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Abstract. The Variable Size and Cost Bin Packing Problem (VSCBPP)
consists of minimizing the cost of all bins used to pack a set of items with-
out exceeding the bins capacities. It is a well known NP-Hard problem
with many practical applications.

In this contribution we assume that the capacity of a bin can be under-
stood in a flexible way (so it may allow some overload) thus leading to
a fuzzy version of the VSCBPP with fuzzy constraints.

We solve the proposed fuzzy VSCBPP by using the parametric app-
roach based on α-cuts, thus defining a set of related crisp problems.

By using three different solving algorithms and several instances, we
explore the impact of different degrees of relaxation not only in terms of
cost, but also in the structure of the solutions.

Keywords: Combinatorial optimization · Variable Size and Cost Bin
Packing Problem · Fuzzy constraint · Parametric approach

1 Introduction

The Variable Sized Bin Packing Problem (VSBPP) is a generalization of the
Bin Packing Problem that was first formalized by Friesen and Langston [5]. It
consists in packing a set of items in a set of heterogeneous bins with different
sizes or capacities. The objective is to minimize the number of bins that are
used. For each size, it is assumed an inexhaustible supply of bins. Crainic et. al.
[2] states that by minimizing the cost of all used bins, the problem became the
Variable Size and Cost Bin Packing Problem (VSCBPP).
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Some variants of the problem were defined to allow the management of
imprecise and/or uncertain information in the problem data. One of the pio-
neers treating this subject is Crainic et. al. [3] studying a real-life application
in logistics with uncertainty on the characteristics of the items. Also Wang et.
al. [16] describes a chance-constrained model where the item sizes are uncertain,
while Peng and Zhang [10] introduce the uncertainty on item volumes and bin
capacities.

Here, we consider that the capacity of a bin is associated with the maximum
weight it can hold. So, for example bins with 25, 50 or 75 kg. capacity may
exist. In the standard formulation of the problem, such values are used as crisp
constraints. However, it has perfect sense to consider such capacity values as
approximate ones and thus using fuzzy constraints instead of crisp ones. In
other words, some overloading will be allowed in the bins. To the best of our
knowledge, there are not variants of the Variable Size and Cost Bin Packing
Problem (VSCBPP) with fuzzy constraints.

The aim of the paper is twofold. Firstly, we introduce a fuzzy version of the
VSCBPP that allows some overloading of the bins, which means to relax the
satisfaction of capacity constraints; and secondly, we explore the impact that
the fuzzy constraints (and the associated relaxations) have, not only in terms
of cost, but also in the structure of the solutions. In order to do this, some
randomly generated instances of the proposed fuzzy VSCBPP (FVSCBPP) are
solved following the parametric approach that transforms the fuzzy problem into
a set of crisp problem based on α-cuts [4,14]. Then, each of these instances is
solved by an exact solver (SCIP) [15] and two problem-specific heuristics.

The paper is organized as follows. Section 2 presents the VSCBPP fuzzy
model. Section 3 explains how the proposed FVSCBPP may be solved by using a
parametric approach. This is illustrated in several instances presented in Sect. 4.
Finally, Sect. 5, is devoted to conclusions.

2 Fuzzy Variable Size and Cost Bin Packing Problem
(FVSCBPP)

In this section we firstly present the basic Variable Size and Cost Bin Packing
Problem (VSCBPP) before introducing the proposed fuzzy extension. Problem
parameters and the standard VSCBPP formulation [1,7,8] are described next.
Being

I = {1 . . . , i, . . . , n} set of items

wi weight of the item i ∈ I

J = {1 . . . , j, . . . , m} set of bins

Wj capacity (or size) of the bin j ∈ J

Cj cost of the bin j ∈ J

xij binary variable: 1 if item i is packed in bin j; 0 otherwise

yj binary variable: 1 if bin j is used; 0 otherwise
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Then, the VSCBPP is then formulated as follows:

Min
∑

j∈J

Cjyj (1)

s.t.
∑

j∈J

xij = 1, i ∈ I (2)

∑

i∈I

wixij � Wjyj , j ∈ J (3)

xij ∈ {0, 1}, i ∈ I, j ∈ J (4)
yj ∈ {0, 1}, j ∈ J (5)

The objective function (1) minimizes the cost of the bins used for packing
all the items. Constraint (2) ensures that each item i is packed in one and only
one bin (items are not divisible). Inequality (3) is the capacity constraint: for
each used bin j, the sum of weights of packed items can not exceed its capacity;
(4) and (5) are domain constraints. This formulation involves every single bin
regardless its type, i.e., a list of bins is one of the problem inputs and it may
have more bins than items since there must be enough bins to pack all the items
that fulfill the constraint for every type (3). Here, the term type is referred to
the capacity of the bin, i.e., its size.

