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Abstract. This study compares three fuzzy based model approaches for solving
a realistic extension of the Time Dependent Traveling Salesman Problem. First,
the triple Fuzzy (3FTD TSP) model, where the uncertain costs between the nodes
depend on time are expressed by fuzzy sets. Second, the intuitionistic fuzzy
(IFTD TSP) approach, where including hesitation was suitable for quantifying
the jam regions and the bimodal rush hour periods during the day. Third, the
interval-valued intuitionistic fuzzy sets model, that calculates the interval-valued
intuitionistic fuzzy weighted arithmetic average (IIFWAA) of the edges’ con-
firmability degrees and non-confirmability degrees, was contributing in mini-
mizing the information loss in cost (delay) calculation between nodes.

Keywords: Rush hours � Jam regions � Interval-valued fuzzy sets �
Intuitionistic fuzzy set � Fuzzy set

1 Introduction

The Traveling Salesman Problem (TSP) is one of the extensively studied NP-hard graph
search problems [1]. Various approaches are known for finding the optimum or semi
optimum solution. The Time Dependent Traveling Salesman Problem (TD TSP) is a
more realistic extension of the TSP, where the costs of edges vary in time, depending on
the jam regions and rush hours. In the TD TSP, the edges are assigned higher weights if
they are traveled within the traffic jam regions during rush hour periods, and lower
weights otherwise [2]. The information on the rush hour periods and jam regions is
uncertain and vague (fuzzy), hence, representing them by crisp numbers in the classic
TD TSP does not quantify the effects of traffic jams accurately [2]. This limitation of
simulating real life cases was to the point in constructing three novel fuzzy models
capable of addressing the TD TSP with jam regions and rush hours more efficiently. In
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the Triple Fuzzy (3FTD TSP) model, the costs between the nodes may depend on time
and location; and are expressed by fuzzy sets [3]. Here, fuzzy values represent the
uncertainties of the costs caused by the fuzzy extensions of the traffic jam areas and rush
hour times, which depend on several vague or non-deterministic factors. Rush hour time
was represented as a bimodal piecewise linear normal fuzzy set, the jam areas as fuzzy
oblongs, and the costs as trapezoidal sets. This model expressed the uncertain costs
affected by the jam situations, and calculated the overall tour length quantitatively [3].
Second, the Intuitionistic Fuzzy IFTD TSP approach, involves a hesitation part
expressing the effects of membership and non-membership values allowing a higher
level of uncertainty [4]. In the IFTD TSP, the use of intuitionistic fuzzy sets ensured an
even more realistic cost estimate of the TD TSP problem. By successfully representing
simultaneously the higher degrees of association and the lower degrees of non-
association of the jam factor and rush hours and lower degrees of hesitation to edges
cost, resulted in a more accurate cost of the tours [4]. Third, we proposed the interval-
valued intuitionistic fuzzy set model (IVIFTD TSP) [5]. In the IVIFTD TSP, additional
uncertainty was modeled, and by using an aggregation of the costs rather than using the
max-min composition of the fuzzy factors resulted in an even more adequate model. In
this paper, the three models are briefly presented and examined, from the point of view
of realistical representation and results.

2 Solution of the Classic TSP

The original TSP was first formulated in 1930 [6]. A salesman starts the journey from
the headquarters and visits each city or shop exactly once then returns to the starting
point. The task is to find the route with minimum overall travelled distance visiting all
destination points. TSP is a graph search problem with edge weights in Eq. 1. In the
symmetric case with n nodes cij = cji, so, in the graph, there is only one edge between
every two nodes. Let xij = {0, 1} be the decision variable (i, j = 1, 2,…, n), and xij = 1,
if edge eij between nodei and nodej is part of the tour. Let xii ¼ 0 i ¼ 1; 2; . . .; nð Þ,
GTSP ¼ Ncities;Econnð Þ, C: Ncities � Ncities ! R;C ¼ Cij

� �
n�n C is called cost matrix,

where Cij represent the cost of going from city i to city j. then:

Ncities ¼ n1; n2; . . .; nnf g;Econn �f ni; nj
� �ji 6¼ jg ð1Þ

Xn�1

i¼1
CPi;Piþ 1

� �
þCPn;P1 ð2Þ

The goal is to find the directed Hamiltonian cycle with minimal total length.

