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and Eduardo René Concepción-Morales1

1 University of Cienfuegos, Cienfuegos 55100, Cuba
bpcanedo@gmail.com, econcepm@gmail.com

2 Technological University of Havana, Havana, Cuba
rosete@ceis.cujae.edu.cu

3 University of Granada, Granada, Spain
verdegay@ugr.es

Abstract. Traditional linear regression analysis aims at finding a linear
functional relationship between predictor and response variables based
on available data of a given system, and, when this relationship is found,
it is used to predict the future behaviour of the system. The differ-
ence between the observed and predicted data is supposed to be due
to measurement errors. In fuzzy linear regression, on the other hand,
this difference is supposed to be mainly due to the indefiniteness of the
system. In this paper, we assume that predictor and response variables
are LR-type fuzzy numbers, and so are all regression coefficients; this is
known as fully fuzzy linear regression (FFLR) problem. We transform
the FFLR problem into a fully fuzzy multiobjective linear programming
(FFMOLP) problem. Two fuzzy goal programming methods based on
linear and Chebyshev scalarisations are proposed to solve the FFMOLP
problem. The proposed methods are compared with a recently published
method and show promising results.

Keywords: Fully fuzzy linear regression · Fully fuzzy multiobjective
linear programming · Fuzzy goal programming · Linear scalarisation ·
Chebyshev scalarisation

1 Introduction and Preliminaries

Traditional linear regression is one of the most frequently applied technique
for finding functional relationships between predictor and response variables,
and for making predictions. However, decision problems arising in ever-changing
environments are difficult to describe or formulate with precise terms. Expert
knowledge then gains a special value, and the need for its introduction into clas-
sical decision-making techniques has motivated the appearance and development
of several mathematical theories dealing with uncertainty and vagueness. Among
those theories, Fuzzy Sets Theory [31] has succeeded in numerous practical sit-
uations and is now an established research field.
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Fuzzy linear regression is a natural extension of the classical regression anal-
ysis and allows to predict the future behaviour of systems whose structure is
not well defined and/or is influenced by subjectivity. It is particularly useful to
forecast, e.g., future demands, resource availability and prices that could then
be used to set up fuzzy optimisation problems in areas such as production,
transportation, project management and so forth. Fuzzy linear regression has
been used to forecast airport demand [21], oil consumption [1], house prices [32],
sales [5] and short-term load in power distribution systems [24]. Several other
applications are reported in [6].

Numerous fuzzy linear regression models and methods have been developed
since the 1980s. Tanaka et al. [25] introduced fuzzy linear regression analysis and
formulated a regression problem with crisp predictor variables, fuzzy response
variable and fuzzy coefficients as a conventional linear programming problem.
A modified version of Tanaka et al.’s [25] fuzzy linear regression method allow-
ing negative spreads in the parameters was proposed in [3]. Chang and Lee [2]
proposed fuzzy least square deviation and least absolute deviation models based
on ranking functions. A multiobjective approach was proposed by Sakawa and
Yano [23] by simultaneous consideration of the model fit and fuzziness. Recent
methods for fuzzy linear regression have been presented in [14,18,22]. A com-
prehensive review until year 2019 is provided by Chukhrova and Johannssen [6].

So far, fuzzy linear regression methods mainly resort to the minimisation of
crisp-valued distance functions between fuzzy numbers, either by direct generali-
sations of known crisp distance functions or by the use of linear ranking functions
to defuzzify response observations and model predicted values, and then taking
the absolute value of the difference as the distance between the two fuzzy num-
bers. A simulation study, considering distance functions from both approaches,
was conducted in [14] to determine the best distance function in fuzzy linear
regression using Monte Carlo methods. Notably, Voxman [26] has argued that
the distance between two fuzzy numbers should also be a fuzzy number, and pro-
posed a fuzzy-valued distance function. However, to the best of our knowledge,
fuzzy-valued distance functions have not been used in fuzzy regression analysis.