Here we consider that the capacity constraint (3) can be understood in “flex-
ible” (fuzzy) terms:

∑

i∈I

wixij �f Wjyj , j ∈ J (6)

where �f stands for “approximately smaller than or equal to”.
This implies that solutions may be either feasible or infeasible depending

on the interpretation of the fuzzy relation (6). Indeed, all solutions may be
considered feasible with different degrees of membership.

A decision maker may clearly states that the solutions that do not exceed the
bin capacity Wj are definitely feasible. In addition, some small overloads may be
also considered feasible. Let’s suppose there is a bin j with capacity Wj = 10.
A solution where the items in j weights 10.01 units will have a higher degree
of feasibility than another one with weight 12. In turn, a solution that try to
pack items with weight 20 in such bin with 10 units of capacity, may be consider
unfeasible. In terms of decision making, this relaxation that may imply a small
overload in the bins may be preferable if it allows to reduce the total cost in the
objective function (1).

To model this situation, we consider that a decision maker must define the
tolerance Tj that defines the maximum admissible relaxation for each bin j.
Figure 1 shows the function to measure the degree of accomplishment (for a given
solution) of constraint (6) in terms of the bin capacity Wj and tolerance Tj .

To understand such function, let’s call twj to the sum of the weights of the
items placed in each bin j. Then, if twj ≤ Wj , then such assignment of items
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Fig. 1. Membership function for the accomplishment of capacity constraint (y axis) in
terms of the sum of the items’ weights (x axis).

to the bin is feasible with degree 1. In turn, if twj > Wj + Tj feasibility is zero.
When twj ∈ [Wj ,Wj + Tj ] then such solution will feasible with different degrees
between [0, 1].

In order to solve the problem, the fuzzy constraint will be managed using
the parametric approach [14] and the concept of α−cuts. In very simple terms,
this allows to obtain several crisp instances based on different values of α. If S
is the whole set of solutions we may define Sα as the crisp set of solutions that
satisfy the constraints with, at least, a given degree α.

Sα = {s ∈ S | μ(sj) ≥ α} (7)

According to (7), a solution s ∈ S is considered α-feasible if it is feasible
with a degree above α. This implies that there are different sets Sα of feasible
solutions for different values of α. As different sets Sα may include different set
of solutions, the optimal solution for each Sα may be different. So to solve the
fuzzy version of VSCBPP we will use the constraint (8) instead of (3).

∑

i∈I

wixij � (Wj + (1 − α)Tj)yj , j ∈ J (8)

When α = 1 the most restricted definition of capacity is taken into account,
thus having the original crisp problem (no flexibility). When α = 0, the most flex-
ible situation is reached. The allowed bin overload is maximum. Consequently,
the value α define the degree of relaxation that is admitted.

3 Solving the Fuzzy VSCBPP

The parametric approach [14], illustrated in Fig. 2, is used to solve the problem.
The main idea is to transform the fuzzy problem into a family of crisp problems.
Initially, a set of different α values is defined and for each value, a crisp problem
is obtained and then solved. Finally, it should be remarked that the final result
consists of a set of solutions related to each value of α.
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Fig. 2. General scheme of the parametric approach

In our case, we consider 11 values of α ∈ {0.0, 0.1, . . . , 0.9, 1.0} 1. For solving
the different crisp problems we consider in this paper three solution methods.
An exact solver based on Integer Linear Programming (SCIP solver), and two
heuristics: First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) [6,11].
FFD is a deterministic heuristic that place each item in the first bin where it is
possible to place it, where BFD chooses the bin where the item best fits. Both
heuristics repeat this process item by item, taking them in descending order. It
is worth noting that heuristics methods do not guarantee optimality.

In the case of the SCIP solver, the optimality is only guaranteed after a
considerable amount of time. In controlled conditions (for example, a maximum
execution time of one hour for each instance) we observed that optimality is
not guaranteed for all cases. It is import to remark that our focus here is on
analyzing each fuzzy solution (i.e., the set of solutions obtained for the base
instance with different values of α).

