises the effect of executional uncertainties on its performance [4].
This high-level definition is subject to many different interpretations when it
comes to specifying robustness measures [25]. Here, we adapt the concept of ε-
robustness first proposed for fuzzy scheduling problems in [22] inspired by the
work on stochastic scheduling from [5].

The rationale behind this concept is to measure the predictive error of the
a-priori makespan, the interval Cmax, compared to the actual makespan Cex

max

obtained after execution. Notice that Cex
max is a real number that corresponds

to a specific realisation of task processing times P ex = {pex
o ∈ [p

o
, po], o ∈ O},

usually called a configuration in the literature. Assuming that tasks are exe-
cuted without unnecessary delays at their earliest possible starting times (as
explained in Sect. 2.2), it is clear that Cex

max ∈ Cmax. Thus, the prediction is
always accurate in terms of bounds for the possible makespan values after exe-
cution. Now, if we are to give a single value as predicted makespan based on the
interval Cmax, in the absence of further information it seems natural to con-
sider the expected or mean value of the uniform distribution on that interval,
E[Cmax] = (Cmax − Cmax)/2. We can then measure the error of the predic-
tion made by the a-priori makespan as the (relative) deviation of the executed
makespan with respect to this expected value. In consequence, for a given ε ≥ 0,
a predictive schedule with makespan interval value Cmax will be considered to
be ε-robust if the relative error made by E[Cmax] with respect to the makespan
Cex

max of the executed schedule is bounded by ε, that is:

|Cex
max − E[Cmax]|

E[Cmax]
≤ ε. (17)

Clearly, the smaller the bound ε, the more accurate the a-priori prediction is or,
in other words, the more robust the interval schedule is.

Although the expression for the expected value E[Cmax] is the same as the
interval’s midpoint used in the ranking criterion ≤MP , this is just a mere coin-
cidence. In general, a robustness measure must be independent of the ranking
method used to compare schedules. In particular, E[Cmax] represents a pre-
diction based on Cmax in the absence of further knowledge on how values are
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distributed in that interval, whereas the midpoint m(Cmax) is a weighted aver-
age of the optimistic Cmax and pessimistic Cmax makespan values, representing
a decision maker’s equilibrium between those two extreme attitudes.

Finally, this measure of robustness is dependent on a specific configuration
P ex of task processing times obtained upon execution of the predictive schedule
s. In the absence of real data regarding executions of the project, as is the
case with the usual synthetic benchmark instances for job shop, we may resort
to Monte-Carlo simulations. The idea is to simulate K possible configurations
P k = {pk

o ∈ [p
o
, po], o ∈ O} for task processing times, using uniform probability

distributions to sample possible durations for every task. For each configuration
k = 1, . . . , K, let Ck

max denote the exact makespan obtained after executing
tasks according to the ordering provided by s. Then, the average ε-robustness
of the predictive schedule across the K possible configurations, denoted ε, can
be calculated as:

ε =
1
K

K∑

k=1

|Ck
max − E[Cmax]|

E[Cmax]
. (18)

This value provides an estimate of how robust is the predictive schedule s across
different processing times configurations. Again, the lower ε, the better.

4 A Genetic Algorithm for the IJSP

Genetic algorithms have proved to be a very useful tool for solving job shop prob-
lems, either on their own or combined with other metaheuristics [28]. Roughly
speaking, a genetic algorithm starts by building a set of initial solutions or initial
population P0. This population is then evaluated and the algorithm begins an
iterative process until a stopping criterion is met, typically a fixed number of iter-
ations or consecutive iterations without improvement. At each step i, individuals
from the population Pi are selected and paired for mating and, recombination
operators of crossover and mutation are applied to each pair with probability
pcross and pmut respectively, creating a new population of offspring solutions
Offi. The new population is evaluated and a replacement operator is applied
to merge Pi and Offi into the new population Pi+1 for the next iteration. Once
the stopping criterion is met, the best solution according to the interval ranking
is selected and returned from the last population. Algorithm 1 summarises these
steps.