3 The Time Dependent TSP (TD TSP)

Despite TD TSP’s good results in determining the overall cost for a trip under realistic
traffic conditions, yet one major drawback is the crisp values used for the proportional
jam factors [2]. The total cost of any trip consists of two main elements: costs

700 R. Almahasneh et al.



proportional to physical distances and costs increased by traffic jams occurring in rush
hour periods or in certain areas between the pairs of nodes (such as in city center areas).
The first can be looked at as constant; although transit times are subject to external and
unexpected environmental factors. Thus, even they should be treated as uncertain
variables, in particular, as fuzzy cost coefficients. In the TD TSP, the edges have fixed
costs, which may be multiplied by a rush hour factor). This representation of the traffic
jam effects is too rigid for real life circumstances.

4 The Triple Fuzzy TD TSP (3FTD TSP)

In the 3FTD TSP approach [Put here a citation of our paper] two parameters modify the
fuzzy edge costs, the actual jam factor calculated from the membership degree of being in
the jam region, and the degree of membership being in the rush hour period in the given
moment. We proposed to use a simple Mamdani rule base [7] in the form: If Ni is in the
traffic jam region J and tj is in the rush hour time R then the cost is Ck. Here, membership
functions from the unit interval [0, 1] help describe the uncertainty of the jam region and
the rush hour period, more efficiently. In this model, the distance between cities is also
expressed in terms of the elapsed time. Here, we introduced a velocity (v) as a new
parameter of the TSP route. The costs were represented by asymmetrical triangular fuzzy
numbers. The total cost of the tour was calculated as follows:

C0 tð Þ ¼ C0
L;C

0
C;C

0
R

� � ¼ CL;CC;CRð Þ � 1þ jamfactor � 1
� �� l1 � l2

� � ð3Þ

where l1 and l2 are obtained from the Fuzzy Jam Region (J) and Fuzzy Traffic Rush
Hours (R) membership functions. A valid solution for the problem is a permutation of
the nodes:

P1;P2; . . .;Pn;P1 ð4Þ

where p1 is the starting and end node of the tour. The time needed for visiting the first
city from the start node is:

tP1;P2 ¼
COG C0

P1;P2
t ¼ 0ð Þ

� �

v
ð5Þ

where P1 is the starting node, P2 is the first visited one and v is the velocity. The
calculation of travel time is necessary as the costs are time dependent, and the actual
cost between two cities can be determined by Eq. 3, thus, the time dependency in the
cost matrix is represented by virtual distance values. The cost of the trip is calculated
from

tPk ;Pkþ 1 ¼
COG C0

Pk ;Pkþ 1
telapsedk
� �� �

v
ð6Þ
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The total cost is:

S ¼
Xn�1

i¼1
COG C0

Pi;Piþ 1
telapsedi
� �� �

þCOG C0
Pn;P1

telapsedn
� �� �

ð7Þ

where pn is the location last visited, and telapsedk is the total time elapsed from the
beginning of the tour till the salesman arrives in city pk. In the implementation, the
three fuzzy elements used were triangular fuzzy costs between the edges, fuzzy oblong
type membership function(s) of the fuzzy jam region(s) J; and bimodal normal
piecewise linear membership function(s) for the traffic rush hour time period(s) R – see
next sections.

4.1 Triangular Fuzzy Costs for the “Distances”

The uncertain costs between the nodes, is expressed by triangular fuzzy numbers.
Triangular fuzzy numbers may be expressed by the support C = [CL, CR], and the peak
value CC is, so it is denoted by ~C = (CL, CC, CR). To calculate the overall distance of
the tour, these fuzzy values are summed up. The calculation of the total length of the
tour was done by the defuzzified values of the fuzzy numbers using Center of Gravity
(COG) [8].

4.2 The Membership Function of the Jam Regions

The fuzzy extensions of the city center areas (the degree of belonging to the jam region
J) are expressed by fuzzy borders as in Fig. 1. Thus, l1 is simply calculated as

l1 ¼ f d1ð Þþ f d2ð Þ
2 , where d1, d2 are the distances from the peak of J. This approach

sophisticates Schneider’s original model (cf. [2]), so that the breakpoints are: [0, 1000,
5000, 6000], (see Fig. 1).

