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Abstract. Conformance checking techniques are widely adopted to val-
idate process executions against a set of constraints describing the
expected behavior. However, most approaches adopt a crisp evaluation
of deviations, with the result that small violations are considered at the
same level of significant ones. Furthermore, in the presence of multiple
data constraints the overall deviation severity is assessed by summing
up each single deviation. This approach easily leads to misleading diag-
nostics; furthermore, it does not take into account user’s needs, that are
likely to differ depending on the context of the analysis. We propose a
novel methodology based on the use of aggregation functions, to assess
the level of deviation severity for a set of constraints, and to customize
the tolerance to deviations of multiple constraints.

Keywords: Conformance checking + Fuzzy aggregation + Data
perspective

1 Introduction

Nowadays organizations often define procedures describing how their processes
should be performed to satisfy a set of constraints, e.g., to minimize the through-
put time or to comply with rules and regulations. A widely used formalism to
represent these procedures consists in so-called process models, that are graphic
or logic formalism representing constraints defined on organization processes,
e.g., by the order of execution of the activities. However, it is well documented
in literature that real process behavior often deviates from the expected process,
which often leads to performance issues or opens the way to costly frauds [12].
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In recent years, the increasing use by organizations of information systems (e.g.,
ERP, SAP, MRP and so on) to support and track the execution of their pro-
cesses enabled the development of automatic, data-driven techniques to assess
the compliance level of the real process behavior. Among them, Conformance
checking techniques have been gaining increasing attention both from practition-
ers and academics [1,2,5,6,23]. Given an event log, i.e., a log file tracking data
related to activities performed during process executions, conformance checking
techniques are able to pinpoint discrepancies (aka, deviations) between the log
and the corresponding model. While classic conformance checking techniques
only deal with the control-flow of the process, i.e., the activities execution order,
in recent years also some multi-perspective conformance checking, aimed to deal
also with data constraints, have become more and more relevant [23,25].

Nevertheless, there are still several open challenges to implement multi-
perspective conformance checking. Among them, here we focus on the lack of
appropriate modeling mechanisms for dealing with the uncertainty and gradu-
ality often characterizing human-decisions in real-world processes. State of the
art techniques implement a crisp approach: every execution of an activity is
considered as either completely wrong or completely correct. [13,23,25].

While this assumption is well grounded to deal with the control-flow (indeed,
each activity is either executed at the right moment, or it is not), when address-
ing data constraints it can easily lead to misleading results. A well-known exam-
ple of this issue can be found in the healthcare domain. Let us assume that a
surgery department implements a guideline stating that the systolic blood pres-
sure (SBP) of a patient has to be lower than 140 to proceed with a surgery.
It is reasonable to expect that sometimes clinicians will not refuse to operate
patients whose SBP is 141, since this is quite a small deviation and delaying the
surgery could be more dangerous for the patient. Clearly, surgeries performed
with this value of SBP are likely to be much less problematic than surgeries
performed with a SBP equal to, e.g., 160. However, conformance checking tech-
niques would simply mark both these cases as ‘not compliant ’, without allowing
for any distinction. This behavior is undesirable, since it is likely to return in
output a plethora of not-interesting deviations, at the same time hiding those
which could deserve further investigation. We investigated this issue in our pre-
vious work [29], where we proposed to use fuzzy sets, which are used to present
the flexibility in the constraints and the goals in fuzzy optimization [20], to
determine the severity of violations of a single soft constraint per activity.

However, the previous work used basic strategy of standard conformance
checking techniques for dealing with multiple constraints deviations; namely,
the total degree of data deviations of that activity is computed by summing
up the costs for all the violated constraints. This strategy poses some impor-
tant limitations when investigating the data compliance. First, it introduces an
asymmetry in the assessment of control-flow and data deviations. While control-
flow deviations for each activity express the level of compliance of the activity
to control-flow constraints (either fully compliant or wrong), in the presence of
multiple data constraints the obtained value does not give an indication of the
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overall level of compliance to the constraints set. Furthermore, no customization
to the user’s needs is provided. First, in this setting data violations tend to be
considered more severe than control-flow ones, even if this might not fit with
user’s intention. Furthermore, different contexts might require tailored functions
to assess multiple data deviations severity.