In this paper, we seek to evaluate other models and methods for fuzzy linear
regression analysis, which do not rely on crisp-valued distance functions. We
propose two methods based on FFMOLP for fuzzy linear regression analysis,
in which the predictor variables, response variable and regression coefficients
are LR-type fuzzy numbers. The proposed methods rely on the lexicographic
approach to fully fuzzy linear programming (FFLP) with inequality constraints
recently proposed in [19]. The rest of the paper is organised as follows. Section 1.1
presents some fundamental definitions on LR-type fuzzy numbers. Section 1.2
outlines the lexicographic method [19] for solving FFLP problems. In Sect. 2,
we formulate the FFLR problem as a FFMOLP problem, and propose two
fuzzy scalarisation methods based on classical goal programming to solve it.
Section 3 discusses a numerical example. Lastly, Sect. 4 presents the conclusions
and remarks for future work.
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1.1 LR-type Fuzzy Numbers

Dubois and Prade [8] defined the concept of LR-type fuzzy number and proposed
simple formulae for arithmetic operations. In this section, we present some defi-
nitions concerning LR-type fuzzy numbers taken from reference [8].

Definition 1. A fuzzy number ã = (m,α, β)LR is said to be an LR-type fuzzy
number if its membership function is given by:

μã(x) =

{
L

(
m−x

α

)
m − α ≤ x ≤ m, α > 0

R
(

x−n
β

)
m ≤ x ≤ m + β, β > 0

where m is the modal value; L and R (called left and right reference func-
tions, respectively) are non-increasing functions [0,+∞) → [0, 1], fulfilling
L(0) = R(0) = 1; α and β are the left and right spreads of ã, respectively.
The set of all LR-type fuzzy numbers, defined on �, is denoted by F(�).

Definition 2. Let ã1 = (m1, α1, β1)LR and ã2 = (m2, α2, β2)LR be any LR-type
fuzzy numbers, then ã1 = ã2 if and only if m1 = m2, α1 = α2 and β1 = β2.

Definition 3. An LR-type fuzzy number ã = (m,α, β)LR is said to be non-
negative (resp. non-positive) if m − α ≥ 0 (resp. m + β ≤ 0). This is denoted by
ã ≥ 0 (resp. ã ≤ 0).

Definition 4. An LR-type fuzzy number ã = (m,α, β)LR is said to be unre-
stricted if m is an arbitrary real number.

Definition 5. Let ã1 = (m1, α1, β1)LR and ã2 = (m2, α2, β2)LR be two LR-type
fuzzy numbers, then fuzzy addition is given by ã1 ⊕ ã2 = (m1 + m2, , α1 + α2,
β1 + β2)LR.

Definition 6. The product of two non-negative LR-type fuzzy numbers ã1 =
(m1, α1, β1)LR and ã2 = (m2, α2, β2)LR is given by ã1 � ã2 = (m1m2,m1α2 +
α1m2 − α1α2, n1β2 + β1n2 + β1β2)LR.

The reader is referred to [15] for the definition of the product of unrestricted
LR-type fuzzy numbers.

1.2 FFLP Problem and Lexicographic Solution Method

Due to the vast number of practical situations where fuzzy quantities must be
compared, ranking fuzzy numbers is still recognised as a fundamental research
problem in Fuzzy Sets Theory. Many ranking methodologies have been proposed
in the literature [29,30]. However, several researchers have noticed that most
existing ranking methodologies cannot yield a total order of fuzzy numbers in
a strict sense. To resolve this issue, lexicographic ranking criteria have been
proposed as an alternative [11,27,28].
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The integration of lexicographic ranking criteria into FFLP methods started
with [12,13] and has been recently investigated in [7,9,10,16,19,20]. In partic-
ular, the use of lexicographic ranking criteria for handling fuzzy inequality con-
straints has been proposed in [12,19,20]. In this section, we present the lexico-
graphic method [19] for solving FFLP problems with inequality constraints. This
method constitutes the basis of the results presented in the following sections.