3.1 Test Instances

In this experiment we take three base instances following previous works in
VSCBPP [1,8]. These base instances are used as the crisp original instances,
associated with α = 1. These three base instances of the FVSCBPP result in
33 crisp ones that need to be solved (one for each value of the 11 α values
considered). Each base instance contains 25 items and 3 bin types with W ∈
{50, 100, 150}, and the tolerance was set to T ∈ {6, 5, 7}, respectively. The weight
of each item is randomly assigned using a uniform distribution in [20, 120].

It must be remarked that the three base instances differ in the relation
between the cost Cj of each bin and its capacity Wj , as it was previously con-
ceived in other works [1,7]. This functional relation is the origin of the name
used to identify each instance: Concave (Cc) where Cj = 15

√
W j , Linear (Ln)

where Cj = 10Wj + 32, and Proportional (Pr) where Cj = 0.1Wj).
The three cost functions (Cc, Ln , and Pr) produce different behaviors. For

example, according to the function Pr is the same to use three bins with Wj = 50
than using one bin with Wj = 150, and both are the same than using a bin with

1 Alternative schemes for exploring the values of α were recently presented in [13].
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Wj = 50 plus another with Wj = 100. In the other cost functions, it is better
to use a bin with Wj = 150 than using three bins with Wj = 50 (in the case of
the function Ln this implies 5% additional cost, while in Cc this value is 73%).
The same occurs in the comparison of using a bin of Wj = 150 with respect to
use a bin Wj = 50 and a bin with Wj = 100 (in the case of Ln this implies 4%
additional cost, while in Cc this value is 38%). These are just some examples of
the implications of the cost function.

The test instances are available in www.cimab.transnet.cu/files/iFSCBPP.
zip in order to allow replication of the presented results.

4 Results and Discussion

As stated before, for each test instance we define 11 α values: α ∈
[0.0, 0.1, 0.2, . . . , 1.0], leading to 33 crisp problems. Each one of these problems is
solved in two ways. Firstly using a Mixed Integer Programming solver SCIP [12],
with the problem model coded using the ZIMPL format [9]. SCIP is expected to
return the optimal solution. Secondly, two problem-specific heuristics for the Bin
Packing Problem are used: First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD) [6,11].

Runs were performed in an Intel Core i5 processor with 2.4 GHz of clock
speed and 8 Gb of RAM. The running time of both heuristics is less than one
second (after the items are sorted). But for running the SCIP solver, a maximum
number of 4 parallel threads and 60 min (one hour) of maximal execution time
were set.

The analysis of the results is divided in two parts. In the first one we consider
the impact of α in the solutions’ costs. Then, we analyze such impact in terms
of the solutions’ structure.

Figure 3 shows the impact of the α values on the solutions costs for every
solver and test instances. A clear tendency is observed: as the problem is more
relaxed (α → 0), the cost of the solution diminished. When α is near to 0 (fully
relaxed case), the available space in the bins is higher and less cost is needed to
store all the items. As the relaxation decreases (α → 1) the cost increases.

Figure 3 shows an additional interesting feature. When a heuristic is used,
there is no guarantee to obtain a better solution if the problem is more relaxed.
This is not the case with the SCIP solver, where if α1 < α2 then the correspond-
ing solutions s1, s2 satisfies that f(s1) ≤ f(s2).

Fig. 3. Impact of the constraint violation in the cost (α in x-axis vs. cost in y-axis) for
the test instances: Pr(left), Cc(center), Ln(right).

www.cimab.transnet.cu/files/iFSCBPP.zip
www.cimab.transnet.cu/files/iFSCBPP.zip
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Finally, we can observe that the heuristic FFD obtains very similar results
to those of the SCIP solver but using a very simple approach and an extremely
reduced time. Although for most of the cases the SCIP solver required less than
a minute, for some cases (mainly in the Ln instance) it did not finish within an
hour. In such a case, the best solution found up to that point is reported.

Fig. 4. Structure of the solutions (SCIP Solver) for the Pr instance in terms of α
(y-axis). The number of bins of each type is shown.