4.3 Membership Function of the Traffic Rush Hour Periods

The model uses the bimodal membership function in Fig. 2 for representing the Traffic
Rush Hour Time (l2). In this example, the two peak rush hour periods are from 7 to 8
a.m. and from 4 to 6 p.m. Between the two periods the traffic is lower. (We used the
traffic data base …). The breakpoints of J are {0, 5, 7, 8, 14, 16, 18, 22, 24}, and its

Fig. 1. Jam regions membership function (J) Fig. 2. Rush hours membership function (R)
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membership value at 14 h is 0.75. For illustration, assuming a jam factor of 5, a sample
calculation is run to clarify the approach. The peak point of the fuzzy triangular cost for
each edge is the Euclidean distance between the end-points, namely, the left-side and
right-side points were determined randomly (0–50% lower and higher than the middle
point) in this test.

Table 1 was calculated by averaging five times runs for jam factor 5.0 for the three
areas of the triangular membership functions (low, medium and high). Table 2 shows
the middle values of the supports of the triangular fuzzy numbers for that specific case
(for jam factor 5). Depending on Table 1 the average elapsed time is 22.19562.

Applying the same approach results in Table 3, which contains the total time in
hours required to visit each location with different jam factors by applying the same
concept explained in the previous section

Table 1. Computational results for jam factor equal 5.0.

Run 1 Run 2 Run 3 Run 4 Run 5

Elapsed time 22.2021 22.1314 22.3246 22.3067 22.0133
Low 16.5611 16.2926 16.5862 16.642 16.8112
Middle 22.4831 22.6905 22.4858 23.0948 22.3641
High 27.562 27.4111 27.9018 27.2832 27.3146

Table 2. Support value for jam factor 5

Run 1 Run 2 Run 3 Run 4 Run 5 Average elapsed time

11.0009 11.1185 11.3156 10.6412 10.5034 10.91592

Table 3. Computational results for the 3FTD TSP.

Jam factor Average elapsed time

1.00 19.5
1.05 19.6
1.20 19.7
1.50 20.3
2.00 20.9
3.00 21.6
5.00 22.2
10.00 23.1
20.00 23.5
50.00 24.2
100.00 24.7
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With such high jam factors, the tour lengths were longer for the 3FTD TSP
problem, because the traffic jam period is longer compared to the classic TD TSP.

5 Intuitionistic Fuzzy TD TSP (IFTD TSP)

In this model, we moved one step further and extended the model by using intu-
itionistic fuzzy set theory. First some related definitions as introduced [4].

5.1 Basic Definitions of Intuitionistic Fuzzy Sets (IFS)

Let a universal set E be fixed and 0� lA xð Þþ vA xð Þ� 1. An intuitionistic fuzzy set or
IFS A in E is an object having the form

A ¼ x; lA xð Þ; vA xð Þh ijx� Ef g ð8Þ

The amount pA xð Þ ¼ 1� ðlA xð Þþ vAÞ is called the hesitation part, which may
cater to either the membership value or to the non-membership value, or to both [9, 10].
If A is an IFS of X, the max-min-max composition of the If Relation
(IFR) R (X ! Y) with A is an IFS B of Y denoted by B ¼ R � Að Þ and is defined by the
membership function

lR�A yð Þ ¼ _x lA xð Þ ^ lR x; yð Þ½ � ð9Þ

and the non-membership function

vR�A yð Þ ¼ ^x vA xð Þ _ vR x; yð Þ½ � ð10Þ

The previous formulas hold for all Y. Let Q X ! Yð Þ and R Y ! Zð Þ be two IFRs.
The max-min-max composition R � Qð Þ is the intuitionistic fuzzy relation from X to Z,
defined by the membership function

lR�Q x; zð Þ ¼ _y lQ x; yð Þ ^ lR y; zð Þ� � ð11Þ

and the non-membership function 8 x; zð Þ 2 X � Z and 8y 2 Y is given by

VR�Q x; zð Þ ¼ ^y vQ x; yð Þ _ vR y; zð Þ½ � ð12Þ

Let A be an IFS of the set J, and R be an IFR from J to C. Then the max-min-max
composition B of IFS A with the IFR R (J ! C) denoted by B ¼ A � R gives the cost of
the edges as an IFS B of C with the membership function given by

lB cð Þ ¼ _j�J lA jð Þ ^ lR j; cð Þ½ � ð13Þ
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and the non-membership function given as:

vB cð Þ ¼ ^j�J vA jð Þ _ vR j; cð Þ½ � ð14Þ
8c 2 C: Here ^¼ min and _ maxð Þ

If the state of the edge E is described in terms of an IFS A of J; then E is assumed to
be the assigned cost in terms of IFSs B of C, through an IFR R from J to C, which is
assumed to be given by a knowledge base directory (given by experts) on the desti-
nation cities and the extent (membership) to which each one is included in the jam
region. This will be translated to the degrees of association and non-association,
respectively, between jam and cost.