In this paper, we address this issue by proposing a novel fuzzy conformance
checking methodology based on the use of aggregation functions, which have been
proved feasible for modeling simultaneous satisfaction of aggregated criteria [20].
With respect to previous work, the approach brings two main contributions: a)
it applies fuzzy aggregation operators to assess the level of deviation severity
for a set of constraints, and b) it allows to customize the tolerance to devia-
tions of multiple constraints. As a proof-of-concept, we tested the approach over
synthetic data.

The remainder of this paper is organized as follows. Section 2 introduces a
running example to discuss the motivation of this work. Section3 introduces
basic formal notions. Section4 illustrates our approach, and Sect.5 presents
results obtained by a set of synthetic experiments. Section6 discusses related
work. Finally, Sect.7 draws some conclusions and presents future work.

2 Motivation

Consider, as a running example, a loan management process derived from previ-
ous work on the event log of a financial institute made available for the BP12012
challenge [3,15]. Figurel shows the process in BPMN notation. The process
starts with the submission of a loan application. Then, the application passes
through a first assessment of the applicant’s requirements and, if the requested
amount is greater than 10000 euros, also through a more thorough fraud detec-
tion analysis. If the application is not eligible, the process ends. Otherwise, the
application is accepted, an offer to be sent to the customer is selected and the
details of the application are finalized. After the offer has been created and
sent to the customer, the latter is contacted to discuss the offer with her. At
the end of the negotiation, the agreed application is registered on the system.
At this point, further checks can be performed on the application, if the over-
all duration is still below 30days and the Amount is larger than 10000, before
approving it.

Let us assume that this process is supported by some system able to track
the execution of its activities in a so-called event log. In practice, this is a col-
lection of traces, i.e., sequences of activities performed within the same pro-
cess execution, each storing information like the execution timestamp of the
execution, or other data element [1]. As an example, let us consider the fol-
lowing traces! showing two executions of the process in Fig.1 (note that we
use acronyms rather than complete activity names) : o1 = ((A.S, {Amount =

1 We use the notation (act,{att1 = v1,...,att, = v,}) to denote the occurrence of
activity act in which variables att; ... att, are assigned to values v1,...v,. The sym-
bol 1 means that no variable values are changed when executing the activity.
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Fig. 1. The loan management process.

8400}), W_FIRST_A, L),(W_F_.C, 1),(A_A, 1), (A_F, 1),(0.S, 1), (0C, 1),
(0.S,1), W_C, 1), (A_R,{Duration = 34}), (W_F_A, L), (A_AP, 1), ); 02 =
((AS, {Amount = 1400}), (W _FIRST_A, 1), W_F.C, 1), (A_A, 1), (A_F, 1),
(0.5, 1), (0C, 1), (0-5,1), W_C, 1), (A_R,{Duration = 24}), (W_F_A, 1),
(A_AP, 1), ). Both executions violate the constraints defined on the duration and
the amount of the loan, according to which the activity W _F _A should have been
anyway skipped.

Conformance checking techniques also attempt to support the user in inves-
tigating the interpretations of a deviation. In our case, the occurrence of the
activity W_F_A could be considered either as a 1) control-flow deviation (i.e.,
data are corrected but the activity should not have been executed) or as a 2)
data-flow deviation (i.e., the execution of the activity is correct but data have not
been properly recorded on the system). In absence of domain knowledge in deter-
mining what is the real explanation, conformance checking techniques assess the
severity (aka, cost) of the possible interpretations and select the least severe one,
assuming that this is the one closest to the reality. In our example, conformance
checking would consider o; as a control-flow deviation, since the cost would be
equal to 1, while data-flow deviation would correspond to 2, having two violated
constraints; for oo, instead, the two interpretations would be equivalent, since
only one data constraint is violated. In previous work [29] we investigated how
to use fuzzy membership function to assess severity of data deviations taking
into account the magnitude of the deviations. However, the approach still comes
with some limitations when considering multiple constraints. Indeed, with this
approach the overall severity of the data deviation for an activity is assessed by
a simple sum operation. For example, let us suppose that with the method in
[29] we obtained a cost of 0.3, 0.8 for the violations of Amount and Duration in
W _F _A in o1, thus obtaining a total cost of 1.1, and 0.8 and 0 in o5, thus obtain-
ing, a total cost of 0.8. In this setting, activities involving multiple constraints
will tend to have an interpretation biased towards control-flow deviations, since
the higher the number of constraints, the higher the the data-deviation cost.
Furthermore, it is worth noting that the comparison between the two traces can
be misleading; in one case, constraints are violated, even if one only slightly
deviated; while in the second case only one constraint is violated, even if with
quite a strong deviation. However, the final numerical results are quite similar,



