
Modus Ponens Tollens
for RU-Implications
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Abstract. In fuzzy rules based systems, fuzzy implication functions
are usually considered to model fuzzy conditionals and to perform for-
ward and backward inferences. These processes are guaranteed by the
fulfilment of the Modus Ponens and Modus Tollens properties by the
fuzzy implication function with respect to the considered conjunction
and fuzzy negation. In this paper, we investigate which residual impli-
cations derived from uninorms satisfy both Modus Ponens and Modus
Tollens properties with respect to the same t-norm and a fuzzy negation
simultaneously. The most usual classes of uninorms are considered and
many solutions are obtained which allow to model the fuzzy condition-
als in a fuzzy rules based systems (and perform backward and forward
inferences) with a unique residual implication derived from a uninorm.

Keywords: Fuzzy implication function · Modus Ponens · Modus
Tollens · Uninorm

1 Introduction

Fuzzy implication functions have been extensively studied in the last decades
(see [3,4,18] and references therein). There exist two main reasons to support the
great effort made by the scientific community in this field. First, fuzzy implication
functions have proved useful in many applications ranging from approximate rea-
soning to image processing, including fuzzy control, fuzzy relational equations,
fuzzy DI-subsethood measures or computing with words, among other fields. The
second reason is a direct consequence of their definition, which imposes only some
monotonicities and corner conditions to ensure that they generalize the binary
implication when restricted to {0, 1}. This fact opens a plethora of additional
properties which, although they are studied from a theoretical point of view, are
useful to obtain feasible and more adequate fuzzy implication functions in the
applications.

Two of such additional properties are the (generalized) Modus Ponens and
Modus Tollens. These properties are of paramount importance in approximate
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reasoning. Indeed, in any fuzzy rules based system, the fuzzy conditionals are
usually modelled by fuzzy implication functions. However, in order to perform
backward and forward inferences, the considered fuzzy implication functions
must satisfy the aforementioned (generalized) Modus Ponens and Modus Tollens
properties with respect to the conjunction and fuzzy negation considered in the
system. These properties are usually carried out through the Compositional Rule
of Inference (CRI) of Zadeh, based on the sup−T composition, where T is a t-
norm (see for instance [5] or Chapter 7 in [3]). Applying this approach, the
(generalized) Modus Ponens and Modus Tollens are usually expressed by the
following two functional inequalities:

T (x, I(x, y)) ≤ y, for all x, y ∈ [0, 1],

T (N(y), I(x, y)) ≤ N(x), for all x, y ∈ [0, 1],

where T is a t-norm, I a fuzzy implication function and N a fuzzy negation.
These properties have been studied in the literature for the most usual families
of fuzzy implication functions such as (S,N), R, QL and D-implications derived
from t-norms and t-conorms [2,3,16,18,23–25] or from uninorms [14,15]. Even
recently, a whole new line of research has been proposed in which the t-norm T
is generalized to a more general conjunction such as a conjunctive uninorm [19]
or an overlap function [8], leading to the so-called U -Modus Ponens or O-Modus
Ponens.

Although the functional inequalities of Modus Ponens and Modus Tollens
have quite similar expressions, it is well-known that both properties are not
equivalent. Thus, in [23,24], the simultaneous fulfillment of both properties was
studied for the first time for some restricted classes of (S,N), R, QL and D-
implications. It was proved that when the fuzzy negation N is a strong negation,
both properties are equivalent if the fuzzy implication function satisfies the con-
trapositive symmetry with respect to N . The importance of the disposal of fuzzy
implication functions satisfying both properties lies on the possibility of consid-
ering a unique implication to model fuzzy conditionals regardless of whether
backward or forward inference processes have to be performed.

Following this line of research, in this paper, we analyze which residual impli-
cations derived from uninorms, or RU -implications for short, satisfy both the
Modus Ponens and the Modus Tollens properties with respect to the same t-
norm T and a fuzzy negation N (continuous, but not necessarily strong). It
has to be said that the Modus Ponens property had been already studied for
this family of uninorms in [15] and the Modus Tollens property was analyzed in
[14]. However, while in [15], the results were given in terms of the t-norm TU

associated to the uninorm U , in [14] the results were presented for each class of
uninorms separately. This fact makes it difficult to coordinate the results of both
studies in order to find RU -implications satisfying both properties. This is the
main goal of this paper in addition to find some cases for which the fulfillment
of one property implies the fulfillment of the other one.