5.2 IFTD TSP Applied on the TD TSP Case

Let there be n edges Ei; i = 1; 2;…, 16 as in Fig. 3; in a trip. Thus ei 2 E. Let R be an
IFR J ! Cð Þ and construct an IFR Q from the set of edges E to the set of jam factors
J. Clearly, the composition T of IFRs R and T ¼ R � Qð Þ give the cost for each edge
from E to C by the membership function given as:

lT ei; cð Þ ¼ _j�J lQ ei;j
� � ^ lR j; cð Þ� � ð15Þ

and the non-membership function 8ei 2 E and c 2 C given as:

vT ei; cð Þ ¼ ^j�J vQ ei;j
� � _ vR j; cð Þ� � ð16Þ

For given R and Q, the relation T ¼ R � Q can be computed. From the knowledge
of Q and T, an improved version of the IFR R can be computed, for which the
following holds valid:

(i) JR ¼ lR � vR � pR is greatest
(ii) The equality T ¼ R � Q is retained

Fig. 3. Tour for a simple example Fig. 4. Fuzzy membership and non- membership
functions of the rush hour periods
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Table 4 shows each edge of the tour and the jam factors associated. The ultimate
goal is to be able to calculate the total tour jam factor which will be multiplied by the
physical distances between two nodes. The intuitionistic fuzzy relations Q E ! Jð Þ are
given as shown in Table 4, and R J ! Cð Þ as in Table 5, and the composition ðT ¼
R � QÞ as in Table 6. Then we calculated the jam region cost factors ðcjamÞ (see
Table 7), where the four cost factors are c1 ¼ 1:2; c2 ¼ 1:5; c3 ¼ 2; c4 ¼ 5 with
weighted average calculations:

cjame ¼
P

i ji � ciP
i ji

ð17Þ

The rush hour cost factors of each tour edge ðcrushÞ are determined in a similar
intuitionistic model. The relations between the tour time and the rush hour periods (�Q)
are described with intuitionistic fuzzy functions in Fig. 4. An IFR (�R) is given between
the rush hour periods and the cost factors similarly, as it was done for the jam regions
in Table 5. Then the composition ð�T ¼ �Q � �R is calculated. Finally, rush hour cost
factors were calculated with weighted averaging. The cost of the edges is calculated
taking into account the two cost factors (diste is the Euclidean distance):

IF cjame [ 0 AND crushe [ 0 [the edge belongs to at least one of the jam regions and is
passed during rush hour periods] THEN ce ¼ cjame � crushe � diste ELSE Ce ¼ diste.

Table 4. Route1 = (Edge 1 … Edge 17)

(Q) Jam Region1 Jam Region2 Jam Region3 Jam Region4

E1 (0.8, 0.1) (0.6, 0.1) (0, 1) (0, 1)
E2 (0, 1) (0, 1) (0.2, 0.8) (0.6, 0.1)
E3 (0.8, 0.1) (0.8, 0.1) (0, 1) (0, 1)
E4 (0, 1) (0, 1) (0, 0.6) (0.2, 0.7)
E5 (0.8, 0.1) (0.8, 0.1) (0, 0.6) (0.2, 0.7)
E6 (0, 0.8) (0.4, 0.4) (0, 1) (0, 1)
E7 (0, 1) (0, 1) (0.6, 0.1) (0.1, 0.7)
E8 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E9 (0.6, 0.1) (0.5, 0.4) (0, 1) (0, 1)
E10 (0, 1) (0, 1) (0.3, 0.4) (0.7, 0.2)
E11 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E12 (0, 0.8) (0.4, 0.4) (0, 1) (0, 1)
E13 (0, 1) (0, 1) (0.2, 0.8) (0.6, 0.1)
E14 (0, 1) (0, 1) (0.6, 0.1) (0.1, 0.7)
E15 (0.8, 0.1) (0.8, 0.1) (0, 0.6) (0.2, 0.7)
E16 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E17 (0.6, 0.1) (0.5, 0.4) (0, 1) (0, 1)
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Table 5. Jam factors