Towards Multi-perspective Conformance Checking 219

thus hiding the differences. This example shows how the use of the simple sum
function can impact the results significantly, without the user realizing it and,
above all, without providing the user with any customization mechanism. For
example, the user might want to assess the data-compliance level in terms of the
percentage of satisfied constraints, or by considering only the maximum cost, and
so on. However, current techniques do not allow for this kind of customization.

3 Preliminaries

This section introduces a set of concepts that will be used through the paper.

3.1 Conformance Checking: Aligning Event Logs and Models

Conformance checking techniques detect discrepancies between a process model
and the real process execution. Here we define the notion of process model using
the notation from [2], enriched with data-related notions explained in [13].

Definition 1 (Process model). A process model M = (P, Pr,Pr,An, YV,
W,U, T, G, Values) is a transition system defined over a set of activities Ay and
a set of variables V', with states P, initial states Py C P, final states Pr C P
and transitions T C P x (Apr x 2V) x P. U(V;) represents the domain of V;
for each V; € V. The function G : Ayy — Formulas(V U{V/ | V; € V})
18 a guard function, i.e., a boolean formula expressing a condition on the val-
ues of the data variables. W : Ay — 2V is a write function, that associates
an activity with the set of variables which are written by the activity. Finally,
Values : P — {V; = v;,i = 1..|V| | v; € UWV;) U{L}} is a function that
associates each state with the corresponding pairs variable=value.

The firing of an activity s = (a,w) € Ay x (V 4 U) in a state p’ is wvalid
if: 1) a is enabled in p’; 2) a writes all and only the variables in W(a); 3)
G(a) is true when evaluate over Values(p'). To access the components of s we
introduce the following notation: vars(s) = w, act(s) = a. Function vars is also
overloaded such that vars(V;) = w(V;) it V; € dom(vars(s)) and vars(s,V;) = L
if V; & dom(vars(s)). The set of valid process traces of a model M is denoted
with p(M) and consists of all the valid firing sequences o € (A x (V 4 U))*
that, from an initial state P; lead to a final state Ppr. Figurel provides an
example of a process model in BPMN notation.

Process executions are often recorded by means of an information system in
event logs. Formally, let Sy be the set of (valid and invalid) firing of activities
of a process model M; an event log is a multiset of traces L € B(S%). Given
an event log L, conformance checking builds an alignment between L and M,
mapping “moves” occurring in the event log to possible “moves” in the model. A
“no move” symbol “>” is used to represent moves which cannot be mimicked.
For convenience, we introduce the set Sz’ = Sy U {>>}. Formally, we set sy, to
be a transition of the events in the log, sj; to be a transition of the activities in
the model. A move is represented by a pair (sp,sy) € Si? X Sﬁ such that:
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(sr,sn) is a move in log if s, € Sy and sy = >
— (sp,sm) is a move in model if sp; € Sy and s, =>>

(sL,sm) is a move in both without incorrect data if sy, € Sy, sy € Sy and
act(sy) = act(spyr) and VV; € V(vars(sg, Vi) = vars(sa, Vi)))
— (sp,sum) is a move in both with incorrect data if s;, € Sy, sy € Sy and
act(sy) = act(spyr) and IV; € V | vars(sp, Vi) # vars(sa, Vi)).

Let Ay = {(sz,sm) € Sy x S5 | s1 € Sy V su € Sn} be the set of
all legal moves. The alignment between two process executions oy, oy € Sy is
v € A3, such that the projection of the first element (ignoring >>) yields oy,
and the projection on the second element (ignoring >>>) yields oy.