Firstly, we need to introduce an order relation on F(�). Let ã = (m,α,
β)LR be an arbitrary LR-type fuzzy number, and suppose we have three linear
functions of the parameters of ã, fk(ã) := wk1m + wk2α + wk3β for k = 1, 2, 3.
If each wkr is chosen such that matrix [wkr] is non-singular, then ã1 = ã2 if and
only if fk(ã1) = fk(ã2) for k = 1, 2, 3.

Based on the above idea, we may consider the following criterion for ranking
LR-type fuzzy numbers.

Definition 7. Let ≤lex denote the lexicographic order relation on �3. For
any ã1, ã2 ∈ F(�), the strict inequality ã1 ≺ ã2 holds, if and only if
(fk(ã1))k=1,2,3 <lex (fk(ã2))k=1,2,3. The weak inequality ã1 � ã2 holds, if and
only if (fk(ã1))k=1,2,3 <lex (fk(ã2))k=1,2,3 or (fk(ã1))k=1,2,3 = (fk(ã2))k=1,2,3.

It can be shown that � satisfies the total order properties. That is, for all ã, b̃
and c̃ in F(�):

– ã � ã (reflexivity);
– ã � b̃ or b̃ � ã (comparability);
– if ã � b̃ and b̃ � c̃, then ã � c̃ (transitivity);
– if ã � b̃ and b̃ � ã, then ã = b̃ (anti-symmetry).

Next, we present the lexicographic method proposed in [19] for solving FFLP
problems with equality and inequality constraints.

The FFLP problem can be formulated as follows, where c̃j , ãij and b̃i are
LR-type fuzzy parameters, x̃j denote the LR-type fuzzy decision variables, and
� is an order relation on F(�); here, we assume that � is given by Definition 7.

min
n∑

j=1

c̃j � x̃j

s.t.
n∑

j=1

ãij � x̃j{�,=,�}b̃i; i = 1, 2, . . . , m

x̃j ∈ F(�); j = 1, 2, . . . , n (1)

By using Definitions 2 and 7, FFLP problem (1) is transformed into problem (2),
which is then transformed into problem (3). To carry out these transformations,

we have assumed that z̃ =
n∑

j=1

c̃j � x̃j , ãi = (ma
i , αa

i , βa
i )LR =

n∑
j=1

ãij � x̃j ,

b̃i =
(
mb

i , α
b
i , β

b
i

)
LR

and x̃j =
(
mx

j , αx
j , βx

j

)
LR

. In addition, Ie, Ile and Ige denote
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the index sets of the fuzzy equality, less-than-or-equal-to and greater-than-or-
equal-to constraints of FFLP problem (1), respectively; ε and M are positive
real numbers sufficiently small and large, respectively.

lexmin (fk (z̃))k=1,2,3

s.t. (fk (ãi))k=1,2,3 {≤lex,≥lex}
(
fk

(
b̃i

))
k=1,2,3

; i ∈ Ile ∪ Ige (2)

ma
i = mb

i , α
a
i = αb

i , β
a
i = βb

i ; i ∈ Ie

αx
j ≥ 0, βx

j ≥ 0; j = 1, 2, . . . , n

lexmin (fk (z̃))k=1,2,3

s.t. − M
k−1∑
p=1

yip + εyik ≤ fk

(
b̃i

)
− fk (ãi) ≤ Myik; i ∈ Ile, k = 1, 2, 3

− M

k−1∑
p=1

yip + εyik ≤ fk (ãi) − fk

(
b̃i

)
≤ Myik; i ∈ Ige, k = 1, 2, 3

ma
i = mb

i , α
a
i = αb

i , β
a
i = βb

i ; i ∈ Ie (3)
yik ∈ {0, 1}; i ∈ Ile ∪ Ige, k = 1, 2, 3
αx

j ≥ 0, βx
j ≥ 0; j = 1, 2, . . . , n

Theorem 1. FFLP problem (1) is equivalent to problem (3).