Jam area (R) Cost factor 1 (c1) Cost factor 2 (c2) Cost factor 3 (c3) Cost factor 4 (c4)

Jam Region1 (0.4, 0) (0.7, 0) (0.3, 0.3) (0.1, 0.7)
Jam Region2 (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4)
Jam Region3 (0.1, 0.7) (0, 0.9) (0.2, 0.7) (0.8, 0)
Jam Region4 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.7)

Table 6. T ¼ R � Q
Jam cost (T) Cost factor 1 Cost factor 2 Cost factor 3 Cost factor 4

E1 (0.4, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0.4)
E2 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.2)
E3 (0.4, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0.4)
E4 (0.2, 0.7) (0.2, 0.7) (0.2, 0.7) (0.2, 0.6)
E5 (0.3, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0)
E6 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.2, 0.4)
E7 (0.1, 0.7) (0.1, 0.7) (0.2, 0.7) (0.6, 0.1)
E8 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E9 (0.4, 0.1) (0.6, 0.1) (0.5, 0.3) (0.2, 0.4)
E10 (0.4, 0.3) (0.2, 0.6) (0.2, 0.6) (0.3, 0.4)
E11 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E12 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.2, 0.4)
E13 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.2)
E14 (0.1, 0.7) (0.1, 0.7) (0.2, 0.7) (0.6, 0.1)
E15 (0.3, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0)
E16 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E17 (0.4, 0.1) (0.6, 0.1) (0.5, 0.3) (0.2, 0.4)

Table 7. Intuitionistic jam region costs for edges

JR JR1 C1 JR2 C2 JR3 C3 JR4 C4 Total jam regions cost

E1 0.35 1.2 0.68 1.5 0.57 2 0.04 5 1.695
E2 0.31 1.2 0.31 1.5 0.08 2 0.08 5 1.791
E3 0.35 1.2 0.68 1.5 0.57 2 0.04 5 1.695
E4 0.13 1.2 0.13 1.5 0.13 2 0.08 5 2.151
E5 0.24 1.2 0.68 1.5 0.57 2 0.2 5 2.04
E6 0.2 1.2 0.08 1.5 0.32 2 0.36 5 2.97
E7 0 1.2 0 1.5 0.13 2 0 5 2
E8 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E9 0.35 1.2 0.57 1.5 0.44 2 0.04 5 1.682
E10 0.31 1.2 0.08 1.5 0.08 2 0.18 5 2.388

(continued)
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Clearly, the improved version of R in the IFTD TSP model is more adequate in
translating the higher degrees of association and lower degrees of non-association of
the jam factors and rush hours as well as lower degrees of hesitation to any cost C; If
almost equal values in T are obtained, then we consider the case for which hesitation is
least. From a refined version of R one may infer cost from jam factors in the sense of a
paired value, one being the degree of association and other the degree of non-
association. Ultimately, this model offers more realistic costs calculation for the trav-
eled routes under real traffic conditions.

6 The Interval Valued IFTD TSP (IVIFTD TSP)

First, some basic definitions are overviewed [11, 12]. In a type-2 fuzzy set, the uncertain
values of the membership function ~A in Eq. 18 consists of a rounded region called
“footprint of uncertainty” (FOU). It is the union of all primary memberships

FOU ~A
� � ¼

[
x2X Jx ð18Þ

FOUs emphasize the distribution that sits on top of the primary membership
function of the type-2 fuzzy set. The shape of this distribution depends on the choice
made for the secondary grades. When they are equal between two bounds, it gives an
interval type-2 fuzzy set as given in Eq. 19.

~A ¼ x; uð Þ; lA x; uð Þh ij8x� X; 8u 2 Jx � 0; 1½ �f g ð19Þ

For discrete universe of discourse X and U, an embedded type-2 set ~Ae has N
elements, where ~Ae contains exactly one element from set Jx1;x2.........xN , namely U1;2...N ,
with its associated secondary grade fx1 u1ð Þ, fx2 u2ð Þ. . .. . .fxN uNð Þ, which equals to
Eq. 20.