Example 1. Let us consider the model in Fig. 1 and the trace o; in Sect. 2.

Table 1 shows two possible alignments v; and 7. for activity W_F_A. For
Alignment 1, the pair (W_F_A, W _F_A) is a move in both with incorrect data,
while in vo the move (W_F_A, 1) is matched with a >, i.e., it is a move on log.
(In remaining part, Amount and Duration are abbreviated to A and D).

Table 1. Two possible alignments between oys and o,

Alignment 7, Alignment ~2
Log Model Log Model

(W,F,A,{sooo,zz;}) (W,F,A) (W,F,A, {8000, 34}) (>>)

As shown in Example 1, there can be multiple possible alignments for a given
log trace and process model. Our goal is to find the optimal alignment, i.e., the
alignment with minimum cost. To this end, the severity of deviations is assessed
by means of a cost function.

Definition 2 (Cost function, Optimal Alignment). Let o1, oy be a log
trace and a trace, respectively. Given the set of all legal moves Ay, a cost function
k assigns a non-negative cost to each legal move: Ay — Rg, The cost of an
alignment ~y between o, and oy is computed as the sum of the cost of all the
related moves: K(v) = (s, s.,)ey K(SL,Snm). An optimal alignment of a log
trace and a process trace is one of the alignments with the lowest cost according
to the provided cost function.

3.2 Fuzzy Set Aggregation Operators

Aggregation operations (AOs) are mathematical functions that satisfy minimal
boundary and monotonicity conditions, and are often used for modeling decision
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making processes, since they allow to specify how to combine the different criteria
that are relevant when making a decision [17,27].

In literature, many AOs have been defined (see [18,19,22] for an overview),
with different level of complexity and different interpretations. A commonly
used class of aggregation operators are the t-norms, which are used to model
conjunction of fuzzy sets. In compliance analysis, one often tries to satisfy all
constraints on the data, and so t-norms are suitable operators for modeling
soft constraints in compliance analysis. Widely used t-norms are the minimum,
product and the Yager operators [21].

In addition to the t-norms, other aggregation operators could also be used,
depending on the goals of the compliance analysis. We do not consider other
types of aggregation operators in this paper, but, in general, one could use the
full flexibility of different classes of fuzzy set aggregation operators that have
been used in decision making (see, e.g. [11]).

4 Proposed Compliance Analysis Method

We introduce a compliance checking approach tailored to dealing with decision
tasks under multiple guards, to enhance the flexibility of the compliance assessing
procedure. To this end, we investigate the use of AOs.

4.1 Aggregated Cost Function

Compliance checking in process analysis is based on the concept of alignment
between a process model and a process trace that minimizes a cost of misalign-
ment. The computation of an optimal alignment relies on the definition of a
proper cost function for the possible kind of moves (see Sect.3). Most of state-
of-the art approaches adopt (variants of) the standard distance function defined
in [2], which sets a cost of 1 for every move on log/model (excluding invisible
transitions), and a cost of 0 for synchronous moves. Multi-perspective approaches
extend the standard cost function to include data costs. Elaborating upon these
approaches, in previous work [29] we defined our fuzzy cost function as follows.

Definition 3 (Data-aware fuzzy cost function). Let (S, Sy ) be a move
between a process trace and a model execution, W(Sys) be the set of variables
written by the activity related to Sy, and let p;(var(SL,V;)) be a fuzzy member-
ship function returning the compliance degree of single variable var(Sg,V;). For
the sake of simplicity, we write it as p; in the following. Then we define (1 — ;)
as the data cost of this deviation. The cost k(Sr,,Sn) is defined as:

1 if (S, Snr) is a move in log
kE(SL,Sm) =< 1+ [W(Sn)] if (S, Snr) is a move in model (1)
Yowv,ev(L—pi)  if (Sz, Swr) is a move in both
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This cost function assigns a cost equal to 1 for a move in log; 1 plus the
number of variables that should have been written by the activity for a move in
model; finally, the sum of the cost of the deviations (1-y;) for the data variables
if it’s a move in both. Note that the latter consider both the case of move
with incorrect and incorrect data. As discussed in Sect. 2, summing up all the
data cost presents important limitations to assess the conformance of multiple
constraints. Therefore, in the present work, we propose a new version of our
fuzzy cost function with the goal of standardize every move within the range
(0,1) and allow the user to customize the cost function to her needs.