The paper is organized as follows. In the next section we recall some basic def-
initions and properties on fuzzy implication functions and uninorms. In Sect. 3,
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we introduce the so-called Modus Ponens Tollens property and we discuss its
fulfillment when the fuzzy implication function satisfies the contrapositive sym-
metry with respect to a strong negation. After that, in Sect. 4, the Modus Ponens
Tollens property is studied in depth for RU -implications depending on the class
of the uninorm U considered. The paper ends with some conclusions and future
work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [11]).
We also suppose that some basic facts on uninorms are known (see for instance
[9]) as well as their most usual classes (see [13] for a complete survey), that
is, uninorms in Umin ([9]), representable uninorms ([9]), idempotent uninorms
([6,12,22]) and uninorms continuous in the open unit square ([10]).

We recall here only some facts on implications and uninorms in order to
establish the necessary notation that we will use along the paper.

Definition 1 ([3]). A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a
fuzzy implication function, or a fuzzy implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from it.

Definition 2 ([3]). A function N : [0, 1] → [0, 1] is called a fuzzy negation
if it is decreasing, N(0) = 1 and N(1) = 0. If N is a fuzzy negation that is
strictly decreasing and continuous, it will be called strict, and if it is involutive,
N(N(x)) = x for all x ∈ [0, 1], then it will be called strong.

Definition 3 ([3]). Let T be a t-norm. A function NT : [0, 1] → [0, 1] defined
as

NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0}, x ∈ [0, 1]

is called the natural negation of T or the negation induced by T .

Definition 4 ([9]). A uninorm is a two-place function U : [0, 1]2 → [0, 1] which
is associative, commutative, increasing in each place and such that there exists
some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for all
x ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm
with neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the
operation works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and
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its values are between the minimum and the maximum in the set of points A(e)
given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1] × [0, e[.

We will usually denote a uninorm with neutral element e and underlying
t-norm TU and t-conorm SU by U ≡ 〈TU , e, SU 〉. For any uninorm it is satisfied
that U(0, 1) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0 and
disjunctive when U(1, 0) = 1. On the other hand, let us recall the most usual
classes of uninorms in the literature that will be used along the paper. We start
with the class of uninorms in Umin.

Definition 5. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[. If
the mapping x 
→ U(x, 1) is continuous except in x = e, then it is said that U is
a uninorm in Umin.

Theorem 1 ([9]). Let U : [0, 1]2 → [0, 1] be a function. Then U is a uninorm
in Umin if and only if U is given by

U(x, y) =

⎧
⎪⎨

⎪⎩

eTU

(
x
e , y

e

)
if (x, y) ∈ [0, e]2,

e + (1 − e)SU

(
x−e
1−e , y−e

1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) if (x, y) ∈ A(e),

where TU is a t-norm, and SU is a t-conorm. We will denote a uninorm in Umin

with underlying t-norm TU , underlying t-conorm SU and neutral element e as
U ≡ 〈TU , e, SU 〉min.

The class of idempotent uninorms, that satisfy U(x, x) = x for all x ∈ [0, 1],
was characterized first in [6] for those uninorms with a lateral continuity and in
[12] for the general case. An improvement of this last result was done in [22] as
follows.

Theorem 2 ([22]). U is an idempotent uninorm with neutral element e ∈ [0, 1]
if and only if there exists a non increasing function g : [0, 1] → [0, 1], symmetric
with respect to the identity function, with g(e) = e, such that

U(x, y) =

⎧
⎪⎨

⎪⎩

min(x, y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x, y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x),

being commutative in the points (x, y) such that y = g(x) with x = g2(x).

Any idempotent uninorm U with neutral element e and associated function
g will be denoted by U ≡ 〈g, e〉ide and the class of idempotent uninorms will be
denoted by Uide. Obviously, for any of these uninorms, the underlying t-norm is
the minimum and the underlying t-conorm is the maximum.
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Definition 6 ([9]). Let e be in ]0, 1[. A binary operation U : [0, 1]2 → [0, 1] is
a representable uninorm if and only if there exists a strictly increasing function
h : [0, 1] → [−∞,+∞] with h(0) = −∞, h(e) = 0 and h(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)} and U(0, 1) = U(1, 0) ∈ {0, 1}. The function
h is usually called an additive generator of U .