Proof. See [19]. ��
Remark 1. In order to solve FFLP problem (1), we must choose a lexicographic
criterion for ranking LR-type fuzzy numbers. There are several such criteria in
the literature (see, e.g., [11,27]). Notably, the solution method outlined here is
general enough so as to allow a decision-maker to use the criterion that best fits
the decision-making problem at hand.

2 FFLR: Proposed Methods

Let x̃j , Ãj (j = 0, 2, . . . , n) and ỹ be LR-type fuzzy numbers. Then the FFLR
model is formulated as in Eq. (4).

ỹ = Ã0 ⊕ Ã1 � x̃1 ⊕ Ã2 � x̃2 ⊕ · · · ⊕ Ãn � x̃n = Ã0 ⊕
n∑

j=1

Ãj � x̃j (4)

In Eq. (4), each x̃j is termed fuzzy predictor variable, ỹ fuzzy response vari-
able and Ãj fuzzy regression coefficient. Now, let us consider a sample of LR-

type fuzzy numbers
(
X̃|Ỹ

)
, where X̃ = (x̃ij)i=1,2,...,m

j=1,2,...,n
contains the observa-

tions corresponding to each fuzzy predictor variable x̃j , and the column vector
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Ỹ = (ỹi)i=1,2,...,m contains the observations of the fuzzy response variable ỹ. We
wish to determine the estimates of Ãj so as to obtain the best fitting model
given the available data.

In what follows, we formulate the FFLR problem as a FFMOLP problem.
To this aim, we introduce two non-negative fuzzy deviation variables S̃pi and
S̃ni for each sample. Thus, the following set of fuzzy equalities is obtained.

Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m

Therefore, we may consider the following FFMOLP problem:

min
(
S̃p1 ⊕ S̃n1, S̃p2 ⊕ S̃n2, . . . , S̃pm ⊕ S̃nm

)

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m (P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

In order to solve (P1), we resort to two known classical scalarisation methods
based on goal programming, which are extended to the fuzzy case: linear scalar-
isation method and Chebyshev (minimax) scalarisation method.

2.1 Linear Scalarisation Method

In this method, each objective function is multiplied by a positive weighting
factor and the resulting expressions are added together. Thus, we have,

min
m∑

i=1

wi

(
S̃pi ⊕ S̃ni

)

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m (l-P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

Hereafter, wi = 1 for i = 1, 2, . . . ,m since no particular preference for the
objective functions shall be considered.

2.2 Chebyshev Scalarisation Method

In this case the scalarising function is S̃ = max
(
S̃p1⊕S̃n1, S̃p2⊕S̃n2, . . . , S̃pm⊕

S̃nm

)
; hence, we have that S̃pi ⊕ S̃ni � S̃ for i = 1, 2, . . . ,m. By substituting
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into (P1), we obtain,

min S̃

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m

S̃pi ⊕ S̃ni � S̃; i = 1, 2, . . . , m (ch-P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃ ≥ 0, S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

thus, the objective is to minimise the maximal deviation.

2.3 Steps of the Proposed FFLR Methods

The whole procedure can be summarised in the following six steps.

1. Input: Sample data X̃ and Ỹ ;
2. choose a lexicographic criterion for ranking LR-type fuzzy numbers;
3. set up FFMOLP problem (P1);
4. choose either of the proposed scalarisation methods, and set up FFLP prob-

lem (l-P1) or FFLP problem (ch-P1);
5. solve the FFLP problem chosen in Step 4 by using the lexicographic method

outlined in Sect. 1.2;
6. output: Ãj for j = 0, 1, . . . , n as the estimated regression parameters.

3 Numerical Example

The example in this section is taken from references [4,17,18]. The dataset con-
tains 30 samples, each having four predictor variables and one response vari-
able (see Table 1). It is a real-life dataset comprising triangular fuzzy numbers
used to subjectively evaluate employee’s performance according to work quality,
inability to endure job stress, frequency of delays, and communication and coor-
dination ability. As part of the solution procedure from Sect. 2.3, the functions
f1(ã) := 3m + β − α, f2(ã) := m + β and f3(ã) := α + β were used to define a
lexicographic order relation on F(�).