In this work, several well-known selection, recombination and replacement
operators for Job Shop Scheduling problems are tried in order to find the best
setup for the genetic algorithm. The set of operators and their impact on solving
this problem are detailed in Sect. 5. A crucial part in designing algorithms is
how to encode and decode solutions. Following [6], we encode a solution as a
permutation with repetition. This is a permutation of the set of tasks, where
each task o(j, l) is represented by its job number j. For example, a topological
order (o(2, 1), o(1, 1), o(2, 2), o(3, 1), o(3, 2), o(1, 2)) is encoded as (2 1 2 3 3 1).
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Require: An IJSP instance
Ensure: A schedule

Generate a pool P0 of random solutions.
Evaluate P0

i ← 0;
while stop condition not satisfied do

Offi ← pairs of individuals selected from Pi;
for each pair of individuals in Offi do

Apply crossover operator with probability pcross;
Apply mutation operator with probability pmut;

Evaluate Offi
Pi+1 ← Apply replacement operator in (Pi, Offi);
i ← i + 1;

Best ← Best solution in Pi based on the order on intervals;
return Best

Algorithm 1: Main steps of the genetic algorithm

The decoding is done using an insertion strategy: we iterate along the chro-
mosome and for each task o(j, l) we schedule it at its earliest feasible inser-
tion position as follows. Let ηk be the number of tasks scheduled on machine
k = νo(j,l) and let σk = (0, σ(1, k), ..., σ(ηk, k)) denote the partial processing
order of tasks already scheduled in machine k. Then a feasible insertion position
q, 0 ≤ q < ηk for o(j, l) is a position such that max{cσ(q,k), co(j,l−1)} + p

o(j,l)
≤

sσ(q+1,k) and max{cσ(q,k), co(j,l−1)} + po(j,l) ≤ sσ(q+1,k), so the earliest feasible
insertion position is the smallest value q∗ verifying these inequalities. We set
so(j,l) = max{cσ(q∗,k), co(j,l−1)} if q∗ exists, and so(j,l) = max{cσ(ηk,k), co(j,l−1)}
otherwise.

5 Experimental Study

The purpose of the experimental study is threefold: assess the proposed genetic
algorithm, see if considering the uncertainty in processing times during the search
process is worth the while and carry out a preliminary analysis of the influence
of the different interval rankings.

To test the algorithm, we consider 12 very well-known instances for the job
shop problem: classical instances FT10 (size 10 × 10) and FT20 (20 × 5), and
instances La21, La24, La25 (15×10), La27, La29 (20×10), La38, La40 (15×15),
and ABZ7, ABZ8, ABZ9 (20 × 15) that form the set of 10 problems identified
in [2] as hard to solve for classical JSP. The processing times are modified to
be intervals as follows: given the original crisp processing time of an operation
po, the interval time is generated as po = [po − δ, po + δ], where δ is a random
value in [0, 0.15po]. The resulting IJSP instances are available online1. All the
experiments reported in this section have been run on a PC with Intel Xeon
1 Repository section at http://di002.edv.uniovi.es/iscop.

http://di002.edv.uniovi.es/iscop
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Gold 6132 processor at 2.6 Ghz and 128 Gb RAM with Linux (CentOS v6.9),
using a C++ implementation.

Regarding the algorithm’s parameter configuration, we have run several tests
to find the best setup. A first batch of experiments are conducted to test different
recombination operations and probabilities as well as selection strategies. The
considered operators are given in Table 1, with the best setup values in bold. In
all cases the stopping criterion is set to 500 iterations.