Any representable uninorm U with neutral element e and additive generator
h will be denoted by U ≡ 〈h, e〉rep and the class of representable uninorms will
be denoted by Urep. For any of these uninorms the underlying t-norm and t-
conorm are always strict. For all representable uninorm U , a strong negation
can be defined from U as NU (x) = h−1(−h(x)) for all x ∈ [0, 1].

Another studied class of uninorms is Ucos, composed by all uninorms contin-
uous in ]0, 1[2. They were introduced and characterized in [10] as follows.

Theorem 3 ([10]). Suppose U is a uninorm continuous in ]0, 1[2 with neutral
element e ∈]0, 1[. Then one of the following cases is satisfied:

(a) There exist u ∈ [0, e[, λ ∈ [0, u], two continuous t-norms T1 and T2 and a
representable uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λT1(x
λ , y

λ ) if (x, y) ∈ [0, λ]2,
λ + (u − λ)T2(x−λ

u−λ , y−λ
u−λ ) if (x, y) ∈ [λ, u]2,

u + (1 − u)R(x−λ
1−λ , y−λ

1−λ ) if (x, y) ∈ [λ, u]2,
1 if min(x, y) ∈]λ, 1]

and max(x, y) = 1,
λ or 1 if (x, y) ∈ {(λ, 1), (1, λ)},

min(x, y) elsewhere.

(b) There exist v ∈]e, 1] ω ∈ [v, 1], two continuous t-conorms S1 and S2 and a
representable uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vR(x
v , y

v ) if (x, y) ∈]0, v[2,
v + (ω − v)S1( x−v

ω−v , y−v
ω−v ) if (x, y) ∈ [v, ω]2,

ω + (1 − ω)S2(x−ω
1−ω , y−ω

1−ω ) if (x, y) ∈ [ω, 1]2,
0 if max(x, y) ∈ [0, ω[

and min(x, y) = 0,
ω or 0 if (x, y) ∈ {(0, ω), (ω, 0)},

max(x, y) elsewhere.

Now we will recall residual implications from uninorms: RU -implications.

Definition 7 ([7]). Let U be a uninorm. The residual operation derived from
U is the binary operation given by

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y} for all x, y ∈ [0, 1].



Modus Ponens Tollens for RU-Implications 793

Proposition 1 ([7]). Let U be a uninorm and IU its residual operation. Then
IU is a fuzzy implication if and only if the following condition holds

U(x, 0) = 0 for all x < 1.

In this case IU is called an RU -implication.

This includes all conjunctive uninorms but also many disjunctive ones, for
instance in the classes of representable uninorms (see [7]) and idempotent uni-
norms (see [20]).

Some properties of RU -implications have been studied involving the main
classes of uninorms, those previously stated: uninorms in Umin, idempotent uni-
norms and representable uninorms (for more details see [1,3,7,17,20,21]).

3 Modus Ponens Tollens

First of all, let us recall the definition of the Modus Ponens and the Modus
Tollens in the framework of fuzzy logic.

Definition 8. Let I be a fuzzy implication function and T a t-norm. It is said
that I satisfies the Modus Ponens property with respect to T if

T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1]. (MP)

Definition 9. Let I be a fuzzy implication function, T a t-norm and N a fuzzy
negation. It is said that I satisfies the Modus Tollens property with respect to T
and N if

T (N(y), I(x, y)) ≤ N(x) for all x, y ∈ [0, 1]. (MT)

The Modus Ponens and Modus Tollens properties have been studied for dif-
ferent types of implications, usuallly taking into account continuous t-norms T
and continuous fuzzy negations N . If we consider RU -implications, (MP) and
(MT) have been studied in depth in [15] and [14], respectively. These properties
are not equivalent in general, as it is stated in the following examples. First, we
have a fuzzy implication function that satisfies (MP) but not (MT).

Example 1. Consider U ≡ 〈h, 3
4 〉rep a representable uninorm with TU = TP, the

product t-norm (with additive generator tU (x) = − ln(x) up to a multiplicative
constant) and SU any strict t-conorm. Let us consider its residual implication IU

which will be given later in Proposition 10. Let us also consider T = TP and the
negation N(x) = 1−x

1+10x which belongs to the family of Sugeno negations with
λ = 10. In this case, IU safisfies (MP) with respect to T by using Proposition 9
in [15]. However, IU does not satisfy (MT) with respect to T and N (just taking
x = 0.7 and y = 0.5 in Eq. (MP)).