Definition 4 (AOs based cost function). Let w(u1, p2, ..., in) be an user-
defined aggregated membership function of multiple variables. Then (1 — m) is
the overall deviation cost of a set of variables. The cost k(SL, Snr) is defined as:

1 if (SL, Sar) is a move in log
kE(SL,Sm) = ¢ 1+ |W(Sy)| if (Sr, Sa) is a move in model  (2)
1—m(u1, o, ooy o) if (SL, Sar) is a move in both.

4.2 Using A* to Find the Optimal Alignment

The problem of finding an optimal alignment is usually formulated as a search
problem in a directed graph [14]. Let Z = (Zy, Zg) be a directed graph with
edges weighted according to some cost structure. The A* algorithm finds the
path with the lowest cost from a given source node vy € Z,, to a node of a given
goals set Zg C Zy. The cost from each node is determined by an evaluation
function f(v) = g(v) + h(v), where:

— g: Zy — RT gives the smallest path cost from vg to v;
- h:Zy — R(J{ gives an estimate of the smallest path cost from v to any of the
target nodes.

If h is admissible,i.e. it underestimates the real distance of a path to any target
node vy, then A* finds a path that is guaranteed to have the overall lowest cost.

The algorithm works iteratively: at each step, the node v with lowest cost is
taken from a priority queue. If v belongs to the target set, the algorithm ends
returning node v. Otherwise, v is expanded: every successor vy is added to the
priority queue with a cost f(vg).

Given a log trace and a process model, to employ A* to determine an optimal
alignment we associate every node of the search space with a prefix of some
complete alignments. The source node is an empty alignment vy = (), while the
set of target nodes includes every complete alignment of o7 and M. For every
pair of nodes (v1,72), 72 is obtained by adding one move to ;.

The cost associated with a path leading to a graph node + is then defined as
9(v) = K(7) + €|ly], where K(v) = >_, ;. e, k(sL,8nm), with k(s sar) defined
as in (1), |v| is the number of moves in the alignment, and € is a negligible
cost, added to guarantee termination. Note that the cost g has to be strictly
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increasing. While we do not give a formal proof for the sake of space, it is
straight to see that g is obtained in our approach by the sum of all non negative
elements. Therefore, while moving from an alignment prefix to a longer one, the
cost can never decrease. For the definition of the heuristic cost function h(v)
different strategies can be adopted. Informally, the idea is computing, from a
given alignment, the minimum number of moves (i.e., the minimum cost) that
would lead to a complete alignment. Different strategies have been defined in
literature, e.g., the one in [2], which exploits Petri-net marking equations, or the
one in [28], which generates possible states space of a BPMN model.

Example 2. Let us analyze possible moves to assign to the activity W_F_A in 0.
Let us assume that the memberships of the variables are u4 = 0.4 and up = 0.2.
According to (2) and Product t-norm we get the fuzzy cost function k(Sr, Sar)-

1 , move in log
E(SL,Sum) =<1 , move in model (3)
1—pa-pp , move in both

Figure 2 shows the portion of the space states for the alignment building of 0.
At node #11, f = 0, since no deviations occurred so far. From here, there are
two possible moves that could be selected, one representing a move on log (on
the left), one a move on model (on the right) and finally a move in both (in the
middle). Since using the Product aggregation the data cost is equal to 0.92, the
algorithm selects the move in both, being the one with the lowest cost.

Fig. 2. The alignment with the new aggregated function.

5 Experiment and Result

This section describes a set of experiments we performed to obtain a proof-of-
concept of the approach. We compared the diagnostics returned by an existing
approach [29] and our new cost functions with three t — norm aggregations.
More precisely, we aimed to get the answer to the question: what is the impact
of different aggregation operations on the obtained alignments? In particular,
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we assess the impact of the aggregation function in terms of a) differences in
the overall deviation cost, and b) difference in terms of the interpretation, i.e.,
the moves selected by the alignment algorithm as the best explanation for the
deviation.