We applied the proposed methods and obtained the following two models.
The estimated responses of both models are shown in Table 2.

ỹlinear =(0.85684, 0, 0)LR � x̃1 ⊕ (−0.12989, 0, 0)LR � x̃2

⊕ (−0.17893, 0.01697, 0)LR � x̃3 ⊕ (0.04995, 0, 0)LR � x̃4

⊕ (12.60258, 0.14101, 0)LR

ỹchebyshev =(0.85662, 0, 0)LR � x̃1 ⊕ (−0.15074, 0.03749, 0)LR � x̃2

⊕ (−0.14948, 0, 0)LR � x̃3 ⊕ (0.09081, 0, 0)LR � x̃4

⊕ (10.03612, 0, 0)LR
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Table 1. Sample dataset.

x̃1 x̃2 x̃3 x̃4 ỹ

(50, 8, 8)LR (98, 6, 2)LR (71, 9, 11)LR (70, 11, 13)LR (30, 11, 9)LR

(29, 8, 8)LR (76, 6, 2)LR (61, 9, 11)LR (46, 11, 13)LR (20, 13, 10)LR

(41, 8, 8)LR (88, 6, 2)LR (73, 9, 11)LR (58, 11, 13)LR (25, 11, 12)LR

(60, 9, 7)LR (62, 9, 10)LR (79, 9, 6)LR (66, 8, 9)LR (45, 12, 10)LR

(49, 9, 7)LR (50, 9, 10)LR (75, 9, 6)LR (54, 8, 9)LR (38, 12, 8)LR

(59, 9, 7)LR (60, 9, 10)LR (85, 9, 6)LR (64, 8, 9)LR (43, 11, 9)LR

(61, 9, 11)LR (77, 8, 6)LR (85, 5, 8)LR (18, 7, 13)LR (40, 17, 11)LR

(58, 9, 11)LR (75, 8, 6)LR (82, 5, 8)LR (16, 7, 13)LR (38, 11, 12)LR

(55, 9, 11)LR (72, 8, 6)LR (79, 5, 8)LR (13, 7, 13)LR (37, 12, 12)LR

(66, 8, 7)LR (59, 17, 11)LR (39, 8, 9)LR (83, 14, 11)LR (60, 11, 12)LR

(69, 8, 7)LR (63, 17, 11)LR (49, 8, 9)LR (87, 14, 11)LR (59, 10, 9)LR

(59, 8, 7)LR (53, 17, 11)LR (39, 8, 9)LR (77, 14, 11)LR (54, 11, 8)LR

(74, 4, 6)LR (89, 11, 5)LR (70, 12, 13)LR (82, 14, 10)LR (61, 14, 3)LR

(41, 4, 6)LR (57, 11, 5)LR (58, 12, 13)LR (50, 14, 10)LR (34, 10, 8)LR

(49, 4, 6)LR (65, 11, 5)LR (66, 12, 13)LR (58, 14, 10)LR (38, 9, 9)LR

(76, 8, 7)LR (75, 10, 8)LR (37, 8, 11)LR (75, 5, 10)LR (64, 16, 9)LR

(57, 8, 7)LR (56, 10, 8)LR (18, 8, 11)LR (56, 5, 10)LR (56, 13, 7)LR

(72, 8, 7)LR (71, 10, 8)LR (33, 8, 11)LR (71, 5, 10)LR (63, 11, 9)LR

(78, 7, 8)LR (65, 6, 6)LR (82, 11, 11)LR (64, 8, 12)LR (66, 16, 5)LR

(58, 7, 8)LR (45, 6, 6)LR (62, 11, 11)LR (44, 8, 12)LR (49, 12, 9)LR

(72, 7, 8)LR (59, 6, 6)LR (76, 11, 11)LR (58, 8, 12)LR (55, 10, 12)LR

(90, 8, 5)LR (95, 13, 3)LR (80, 11, 8)LR (72, 7, 13)LR (67, 11, 14)LR

(68, 8, 5)LR (73, 13, 3)LR (58, 11, 8)LR (50, 7, 13)LR (53, 10, 9)LR

(71, 8, 5)LR (76, 13, 3)LR (61, 11, 8)LR (53, 7, 13)LR (54, 9, 10)LR

(92, 8, 6)LR (76, 6, 9)LR (78, 10, 6)LR (27, 9, 15)LR (70, 13, 7)LR

(94, 8, 6)LR (78, 6, 9)LR (80, 10, 6)LR (29, 9, 15)LR (68, 9, 10)LR

(87, 8, 6)LR (71, 6, 9)LR (73, 10, 6)LR (22, 9, 15)LR (65, 10, 9)LR

(94, 6, 5)LR (51, 9, 8)LR (30, 9, 11)LR (29, 9, 16)LR (75, 5, 14)LR

(95, 6, 5)LR (52, 9, 8)LR (31, 9, 11)LR (30, 9, 16)LR (84, 10, 7)LR

(86, 6, 5)LR (43, 9, 8)LR (22, 9, 11)LR (21, 9, 16)LR (80, 12, 6)LR

The obtained models’ predicted values were compared with the ones reported
by Li et al. [18], according to the overall absolute distance from the observed
responses, using Eqs. (5) and (6).

d
(
ỹobs

i , ỹpred
i

)
=

∣∣∣mobs
i − mpred

i

∣∣∣ +
∣∣∣mobs

i − αobs
i −

(
mpred

i − αpred
i

)∣∣∣
+

∣∣∣mobs
i + βobs

i −
(
mpred

i + βpred
i

)∣∣∣ (5)
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Table 2. Estimated values reported by Li et al. [18] and the ones obtained by using
the proposed methods. The observed values have been kept to aid visual comparison.