Table 1. Parameter tuning with the best configuration in bold

Parameter Tested values

Crossover operator Generalised Order Crossover (GOX)

Job-Order Crossover (JOX)

Precedence Preservative Crossover (PPX)

Crossover probability 0.5, 0.75, 1

Mutation operator Insertion, Inversion, Swap

Mutation probability 0, 0.15, 0.25

Selection operator Roulette

Tournament (t = 3)

Shuffle

Stochastic Universal Sampling (SUS)

Replacement Generational replacement with elitism (k = 1, 12, 25)

Tournament 2/4 parents-offspring (allowing repetition)

Tournament 2/4 parents-offspring (no repetition)

A second test based on convergence demonstrates that the best popula-
tion size is 250. Figure 1 shows the average evolution of the expected value of
makespan across 30 runs of the algorithm on instance FT10. The dotted line
corresponds to the expected makespan of the best solution in the population
and the continuous line to the average of the whole population. It is clear that
within 500 iterations, the algorithm reaches a convergence point. The behaviour
on the remaining instances is similar, so we adopt this number of iterations as
stopping criterion for the algorithm.

To asses the performance of the genetic algorithm (GA in the following), we
compare it with the PNS algorithm proposed in [15], which to our knowledge
constitutes the state-of-the art in the IJSP with makespan minimisation. The
authors use ≤pd to rank different intervals in PNS. Since ≤pd is equivalent to
≤MP and for the sake of a fair comparison, we also adopt the same ranking. GA
is run on the same set of 17 instances as PNS, which are adapted versions of the
well-known crisp instances ORB1–5, LA16–25 and ABZ5–6, and the stopping
criterion is set to 25 consecutive iterations without improvement. Table 2 shows
for each algorithm, the average expected makespan across all the runs (20 runs
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Fig. 1. Evolution of the best and average individual for FT10 instance.

for PNS and 30 for GA) together with runtimes, as well as a column with the
relative difference between the performances of GA and PNS. We can see that,
despite not having a neighbourhood search component, GA outperforms PNS in
14 out of the 17 instances, and is marginally worse in the remaining 3 instances
(0.4% worse in ORB2, 0.5% in La16 and 0.01% in La17). Overall, GA obtains
an average improvement of 1.2% compared to PNS. Additionally, a t-test for
paired samples is run to compare the results of GA and PNS (after both samples
pass a Kolmogorov-Smirnov normality test), confirming that there are indeed
significant differences between both algorithms for a significance level of 0.05.
Regarding runtime, GA is 93.8% faster than PNS. Notice however, that runtimes
of PNS are those provided by the authors using their own machine and therefore
comparisons in this sense must be done with caution.

We have used the set of 17 instances considered in [15] in Table 2 to compare
GA with the state-of-the-art. However, in the deterministic case, the original
crisp instances have already been solved to optimality and their fuzzy counter-
parts offer little room for improvement, as shown in [23]. For this reason we will
now switch to the set of more challenging instances introduced at the beginning
of this section for the remaining experimental results.

One may wonder if solving the crisp problem that results from considering
only the midpoint of the interval processing times yields similar results to using
intervals with the added advantage of having all the available tools for deter-
ministic JSP. Including uncertainty in the search process adds some difficulty
to the problem: different concepts need to be adapted or redefined and solving
methods tailored to handle the uncertainty need to be proposed, usually with an
increased complexity. It is also natural to see if the choice of a ranking method
in the interval setting has any influence on the outcome. To try to answer these
questions, we carry out a new set of experiments. For every IJSP instance we
run GA 30 times considering each of the four different ranking methods and 30
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Table 2. Computational results and times of PNS and GA

Instance PNS GA Relative diff.

Avg. E[Cmax] Runtime (s) Avg. E[Cmax] Runtime (s)