~Ae xð Þ ¼
XN

i¼1
fxi uið Þ=ui½ �=xijui 2 Jxi �U ¼ 0; 1½ � ð20Þ

Table 7. (continued)

JR JR1 C1 JR2 C2 JR3 C3 JR4 C4 Total jam regions cost

E11 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E12 0.2 1.2 0.08 1.5 0.32 2 0.36 5 2.917
E13 0.31 1.2 0.31 1.5 0.08 2 0.08 5 1.791
E14 0 1.2 0 1.5 0.13 2 0 5 2
E15 0.24 1.2 0.68 1.5 0.57 2 0.2 5 2.04
E16 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E17 0.35 1.2 0.57 1.5 0.44 2 0.04 5 1.682
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As we discussed previously, the jam factor costs on the edges in a tour were
represented as fuzzy relations between the jam factors and the predicted costs (delays).

Let J ¼ J1; J2; J3; . . .; Jmf g, C ¼ C1;C2;C3; . . .;Cnf g and E ¼ E1;E2;E3; . . .;f
Eqg denote the sets of jam factors, costs and edges, respectively. Two fuzzy relations
(FR) Q and R are defined in Eqs. 21 and 22.

Q ¼ e; jð Þ; lQ e; jð Þ; vQ e; jð Þ� 	 j e; jð Þ 2 E � J

 � ð21Þ

R ¼ j; cð Þ; lR j; cð Þ; vR j; cð Þh i j j; cð Þ 2 J � Cf g ð22Þ

where lQ e; jð Þ and vQ e; jð Þ indicates jam factors degrees for edges. The degree is the
relationship between the edges and the jam factors (rush hours or jam regions). Hence,
lQ e; jð Þ indicates the degree to which jam factor j affects edge E and vQ e; jð Þ indicates
the degree to which jam factor j does not affect the same edge. Similarly, lR j; cð Þ and
vR j; cð Þ are the relationships between the jam factors and the respective costs. (This is
called confirmability degree in the coming sections). j; cð Þ represents the degree to
which jam factor j confirms, and vR j; cð Þ the degree to which jam factor j does not
confirm the presence of cost c, respectively [5]. Since Q is defined on set E � J and
R on set J � C; the composition T of R and Q (T ¼ R � Q) for the prediction of the cost
for a specific edge in terms of the cost can be represented by FR from E to C, given the
membership function in Eq. 23 and non membership function in Eq. 24 for all
e 2 E and c 2 C

lT e; cð Þ ¼ maxj min lQ e; jð Þ; lR j; cð Þ� �
 � ð23Þ

vT e; cð Þ ¼ minj max vQ e; jð Þ; vR j; cð Þ½ �
 � ð24Þ

Let any two IVIFS A ¼ xi;MA xið Þ;NA xið Þh if gi ¼ 1; 2. . .. . .nð Þ be a collection of
interval-valued intuitionistic fuzzy degrees. Then, an IIFWAA operator is defined in
Eq. (25)

IFFWAA Að Þ ¼
½1�Qn

n¼1 ð1�MAL xið ÞÞwi ;
1�Qn

n¼1 ð1�MAU xið ÞÞwiÞ�;Qn
n¼1 ð1� NAL xið ÞÞwi ;

Qn
n¼1 ð1� NAU xið ÞÞwiÞ�

ð25Þ

In the next section, we explain the IVIFTD TSP by simulating a simple real life
TD TSP cost problem. The approach consists of four main steps:
Step 1. Prediction for the rush hours and jam regions of the edges, in the sense that if
the trip between the two cities happens during the rush hours and within the jam
regions, both will be taken into consideration and none of the factors will be neglected.
Table 8 identifies the cost of each jam factor, which is supposed to be predefined by
experts in this domain, according to the rush hours and the jam regions.
Step 2. Calculation of the interval-valued intuitionistic fuzzy weighted arithmetic
average (IIFWAA) of the edges’ confirmability and non-confirmability degrees,
respectively with the chosen aggregation [13]. where w1;w2. . .. . .:wið ÞT are the weight
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vectors of A. Further, wi [ 0 and
Pn

i¼1 wi ¼ 1. In our model we propose giving equal
weights to the factors by wi ¼ 1=n. For finding the final jam factor cost, we first
calculate the IIFWAA from the degrees given in Table 8 and then use a measure based
on distance between IVIFS.
Step 3. Calculating the distance between the IFSs using the IIFWAA obtained in
Step 2.