Observed response Li et al. [18] Chebyshev Scalarisation Linear Scalarisation

(30, 11, 9)LR (32.053, 10.999, 9.352)LR (33.837, 13.547, 10.283)LR (33.508, 11.166, 9.894)LR

(20, 13, 10)LR (17.915, 10.916, 9.352)LR (18.480, 12.722, 10.283)LR (18.962, 10.996, 9.894)LR

(25, 11, 12)LR (25.053, 10.962, 9.352)LR (26.247, 13.172, 10.283)LR (26.138, 11.199, 9.894)LR

(45, 12, 10)LR (45.501, 12.046, 8.795)LR (46.271, 13.540, 9.516)LR (45.121, 12.068, 9.227)LR

(38, 12, 8)LR (37.998, 11.999, 8.795)LR (38.166, 13.090, 9.516)LR (37.371, 12.000, 9.227)LR

(43, 11, 9)LR (43.947, 12.038, 8.795)LR (44.638, 13.465, 9.516)LR (43.350, 12.170, 9.227)LR

(40, 17, 11)LR (39.767, 11.304, 12.074)LR (39.611, 13.558, 12.557)LR (40.558, 11.992, 12.009)LR

(38, 11, 12)LR (37.874, 11.296, 12.074)LR (37.609, 13.483, 12.557)LR (38.684, 11.941, 12.009)LR

(37, 12, 12)LR (36.090, 11.285, 12.074)LR (35.668, 13.370, 12.557)LR (36.890, 11.890, 12.009)LR

(60, 11, 12)LR (59.973, 12.457, 9.485)LR (59.387, 13.753, 10.754)LR (58.658, 11.549, 10.187)LR

(59, 10, 9)LR (60.580, 12.472, 9.485)LR (60.222, 13.903, 10.754)LR (59.120, 11.719, 10.187)LR

(54, 11, 8)LR (54.633, 12.434, 9.485)LR (53.750, 13.528, 10.754)LR (53.140, 11.549, 10.187)LR

(61, 14, 3)LR (56.998, 8.863, 8.283)LR (56.992, 10.919, 9.500)LR (56.019, 8.653, 9.217)LR

(34, 10, 8)LR (34.060, 8.741, 8.283)LR (32.435, 9.720, 9.500)LR (32.449, 8.449, 9.217)LR

(38, 9, 9)LR (38.818, 8.772, 8.283)LR (37.613, 10.020, 9.500)LR (37.233, 8.585, 9.217)LR

(64, 16, 9)LR (64.026, 11.115, 9.292)LR (65.113, 13.269, 9.608)LR (65.107, 11.068, 9.228)LR

(56, 13, 7)LR (52.726, 11.043, 9.292)LR (52.817, 12.557, 9.608)LR (53.745, 10.745, 9.228)LR

(63, 11, 9)LR (61.647, 11.100, 9.292)LR (62.525, 13.119, 9.608)LR (62.715, 11.000, 9.228)LR

(66, 16, 5)LR (59.633, 10.203, 9.923)LR (60.608, 11.934, 10.492)LR (59.518, 10.865, 10.202)LR

(49, 12, 9)LR (47.738, 10.127, 9.923)LR (47.664, 11.184, 10.492)LR (47.558, 10.526, 10.202)LR

(55, 10, 12)LR (56.064, 10.180, 9.923)LR (56.725, 11.709, 10.492)LR (55.930, 10.763, 10.202)LR

(67, 11, 14)LR (68.175, 12.176, 6.479)LR (67.391, 12.811, 9.068)LR (66.661, 10.661, 8.591)LR

(53, 10, 9)LR (55.091, 12.092, 6.479)LR (53.152, 11.986, 9.068)LR (53.505, 10.287, 8.591)LR