5.1 Settings

In order to get meaningful insights on the behavior we can reasonably expect by
applying the approach in the real world, we employ a realistic synthetic event
log, consisting of 50000, introduced in a former paper [16], obtained starting from
one real-life logs, i.e., the event log of the BP12012 challenge 2. We evaluated the
compliance of this log against a simplified version of the process model in [16],
to which we added few data constraints (see Fig.1). The approach has been
implemented as an extension to the tool developed by [28], designed to deal
with BPMN models. Our process model involves two constraints for the activity
W_F_A, i.e., Amount > 10000 and Duration < 30.

Here we assume that Amount € (3050,10000) and Duration € (30, 70) rep-
resent a tolerable violation range for the variables. Since we cannot refer to
experts’ knowledge, we derived these values from simple descriptive statistics.
In particular, we considered values falling within the third quartile as acceptable.
The underlying logic is that values which tend to occur repeatedly are likely to
indicate acceptable situations. Regarding the shape of the membership functions
for the variables, here we apply the linear function u, as reported below.

1 ,if A > 10000 1 Jif D <30
p1(A) =130 ,if A <2650 p2(D) =140 Jif D> 69 (4)
A—2650  if 9650 < A < 10000; 69-D  if 30 < D < 69

7350 39

For the classic sum function, we use the cost function provided by (1); while
for the new approach with AOs, we apply the cost function in (2). We tested the
t — norms: Minimum, Product, and Yager.

When data deviations and control-flow deviations show the same cost, we
picked the control-flow move. This assumption simulates what we would do in a
real-world context. Indeed, without a-priori knowledge on the right explanation,
it is reasonable to assume that it is more likely that the error was executing the
activity, rather than accepting out-of-range data deviations.

5.2 Results

Note that here we focus on the activity W_F_A, since, in our log, is the only one
involving multiple data constraints. Table 2 shows differences in terms of number
and type of moves, as well as in terms of costs. The columns #move inlog,
#move in data show the number of traces in which the alignment has selected

2 https://www.win.tue.nl/bpi/doku.php?id=2012:challenge.
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for the activity W _F_A a move in log or a move in data, respectively. The column
“Average costs” shows the average alignment cost. The conformance checking
algorithms selects for each activity the move corresponding to the minimum cost.
Therefore, the differences among the chosen move depend on the different costs
obtained on W_F_A when applying different operators. To provide a practical
example of the impact of the aggregated cost on the obtained diagnostics, below
we discuss the results obtained for one trace.

Table 2. Number of different moves of the activity W_F_A.

#move in log | #move in data | Average cost
Sum 707 350 0.823
Min 660 397 0.804
Product | 660 397 0.814
Yager 678 379 0.811
Table 3. The cost of possible moves Table 4. The optimal alignments
#move in log | #move in data Log Model |Move type Cost
Sum 1 1.003 S W_F_Al> #move in log |1
Min 1 0.513 MW _F_A\W_F_A|#move in data|0.513
Product | 1 0.751 P \W_F_A|W_F_A|#move in data|0.751
Yager 1 0.709 Y W_F_AW_F_A|#move in data|0.709

Ezample 3. Let us consider the trace ogpassg = ((A-S,{Amount = 6400}),
(W_FIRST_A, 1), (A_A, 1), (A_F, 1), (0.5, 1),(0C,1),(0.S,1),(W_C, L),
(W_F, 1), (0.C,1),(0.S, 1), (W.C, 1), (A_R,{Duration = 50}), (W_F_A, 1)
,(A_AP, 1), ). According to their membership functions (4), pi(A = 6400) =
0.5102 and po(D = 50) = 0.4872. Therefore, the corresponding costs are 0.4898
and 0.5128. Table 3 shows the cost of possible moves for W_F_A according to
the aggregation functions. Table4 shows the move picked by each function to
build the alignment. Using the Sum function, the data cost is 1.003, so that a
move-in-log is chosen as an optimal alignment. In the other cases, instead, the
move in data is the one with the lowest cost. Since both the deviations fall in the
acceptable range, this interpretation is likely to be more in line with the user’s
expectations.