To calculate the jam factor cost based on the Park distance model between IVIFS
[14]. Particularly, we consider the hesitation part to modify the Park distances. The
normalized Hamming distance considering the hesitation part, is defined as below for
any A ¼ xi;MA xið Þ;NA xið Þh if gi ¼ 1; 2. . .. . .nð Þ and ¼ xi;MB xið Þ;NB xið Þh if g i ¼ ð1;
2. . .. . .n). The normalized Hamming distance considering the hesitation part (where
H is the hesitation part) is defined as:

lh A;Bð Þ ¼ 1=4nð Þ
X

½ MAL xið Þ �MBL xið Þj j þ MAU xið Þ �MBU xið Þj j þNAL xið Þ
�NBL xið Þ þj jNAU xið Þ � NBU xið Þ þj jHAL xið Þ � HBL xið Þ þj jHAU xið Þ � HBU xið Þj�

ð26Þ

Step 4. Determination of the final jam factor affected costs based on the distance
(assuming equal weights for all factors).

6.1 The IVIFTD TSP Model Applied on the TD TSP Case

To illustrate how to apply the proposed new model on a TD TSP case study with
double uncertain jam regions and rush hours, let us consider that E1 is the first edge of
a tour as in Fig. 4. There are different traffic factors assumed, they may represent jam
regions or rush hours Factors (1.1, 1.2, 1.3, 1.4, 2.1 and 2.2 in bold Table 8) affecting
E1 simultaneously. Here, we use MQ e; jð Þ;NQ e; jð Þ� 	

assigned by domain experts, to

Table 8. Knowledge base for rush hours and jam regions costs

Traffic factor IF degree

Cost1 Cost2 Cost3
lR vR lR vR lR vR

Factor 1.1 [0.6, 0.7] [0.1, 0.2] [0.2, 0.3] [0.5, 0.6] [0.1, 0.3] [0.4, 0.6]
Factor 1.2 [0.6, 0.7] [0.2, 0.3] [0.2, 0.4] [0.4, 0.6] [0.4, 0.6] [0.1, 0.2]
Factor 1.3 [0.5, 0.6] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.3, 0.4] [0.3, 0.5]
Factor 1.4 [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.8] [0.1, 0.2] [0.7, 0.8]
… … … … … … …

Factor 2.1 [0.5, 0.6] [0.2, 0.3] [0.2, 0.3] [0.4, 0.6] [0.2, 0.3] [0.5, 0.6]
Factor 2.2 [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.1, 0.2] [0.6, 0.7]
… … … … … … …

Factor n.1 [0.6, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.2, 0.3] [0.6, 0.7]
Factor n.n lRU; lRL½ � ½vRU; vRL� lRU; lRL½ � ½vRU; vRL� lRU; lRL½ � ½vRU; vRL�

710 R. Almahasneh et al.



indicate the degrees how a jam factor j affects edge e as in Eq. 23, and the con-
firmability degree as in Eq. 24 is given by MR j; cð Þ;NR j; cð Þh i.
Step 1. Table 9 shows the confirmability and non-confirmability degrees of the jam
factors assigned to E1, according to their degree of belonging to the rush hour periods
and jam regions

Step 2. Based on Tables 9 and 8, calculate the results in Tables 10 and 11 by applying
the IIFWAA operator (see Eq. 26). For example, [0.61, 0.71], an IIFWAA MR of
Table 11, is calculated as follows: The confirmability membership degrees of the edge
jam factors (1.1, 1.2, 1.3 and 1.4) are ([0.6, 0.7], [0.6, 0.7], [0.5, 0.6], [0.7, 0.8])
respectively, the first edge, for example, belongs to four jam factors, then wi ¼ 1=n,

and the distributed weight for n = 4 is w ¼ 1
4 ;

1
4 ;

1
4 ;

1
4 then; 0:61 ¼ 1� 1� 0:6Þ14

� �n o
	

1� 0:6Þ14
� �n o

	 1� 0:5Þ14
� �n o

	 1� 0:7Þ14
� �n o

and 0:71 ¼ 1� ð1� 0:7Þ14
n o

	
ð1� 0:7Þ14

n o
	 ð1� 0:6Þ14
n o

ð1� 0:8Þ14
n o

. NR in Table 11 is calculated by taking the

confirmability values for the non-membership degrees of the jam factors [0.1, 0.2] [0.2,
0.3] [0.1, 0.2] [0.1, 0.2] and applying IIFWAA. 0:12 ¼ 0:11=4

� � 	 0:21=4
� �	


0:11=4
� � 	 0:11=4

� �g and 0:22 ¼ 0:21=4
� � 	 0:31=4

� � 	 0:21=4
� � 	 0:21=4

� �
 �

Step 3. Calculate the distance by applying Eq. 25, taking values from Tables 11
and 12.