In order to analyze the impact of α in terms of solutions’ structure, Fig. 4
shows the solutions obtained by the SCIP solver for the Pr instance for each α
value. Every row displays the number of bins of each type (150: white, 100: grey,
50: black) used together with the cost.

If the capacity constraint is very strict, 12 big bins and 1 middle sized are
needed. As the relaxation increases, a better cost can be achieved with 11 big
bins and 2 middle sized. The cases of α = 0.5 and α = 0.4 are also interesting.
In the former, the three types of bins are used in a solution with cost 180. But
an additional relaxation of the constraint allows to pack all the items using
12 big bins. A similar situation happens for the most relaxed cases α ≥ 0.2
where three different solutions with the same cost are displayed. So we have
here another benefit of using fuzzy constraints and the parametric approach,
where in a simple way we can obtain different design decisions (solutions) that
provide the decision maker with a richer information beyond the cost. A similar
analysis can be done for the other instances (Ln and Cc) based on Fig. 5 and
Fig. 6.

The last analysis aims to observe how the capacity constraint is violated. It
is important to note that having the opportunity to violate the capacity of the
bins, does not mean that all the bins are overloaded.

Figure 7 shows the solutions obtained by every algorithm in the two extreme
situations: α = 1 and α = 0. White bars correspond to big bins (capacity
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Fig. 5. Structure of the solutions (SCIP Solver) for the Ln instance in terms of α
(y-axis). The number of bins of each type is shown.

Fig. 6. Structure of the solutions (SCIP Solver) for the Cc instance in terms of α
(y-axis). The number of bins of each type is shown.

150), grey ones to mid-size bins (capacity 100) and black ones to small size bins
(capacity 50). If a bar is taller than its capacity, then such bin are overloaded
(makes use of the relaxation). The horizontal lines within the bars identify the
items packed.

Figure 7 (on top) displays the crisp case (no relaxation is allowed). Both SCIP
solver and FFD heuristic achieved a solution with the same cost and the same
structure. They used 12 big bins and 1 middle sized but, as it can be observed
the items are packed differently. Again, this kind of visualization allows a user
to take a more informed decision. One may argue that aspects like the level of
occupancy of the bins should be taken into account within the objective function.
However, in our opinion, that would complicate the solution of the problem.

If we consider the fully relaxed version (α = 0), we observe that the capacity
violation is small. Nevertheless, it allows for a relevant cost reduction. If the
comparison is made in a column wise manner, we can compare the none relaxed
vs. the fully relaxed solutions obtained by every algorithm. The SCIP solver
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= 1
DFFrevloS BFD

022091091

= 0
DFFrevloS BFD

091081571

Fig. 7. Structure of the solutions for Cc instance obtained by every algorithm with no
relaxation (α = 1) and with the fully relaxed condition (α = 0).

reduces the cost in 15 units by decreasing the usage of big bins while adding
more of the smaller ones. In turn FFD, produces a cheaper solution differently:
use big bins with a slightly larger capacity (taking profit of the relaxation).
Finally, BFD obtained the greatest decrease (30 units) but using 30 bins. It can
be noticed that such solution has the same cost of those obtained by SCIP and
FFD when α = 1. Despite the slight violation of the capacity, it is clear that the
BFD solution may be harder to “manage”: larger number of bins and use the
three available types.

5 Conclusions

This paper presents a fuzzy version of the Variable Size and Cost Bin Packing
Problem (VSCBPP), where the bins capacity is considered flexible. Allowing
such flexibility is relevant in many practical situations because it may allow to
obtain cheaper solutions.

The proposed fuzzy version of VCSBPP is expressed in terms of fuzzy con-
straints that allow to respect the limitations regarding the capacities with a
certain tolerance. Based on the parametric approach, the solution of the fuzzy
problem consists of a set of solutions that may show a trade-off between relax-
ation (violation of the original condition) and benefit (cost reduction).

Our experimental study shows first that all the algorithms tested can achieve
cheaper solutions as the relaxation increases. The analysis of the solution
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revealed that different algorithms manage the flexibility in different ways, thus
allowing to obtain a diverse set of solutions.

This is a crucial aspect for a decision maker, for whom, different solutions
with similar cost can be provided. Then, such solutions can be analyzed from
other points of view beyond costs like how easy/hard is to manage the selected
bins, or how easy/hard is to transport them. Although such features may be
included in the cost function (this is far from trivial), this will lead to a more
complex and harder to solve model.
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