The observations made for the example can be generalized to the overall
results of Table2, which shows a set of traces whose interpretation is heavily
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affected by the chosen cost function. As expected, the Sum function is the most
biased towards the choice of move in log interpretation. It selects 40 moves in log
more that Product and Min, and 29 more than Yager. One can argue that this
choice is likely not one the human analyst would have expected. Indeed, we are
using Yager with w = 2 [11], that means that when both the variables show severe
deviations, we expect the data cost to be 1 and move-in-log to be picked. This
means that at least 29 of the aligned traces were marked as move-in-log also if
both the constraints did not show severe deviations. We argue that this behavior
can be misleading for the analyst or, anyway, not being in line with her needs.
The Product function marks other 18 traces as move-in-data, in addition to the
ones marked by the Yager. This was expected, since the Product function relaxes
the requirements on the full satisfaction of the set of constraints. Nevertheless,
this implies that in all these 18 traces the deviations always fell in the tolerance
range. Therefore, also these situations might have been better represented as
data deviations, depending on the analysts’ needs. As regards the Min function,
it returns a full data deviation in the presence of at least one deviation outside
the deviation range, which explains why it returned the same alignments of the
Product function. The overall alignments costs are in line with the expectations.
The Sum function returns the highest average cost, as expected, the Min the
lowest, while the Yager and the Product behave similarly, and the difference can
likely be explained with the 18 traces of difference discussed above. While the
absolute difference among the costs is not very relevant, these results show that
both the alignments and the assessment of the deviations are impacted by the
choice of the cost function, thus highlighting once again the need for a more
flexible approach to compliance assessment allowing the user to tailor the cost
function to her context.

6 Related Work

During the last decades, several conformance checking techniques have been pro-
posed. Some approaches [9,10,26] propose to check whether event traces satisfy
a set of compliance rules, typically represented using declarative modeling. Rozi-
nat and van der Aalst [24] propose a token-based technique to replay event traces
over a process model to detect deviations, which, however, has been shown to
provide misleading diagnostics in some contexts [4]. Recently, alignments have
been proposed as a robust approach to conformance checking based on the use
of a cost function [2]. While most of alignment-based approaches use the stan-
dard distance cost function as defined by [2], some variants have been proposed
to enhance the provided diagnostics, e.g., the work of Alizadeh et al. [8], which
computes the cost function by analyzing historical logging data. Besides the con-
trol flow, there are also other perspectives like data, or resources, that are often
crucial for compliance checking analysis. Few approaches have investigated how
to include these perspectives in the analysis: [7] extends the approach in [8] by
taking into account data describing the contexts in which the activities occurred.
Some approaches proposed to compute the control-flow first then assessing the
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compliance with respect to the data perspective, e.g. [13]. These methods gives
priority to check the control flow, with the result that some important devia-
tions can be missed. [23] introduces a cost function balancing different perspec-
tives, thus obtaining more precise diagnostics. The approaches mentioned so far
assume a crisp evaluation of deviations. To the best of our knowledge, the only
work which explored the use of a fuzzy cost function is our previous work [29]
which, however, did not consider multiple constraints violation.

7 Conclusion

In this work, we investigated the use of fuzzy aggregation operations in con-
formance checking of process executions to deal with multiple data constraints
for an activity. The proposed approach enhances significantly the flexibility of
compliance checking, allowing the human analyst to customize the compliance
diagnostic according to her needs. We elaborated upon the relevance of this
aspect both theoretically and with some examples.

As a proof of concept, we implemented the approach and tested it over a
synthetic dataset, comparing results obtained by cost functions with classic sum
function and three different aggregations. The experiments confirmed that the
approach generates more “balanced” diagnostics, and introduces the capability
of personalizing the acceptance of deviations for multiple guards.

Nevertheless, there are several research directions still to be explored. In
future work, first we plan to test our approach with real-world data. Furthermore,
we intend to investigate the usage of different aggregation functions, as well as
the possibility of extending the notion of aggregation to take into account also
other kinds of deviations. Finally, we intend to investigate potential applications,
for example in terms of on-line process monitoring and support, with the aim of
enhancing the system resilience to exceptions and unforeseen events.
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