Next example provides an RU -implication that satisfies (MT) but not (MP).
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Example 2. Let U ≡ 〈h, 1
2 〉rep be a representable uninorm with additive gener-

ator h(x) = ln
(

x
1−x

)
for all x ∈ [0, 1]. Let T be a t-norm whose expression

is given by the ordinal sum T ≡ (〈0, 1
2 , TP〉, 〈 12 , 1, T1〉) with T1 any continuous

t-norm and let us consider the continuous fuzzy negation N given by

N(x) =

{
1 − x if x ≤ 1

2 ,√
x − x2 otherwise.

In this case, IU is given by

IU (x, y) =

{
1 if (x, y) ∈ {(0, 0), (1, 1)},
(1−x)y

x+y−2xy otherwise.

According to Proposition 5.3.20-(ii) in [14], IU satisfies (MT) with respect to
T and N . However, a simple computation shows that g : [0, 1] → [0, 1] given by
g(x) = − ln( 2

1+ex ) is not subadditive (for instance, take x = 0.3 and y = 0.2)
and therefore, by using Proposition 10 in [19], IU does not satisfy (MP) with
respect to T .

Then, as we have seen, (MT) and (MP) are not equivalent in general, and
the question about which fuzzy implication functions satisfy both properties
with respect to the same t-norm T and fuzzy negation N is worthy to study.

Definition 10. Let I be a fuzzy implication function, T a t-norm and N a
fuzzy negation. It is said that I satisfies the Modus Ponens Tollens (MPT)
property with respect to T and N whenever Eqs. (MP) and (MT) are satisfied
simultaneously.

Remark 1. Note that, when x ≤ y we have N(y) ≤ N(x) and then (MT) triv-
ially holds in these cases. Similarly, (MP) is satisfied in these cases. Thus, both
properties need to be checked only in points (x, y) ∈ [0, 1]2 where y < x.

Anyway, a special case that can be considered is when I satisfies the contra-
positive symmetry with respect to N . Contrapositive symmetry is a well known
property, which is related to the Modus Ponens Tollens as it is stated in the
following results.

Definition 11. Consider I a fuzzy implication function and N a fuzzy negation.
Then I satisfies the contrapositive symmetry with respect to N if

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1]. (CP)

Theorem 4 ([24]). Consider I a fuzzy implication function, T a t-norm and
N a strong negation. If I satisfies the contrapositive symmetry with respect to
N , then I satisfies (MP) with respect to T if and only if I satisfies (MT) with
respect to N and T .
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From the result above, in the case that a fuzzy implication function I satisfies
(CP) with respect to N , only one of (MP) or (MT) needs to be checked in order
to satisfy (MPT). Now, let us recall the result on contrapositive symmetry for
residual implications derived from idempotent uninorms.

Proposition 2 ([20]). Consider U ≡ 〈g, e〉ide an idempotent uninorm with
g(0) = 1, IU its residual implication and N a strong negation. Then IU sat-
isfies (CP) with respect to N if and only if g = N .

As a consequence of the previous result, we have infinite RU -implications that
satisfy (MPT) for any t-norm T , by using Proposition 5.3.14 in [14].

Corollary 1. Let N be a strong negation, U ≡ 〈N, e〉ide an idempotent uninorm,
IU its residual implication, and T a t-norm. Then IU satisfies (MPT) with
respect to T and N .

Coming up next, we recall the case of (CP) for uninorms continuous in ]0, 1[2.

Proposition 3 ([21]). Let U be a uninorm in Ucos such that U(0, x) = 0 for all
x < 1, IU its residual implication and N a strong negation. Then IU satisfies
(CP) with respect to N if and only if U is representable and N = NU .

4 Modus Ponens Tollens for Implications Derived from
Different Classes of Uninorms

In this section we investigate the Modus Ponens Tollens property (MPT) for
fuzzy implication functions derived from three well known classes of uninorms.

4.1 Case When U is a Uninorm in Umin

In this section we will deal with RU -implications derived from uninorms in Umin,
that is, uninorms U ≡ 〈TU , e, SU 〉min with neutral element e ∈]0, 1[. Recall that
for this kind of uninorms, RU -implications have the following structure.