(54, 9, 10)LR (56.877, 12.104, 6.479)LR (55.094, 12.099, 9.068)LR (55.299, 10.338, 8.591)LR

(70, 13, 7)LR (68.807, 10.989, 8.026)LR (68.181, 13.111, 8.901)LR (68.952, 11.114, 8.459)LR

(68, 9, 10)LR (69.995, 10.996, 8.026)LR (69.475, 13.186, 8.901)LR (70.148, 11.148, 8.459)LR

(65, 10, 9)LR (65.834, 10.970, 8.026)LR (64.945, 12.923, 8.901)LR (65.962, 11.029, 8.459)LR

(75, 5, 14)LR (82.242, 9.475, 7.819)LR (81.020, 11.020, 8.438)LR (82.602, 9.435, 7.863)LR

(84, 10, 7)LR (82.837, 9.479, 7.819)LR (81.667, 11.057, 8.438)LR (83.200, 9.452, 7.863)LR

(80, 12, 6)LR (77.484, 9.445, 7.819)LR (75.842, 10.720, 8.438)LR (77.818, 9.299, 7.863)LR

Overall distance 113.448 142.3720 109.9628

dT =
m∑

i=1

d
(
ỹobs

i , ỹpred
i

)
(6)

In order to compare the predicted values, first Li et al.’s [18] solution is converted
to LR representation of fuzzy numbers, since the authors used a different repre-
sentation. From the last row of Table 2, it can be seen that the model obtained
by the Linear Scalarisation Method (FFLP problem (l-P1)) has the smallest
overall distance value, followed by Li et al.’s [18] model and the model obtained
by using the proposed Chebyshev Scalarisation Method.
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4 Concluding Remarks

In this paper, we proposed two methods for FFLR analysis. Contrary to existing
methodologies that use crisp-valued distance functions, we formulated the FFLR
problem as a FFMOLP problem. Fuzzy linear and Chebyshev scalarisations were
proposed to solve the FFMOLP problem using a lexicographic method for FFLP.

The proposed methods were compared with a recently published method
and showed promising results. In a future work, we plan to conduct an extensive
simulation study and consider real-world applications to gain more insights into
the performance of the proposed methods. In addition, the use of fuzzy-valued
distance functions for FFLR analysis will be investigated.

Acknowledgements. The research of José Luis Verdegay is supported in part by
project TIN2017-86647-P (Spanish Ministry of Economy and Competitiveness and
FEDER funds from the European Union).
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