Table 9. E1 degrees of jam factors. MQ E1; Jð Þ, NQ E1; Jð Þ
E1 traffic factors 1.1 1.2 1.3 1.4 2.1 2.2

MQ E1ð Þ [0.5, 0.6] [0.5, 0.6] [0.4, 0.6] [0.7, 0.8] [0.5, 0.6] [0.5, 0.7]
NQ E1ð Þ [0.2, 0.3] [0.1, 0.3] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.2, 0.3]

Table 10. E1 IVIF degrees (IIFWAA MQ, IIFWAANQ)

Q Factor1 Factor2

Edge 1 ([0.54, 0.66], [0.12, 0.24]) [0.5, 0.65], [0.14, 0.24]

Table 11. E1 confirmability degrees (IIFWAA MR, IIFWAANR)

R Cost1 Cost2 Cost3

Factor1 IIFWAA [0.61, 0.71],
[0.12, 0.22]

[0.15, 0.28],
[0.52, 0.67]

[0.24, 40],
[0.30, 0.47]

Factor2 IIFWAA [0.37, 0.51],
[0.24, 0.39]

[0.21, 0.31],
[0.35, 0.46]

[0.55, 70],
[0.10, 0.24]
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Step 4. The lowest distance points of the traffic costs that affect the edge the most, will
cause the most extreme delays In our case, this is 0.16 as shown in Table 12. Carrying
out the same calculations for all the edges, we end up with Table 13. It contains the jam
factor costs for all edges, depending on their confirmabilities (“–” indicates the absence
of confirmability).

The results indicate that this model effectively simulates the real-life conditions and
successfully quantifies the traffic delays without information loss [5]. It gives more
tangible conditions for such intangible factors as vagueness and non-determinnistic
effects with better accuracy than all previous models.

7 Conclusions

In this paper, we constructed a comparison of three different fuzzy extensions of the
Time Dependent Traveling Salesman Problem, namely, the 3FTD TSP, the IFTD TSP,
and the IVIFTD TSP. These models offer alternative extensions of the abstract TD TSP

Table 12. Distance for E1 with traffic factors lh

T Cost1 Cost2 Cost3

Edge 1 0.16 0.26 0.24

Table 13. Distances for E1, 2, …, E16 with traffic factors lh

Edge Cost1 Cost2 Cost3

Edge 1 0.16 0.26 0.24
Edge 2 0.13 0.20 –

Edge 3 0.15 – 0.24
Edge 4 0.16 0.14 0.44
Edge 5 0.3 0.6 0.2
Edge 6 0.16 – 0.24
Edge 7 0.16 0.30 0.20
Edge 8 0.16 0.06 0.44
Edge 9 0.04 0.36 –

Edge 10 0.1 0.23 0.34
Edge 11 0.6 – 0.3
Edge 12 – 0.27 0.23
Edge 13 0.13 0.20 –

Edge 14 0.16 0.30 0.20
Edge 15 0.3 0.6 0.2
Edge 16 0.16 0.06 0.44
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with crisp traffic regions and time dependent rush hour periods. The 3FTD TSP rep-
resents the jam regions and rush hour costs by fuzzy sets. The IFTD TSP offers higher
degrees of association and lower degrees of non-association of the jam factors and rush
hours as well as lower degrees of hesitation to any edge cost. Lastly, the IVIFTD TSP
decreases the information loss by employing the IIFWAA operator to aggregate
interval-valued fuzzy information from the jam factors in order to measure the final cost
based on the distance between IVIFS(s) for the TD TSP.

The results of the examples indicate that our models effectively simulate real-life
conditions and successfully quantify the traffic jam regions and rush hours with min-
imum information loss. After fuzzification of the jam regions and rush hours each
model slightly differs in the optimal solution it suggests, including the best tour and the
total cost. Although each one of those proposed approaches uniquely contributes to a
more adequate calculation of the jam regions and rush hours under vague and uncertain
circumstances, yet it is hard to choose one as the unambiguously best solution. In our
future work, we are eager to simulate those approaches on more complicated examples,
with larger instances and to compare the results with other models, to test their
capability and efficiency.
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