Proposition 4 (Theorem 5.4.7 in [3]). Let U ≡ 〈TU , e, SU 〉min a uninorm in
Umin and IU its residual implication. Then

IU (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if x ≤ y < e,

eITU
(x

e , y
e ) if y < x ≤ e,

e + (1 − e)ISU
(x−e
1−e , y−e

1−e ) if e ≤ x ≤ y,

e if e ≤ y < x,

y elsewhere.

For this family of RU -implications we have the following result.

Proposition 5. Let U ≡ 〈TU , e, SU 〉min a uninorm in Umin and IU its residual
implication. Let T be a continuous t-norm, and N be a continuous fuzzy negation
with fixed point s ∈]0, 1[. Then, it holds that:
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– If IU satisfies (MPT) with T and N , then T is nilpotent with normalized
additive generator t : [0, 1] → [0, 1] and associated negation NT (x) = t−1(1 −
t(x)) for all x ∈ [0, 1] such that N(y) ≤ NT (y) for all y ≤ e.

Thus, from now on, let us consider T satisfying the previous conditions. In this
case,

(i) If TU = min then IU always satisfies (MPT) with respect to T and N .
(ii) If TU is a strict t-norm with additive generator tU and either s ≥ e or

N(y) = NT (y) for all y ≤ e, then IU satisfies (MPT) with respect to T
and N if and only if the following condition holds:

(�1) Function g : [0, t(0)] → [t(e), 1] given by the formula g(x) = t(et−1
U (x)) is

subadditive.
(iii) If TU is a strict t-norm with additive generator tU , s < e and N(y) < NT (y)

for some y ≤ e, then IU satisfies (MPT) with respect to T and N if and
only if Property (�1) is fulfilled and the following condition holds:

(�2) For all y < x < e,

et−1
U

(
tU

(y

e

)
− tU

(x

e

))
≤ t−1(t(N(x)) − t(N(y))).

(iv) If TU is a nilpotent t-norm with additive generator tU and either s ≥ e or
N = NT , then IU satisfies (MPT) with respect to T and N if and only if
Property (�1) and the following property holds:

(�3) For all x ≤ e

e · NTU

(x

e

)
≤ NT (x).

(v) If TU is a nilpotent t-norm with additive generator tU , s < e and N(y) <
NT (y) for some y ≤ e, then IU satisfies (MPT) with respect to T and N
if and only if Properties (�1), (�2) and (�3) hold.

Example 3. Let us consider the uninorm U ≡ 〈TM, e, SU 〉min with TM is the
minimum t-norm and SU any t-conorm. Let TL be the �Lukasiewicz t-norm and
N = Nc the classical negation given by Nc(x) = 1−x for all x ∈ [0, 1]. Thus, from
the previous proposition, taking into account that Nc(x) = 1 − x ≤ NTL

(x) =
1 − x, IU satisfies (MPT) with respect to TL and Nc.

Example 4. Let us take now U ≡ 〈TP, 1
2 , SU 〉min with SU any t-conorm. Let

TL be the �Lukasiewicz t-norm (with additive generator t(x) = 1 − x up to
a multiplicative constant), and N = Nc. In this example, we are under the
conditions of Case (ii) from the previous result, and it remains only to prove
that g : [0, 1] → [12 , 1] given by g(x) = 1− 1

2e−x is subadditive. A straightforward
computation ensures this fact. Therefore, IU satisfies (MPT) with respect to TL

and Nc.

Example 5. Let us consider U ≡ 〈TP, 1
2 , SU 〉min with SU any t-conorm. Let T =

TL and let us take

N(x) =

{
1 − 2x if x ≤ 1

2 ,

0 elsewhere,
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a continuous fuzzy negation with fixed point s = 1
3 . Note that in this case

NT = Nc(x) = 1 − x and N( 14 ) < NT ( 14 ). Thereby, we are under the conditions
of Case (iii) of the previous proposition, and then Properties (�1) and (�2)
must be checked. A simple computation shows that g : [0, 1] → [12 , 1] given by
g(x) = 1 − 1

2e−x is subadditive and so Property (�1) is fulfilled. With respect
to Property (�2), we obtain the inequality y

2x ≤ 1 − 2(x − y) which is valid for
y < x < 1

2 . Consequently, IU satisfies (MPT) with respect to TL and N .