ORB1 1187.00 6.7 1171.12 0.5 −1.3%

ORB2 968.25 6.8 971.93 0.4 0.4%

ORB3 1145.23 3.5 1117.23 0.7 −2.4%

ORB4 1110.85 6.8 1087.13 0.6 −2.1%

ORB5 974.60 6.9 955.02 0.4 −2.0%

ABZ5 1308.45 5.3 1296.58 0.3 −0.9%

ABZ6 1012.40 6.3 998.95 0.3 −1.3%

La16 1019.40 6.2 1024.52 0.4 0.5%

La17 834.45 6.5 834.50 0.3 0.0%

La18 912.95 6.7 900.75 0.3 −1.3%

La19 919.65 6.0 904.95 0.5 −1.6%

La20 966.50 6.4 952.87 0.3 −1.4%

La21 1173.45 16.9 1150.73 1.0 −1.9%

La22 1036.05 16.8 1019.98 1.1 −1.6%

La23 1105.45 16.8 1083.27 0.9 −2.0%

La24 1047.55 16.9 1038.40 0.9 −0.9%

La25 1089.15 17.1 1077.05 1.0 −1.1%

times on the instance’s crisp counterpart. Notice that the objective function is
an interval in the first four cases and a crisp value in the last one, so they are
not directly comparable. Instead, we measure the ε-robustness of the 30 solutions
obtained by GA in each case using K = 1000 possible realisations, to compare
the resulting solutions in terms of their quality as predictive schedules.

Figure 2 depicts for each instance the boxplots with the ε values with the
schedules that result from the 30 runs of GA in each case. We can see that,
regardless of the ranking considered, solutions are more robust when intervals are
taken into account during the search process. This is confirmed by several t-tests,
showing that the ε-robustness of the interval schedules, regardless of the ranking,
is significantly better than the one of the crisp schedule for a significance level
of 0.05 on all instances expect La25. Regarding the choice of ranking method,
according to the t-tests there is no significant difference between ≤MP and ≤Y X

on any instance. This is actually not surprising, since ≤Y X can be understood
as a refinement of ≤MP , but it shows that this refinement does not necessarily
translate into more robust schedules. Also, there are no significant differences
between ≤MP and ≤Lex1 on any instance except ABZ9, La21 and La24. More
interestingly, the ranking ≤Lex2 yields solutions significantly more robust than
those obtained using any other ranking on all instances except FT20, La24 and
La40, where it is not significantly better than ≤MP and ≤Y X . We may conclude
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(c) ABZ9
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(g) La24
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(j) La29
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(k) La38
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(l) La40

Fig. 2. ε-robustness of solutions obtained with four different rankings and solving the
crisp counterpart
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that solving the interval JSP results in more robust schedules than solving a
simpler deterministic counterpart and that the choice of interval ranking method
does have an influence on the outcome.

6 Conclusions

In this work we have developed an approach to solving the IJSP using a GA.
Results show that GA is competitive with the existing methods from the liter-
ature. In addition, incorporating the interval uncertainty in the search process
yields more robust solutions than solving an alternative crisp problem. On the
other hand, the choice of interval ranking method plays an important role in
the final solution’s performance. Further work needs to be done to obtain more
powerful search methods specifically designed for handling interval uncertainty
and to thoroughly analyse the influence of different ranking methods in order to
make a proper choice.

References

1. Allahverdi, A., Aydilek, H., Aydilek, A.: Single machine scheduling problem with
interval processing times to minimize mean weighted completion time. Comput.
Oper. Res. 51, 200–207 (2014). https://doi.org/10.1016/j.cor.2014.06.003

2. Applegate, D., Cook, W.: A computational study of the job-shop scheduling prob-
lem. ORSA J. Comput. 3, 149–156 (1991)

3. Artigues, C., Briand, C., Garaix, T.: Temporal analysis of projects under inter-
val uncertainty. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project
Management and Scheduling. IHIS, vol. 2, pp. 911–927. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-05915-0 11

4. Aytung, H., Lawley, M.A., McKay, K., Shantha, M., Uzsoy, R.: Executing produc-
tion schedules in the face of uncertainties: a review and some future directions.
Eur. J. Oper. Res. 161, 86–110 (2005)

5. Bidot, J., Vidal, T., Laboire, P.: A theoretic and practical framework for scheduling
in stochastic environment. J. Sched. 12, 315–344 (2009)

6. Bierwirth, C.: A generalized permutation approach to jobshop scheduling with
genetic algorithms. OR Spectr. 17, 87–92 (1995)
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