Example 6. Let us consider U ≡ 〈TL, 1
2 , SU 〉min with SU any t-conorm. Let us

consider T = TL and the same negation N used in the previous example. In this
case, again it holds that NT = Nc and it follows that N(x) < NT (x) (take for
instance x = 1

3 , N( 13 ) = 1
3 < NTL

( 13 ) = 2
3 ). Now, we are under the conditions

of Case (v) from the previous result, and then we must check Properties (�1),
(�2) and (�3). Property (�1) follows directly. With respect to Property (�2), we
have g : [0, 1] → [12 , 1] given by g(x) = 1+x

2 is obviously subadditive. Finally
a simple computation shows Property (�3). Consequently, IU satisfies (MPT)
with respect to TL and N .

4.2 Case When U is an Idempotent Uninorm

In this section we will deal with RU -implications derived from idempotent uni-
norms, that is, uninorms U ≡ 〈g, e〉ide with neutral element e ∈ [0, 1] and such
that g(0) = 1. Recall that for this kind of uninorms, the corresponding RU-
implications have the following structure.

Proposition 6 ([20]). Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral
element e ∈]0, 1[ and such that g(0) = 1. Then IU is given by

IU (x, y) =
{

max(g(x), y) if x ≤ y,
min(g(x), y) if x > y.

(1)

From results in [15], for an idempotent uninorm U ≡ 〈g, e〉ide with g(0) = 1,
as TU = min, IU satisfies (MP) with respect to any t-norm. Therefore, we can
write the following result.

Proposition 7. Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral ele-
ment e ∈]0, 1[ and such that g(0) = 1, T a t-norm and N a fuzzy negation. Then
IU satisfies (MPT) with respect to T and N if and only if IU satisfies (MT)
with respect to T and N .

Thus, in the rest of the section, all the conditions in the results will be
related to the fulfillment of (MT) (that was studied in [14]), which will imply
the fulfillment of (MPT). Now we will distinguish two cases depending on the
value of g(1). We will start with the case g(1) > 0.

Proposition 8. Let U ≡ 〈g, e〉ide with g(0) = 1 and g(1) > 0 and IU its residual
implication. Let T be a t-norm and N a continuous fuzzy negation. If IU satisfies
the (MPT) property with respect to T and N , then the following statements are
true:
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(i) T (N(y), y) = 0 for all y ≤ g(1).
(ii) If T is a continuous t-norm then T must be nilpotent with normalized addi-

tive generator t : [0, 1] → [0, 1] and associated negation NT , which is given
by NT (x) = t−1(1 − t(x)), such that N(y) ≤ NT (y) for all y ≤ g(1).

Although this result provides only necessary conditions on T , the following
example gives infinite cases of residual implications IU from U an idempotent
uninorm such that satisfy (MPT) with respect a t-norm T and a strong negation
N .

Example 7. Consider U ≡ 〈g, e〉ide any idempotent uninorm, T = TL the �Lukas-
iewicz t-norm and N = Nc the classical negation. Take x, y ∈ [0, 1] such that
y < x, then we have:

TL(Nc(y),min(g(x), y)) = max(0,min(g(x), y) − y) = 0,

and, by Remark 1, (MT) is satisfied and by Proposition 7, IU satisfies (MPT)
with respect to TL and Nc. If g 
= N , IU satisfies (MPT) with respect to TL

and Nc but IU does not have (CP) with respect to Nc.

When g(1) = 0 we have a first result which can be applied for any fuzzy
negation N .

Theorem 5. Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral element
e ∈]0, 1[ and g(0) = 1, g(1) = 0 and IU its residual implication. Let T be a t-
norm and N a continuous fuzzy negation. Then IU satisfies (MPT) with respect
to T and N if and only if

min(T (N(y), y), T (N(y), g(x))) ≤ N(x) for all y < x.

Example 8. Let us consider U ≡ 〈Nc,
1
2 〉ide an idempotent uninorm, T = TL and

N = Nc. Similarly to the previous Example 7 we have

min(TL(Nc(y), y), TL(Nc(y), g(x))) = 0

and then IU satisfies (MPT) with respect to TL and Nc.

When N is strict, the following result provides an easier condition in order
to verify the fulfillment of (MPT).

Proposition 9. Let T be a t-norm, N a strict fuzzy negation, and U ≡ 〈g, e〉ide
be an idempotent uninorm with neutral element e ∈]0, 1[ with g(0) = 1, g(1) = 0
and IU its residual implication. Then IU satisfies (MPT) with respect to T and
N if and only if g(x) ≤ N(x) for all x ≥ e.

Example 9. Let us consider U ≡ 〈g, 1
4 〉ide an idempotent uninorm where

g(x) =

{
1 − 3x if x ≤ 1

3 ,

0 otherwise,

T = TP and N = Nc. It is straightforward to prove that g(x) ≤ N(x) for
all x ≥ 1

4 . Then, we are under the conditions of the previous result. Thus, IU

satisfies (MPT) with respect to T and N .
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4.3 Case When U is a Representable Uninorm

In this section we will deal with RU -implications derived from representable
uninorms, that is, from uninorms U ≡ 〈h, e〉rep with neutral element e ∈]0, 1[.
Let us recall in this case the expression of the residual implication derived from
U .

Proposition 10 (Theorem 5.4.10 in [3]). Let U ≡ 〈h, e〉rep be a representable
uninorm with neutral element e ∈]0, 1[. Then IU is given by

IU (x, y) =
{

1 if (x, y) ∈ {(0, 0), (1, 1)},
h−1(h(y) − h(x)) otherwise.

For this kind of uninorms we will consider only continuous t-norms which are
not an ordinal sum, namely, the minimum t-norm and continuous Archimedean
t-norms.

Proposition 11. Let U ≡ 〈h, e〉rep be a representable uninorm with neutral
element e ∈]0, 1[ and IU its residual implication. Let T be a continuous non-
ordinal sum t-norm and N a continuous fuzzy negation. Then, it holds that:

– If IU satisfies (MPT) with T and N , then T is continuous Archimedean with
additive generator t : [0, 1] → [0,+∞], up to a multiplicative constant.

Thus, in this case, the following statements are true:

(i) IU satisfies (MPT) with respect to T and N if and only if Property (�1) is
fulfilled and the following property holds:

(•1) For all y ≤ x,

h−1(h(y) − h(x)) ≤ t−1(t(N(x)) − t(N(y))).

(ii) If T is nilpotent and N = NT , IU satisfies (MPT) with respect to T and N
if and only if the following property holds:

(•2) Function φ : [0, 1] → [−∞,+∞] given by φ(x) = h(t−1(x)) for all x ∈
[0, 1] is subadditive.

Example 10. Let us consider T = TL and N = Nc. Let U be the representable
uninorm given by

U(x, y) =
{

0 if (x, y) ∈ {(0, 0), (1, 1)},
xy

xy+(1−x)(1−y) otherwise.

which has e = 1
2 as neutral element and additive generator h(x) = ln( x

1−x ). In
this case, φ(x) = h(t−1(x)) = ln

(
1−x

x

)
which is clearly subadditive. By applying

Case (ii) of the previous proposition, we conclude that IU satisfies (MPT) with
respect to T and N .
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5 Conclusions and Future Work

In this paper, we have studied the fulfillment of the so-called Modus Ponens
Tollens property (MPT) by the family of RU -implications, i.e., we have ana-
lyzed which RU -implications satisfy at the same time the Modus Ponens and the
Modus Tollens properties with respect to a t-norm T and a negation N . From
this study, many solutions are available. On the one side, all RU -implications
which satisfy the Modus Ponens property with respect to a t-norm T and the
contrapositive symmetry with respect to a strong negation N are solutions of
(MPT). On the other side, when N is not strong or the contrapositive symme-
try is not satisfied, other solutions exist within RU -implications derived from
uninorms in Umin, representable uninorms and idempotent uninorms. For most
of these families, necessary and sufficient conditions are presented and in some
cases, it is shown that the fulfillment of the Modus Tollens property implies the
fulfillment of the Modus Ponens property.

As future work, we want to complete the results presented in this paper
by considering also continuous ordinal sum t-norms as T in some of the results
presented in Sect. 4 and to deepen the study in the particular case of idempotent
uninorms with g(0) = 1 and g(1) > 0.

Acknowledgments. This paper has been supported by the Spanish Grant TIN2016-
75404-P AEI/FEDER, UE.

References
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