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Abstract. We introduce a game for (extended) Gödel logic where the
players’ interaction stepwise reduces claims about the relative order of
truth degrees of complex formulas to atomic truth comparison claims.
Using the concept of disjunctive game states this semantic game is lifted
to a provability game, where winning strategies correspond to proofs in
a sequents-of-relations calculus.

1 Introduction

Fuzzy logics, by which we mean logics where the connectives are interpreted as
functions of the unit interval [0, 1], come in many variants. Even if we restrict
attention to t-norm based logics, where a left continuous t-norm ◦ serves as truth
function for conjunction and the (unique) residuum of ◦ models implication,
there are still infinitely many different fuzzy logics to choose from. Almost all of
these logics feature truth functions that yield values that are in general different
from 0 and 1, but also different from each argument value. E.g., the function
f(x) = 1 − x often serves as truth function for negation. However, if we take
the minimum, min(x, y), as t-norm modeling conjunction ∧, the corresponding
residuum as truth function for implication →, and define the negation by ¬A =
A → ⊥ 1, we arrive at Gödel logic, where every formula evaluates to either 0, 1,
or to the value of one of the propositional variables occurring in it. Moreover,
Gödel logic is the only t-norm based fuzzy logic, where whether a formula is
true (i.e., evaluates to 1) does not depend on the particular values in [0, 1] that
interpret the propositional variables, but only on the order2 of these values.

In this paper, we look at Gödel logic from a game semantic point of view.
After explaining, in Sect. 2, for the simple case of classical logic restricted to
negation, conjunction, and disjunction, how a semantic game may be turned
into a calculus for proving validity, we turn to Gödel logic G (and its extension

1 ⊥ denotes falsum and always evaluates to 0.
2 An order of n values in [0, 1] is given here by 0�0x1�1 . . . xn�n1, where �i ∈ {<, ≤, =}.
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G� with the �-operator) in Sect. 3. We introduce a truth degree comparison
game, where a player P seeks to uphold, against attacks by opponent O, a claim
of the form F < G or F ≤ G, expressing that the truth value of F is smaller (or
equal) to that of G under a given interpretation. The interaction of P and O
stepwise reduces the initial truth comparison claim to an atomic claim that can
be immediately checked. In Sect. 5, we lift the game from truth degree compari-
son claims for concrete interpretations to the level of validity, i.e., to comparison
claims that hold under every interpretation. Following the general clue given in
Sect. 2, the key ingredient is the notion of disjunctive states, triggering disjunc-
tive strategies. It turns out that disjunctive winning strategies for P correspond
to proofs in an analytic proof system, called sequents-of-relations calculus, intro-
duced in [6]. We conclude in Sect. 6 by a brief summary of our results, followed
by suggestions for future research in this area.

2 From Classical Semantic Games to Sequent Calculus

Before focusing on Gödel logic, let us illustrate how to turn a semantic game
into an analytic proof system in its simplest case: classical propositional logic CL
with ∧, ∨, and ¬ as the only connectives.

Following Hintikka [14], a semantic game for CL can be described as follows.
There are two players, say You and I , who, at any state of the game, can either
be in the role of a proponent P or in the role of an opponent O with respect to
the claim that a current formula F is true in a given interpretation J . The game
starts with You in role O and me (player I ) in role P. It proceeds in accordance
with the following rules, which refer to the players only via their current roles.

(R∧): If the current formula is of the form A ∧ B then O chooses whether to
continue with A or with B as the new current formula.

(R∨): If the current formula is of the form A ∨ B then P chooses whether to
continue with A or with B as the new current formula.

(R¬): If the current formula is of the form ¬A then the roles of the players are
switched and the game continues with A as the new current formula.

(Rat): If the current formula A is atomic, the game ends with P winning iff A
is true in the given interpretation.

It is straightforward to show that I , the initial P, have a winning strategy in
the game for formula F and interpretation J iff F is true under J . The game
thus characterizes the fundamental notion of truth in a model (interpretation).

The just described semantic game can be turned into a provability game
by lifting its states to disjunctive states. By this we mean that any state of
the provability game consists of a disjunction of states of the semantic game.
At any disjunctive state I pick one disjunct where the current formula is non-
atomic. If all formulas are atomic, we have reached a final disjunctive state of the
provability game. We call such a disjunctive state winning (for me, i.e., player
I ) if for every interpretation there is at least one disjunct (state) where I win.



From Truth Degree Comparison Games to Sequents-of-Relations 259

For states of the semantic game (and thus disjunctive components of the
provability game) and each formula F in these states, let us write I : F if I am
in the role of P, and You : F if You are in the role of P (and thus I am in the
role O). The rules of the provability game may then be denoted as follows, where
D denotes a, possible empty, disjunction of component states.

(I : A)
∨ D (I : B)

∨ D
(I : A ∧ B)

∨ D
(You : A)

∨
(You : B)

∨ D
(You : A ∧ B)

∨ D
(I : A)

∨
(I : B)

∨ D
(I : A ∨ B)

∨ D
(You : A)

∨ D (You : B)
∨ D

(You : A ∨ B)
∨ D

(You : A)
∨ D

(I : ¬A)
∨ D

(I : A)
∨ D

(You : ¬A)
∨ D

In these rules, the component state exhibited in the lower disjunctive state is the
one picked by me. Notice that a branching into two disjunctive successor states
(premises of the rule) only occurs if You has to move in the underlying semantic
game. In contrast, if I am to move, the component state picked by me splits into
two states, i.e., into two components (disjuncts) of the given disjunctive state.

Again, it is straightforward to check that I have a winning strategy for the
provability game starting in state I : F iff F is valid in CL. Actually, the above
rules can be seen as classical sequent (or, equivalently, as tableau) rules in dis-
guise. If one translates the labels ‘I’/‘You’ as ‘to the right/left of the sequent
arrow’, respectively, one indeed arrives at the rules introducing conjunction, dis-
junction, and negation in the classical sequent calculus LK (or more precisely,
its variant G3 without structural rules [18]). For example:

(You : A)
∨

(I : C) (You : B)
∨

(I : C)
(You : A ∨ B)

∨
(I : C) corresponds to

A ⇒ C B ⇒ C
A ∨ B ⇒ C

Winning disjunctive states turn into initial sequents Γ, p ⇒ p,Δ such that only
variables occur in Γ ∪ Δ ∪ {p}. Clearly the structural rules of LK, namely
permutation, weakening, and contraction, remain sound in the interpretation of
sequents as disjunctive game states. Winning strategies in the provability game
thus translate into LK proofs.

We suggest that the sketched transformation of a semantic game into a prov-
ability game via moving from single states (referring to particular interpreta-
tions) into disjunctive states (referring to all possible interpretations) can be
seen as a general principle, rather than a trick that works only for (a fragment
of) propositional CL. An arguably more interesting case of this transformation
has been worked out in [10] for (infinite-valued) �Lukasiewicz logic �L: Taking
Giles’ game for �L [11,12] as a starting point on the semantic level, we arrive at
disjunctive states that can be interpreted as hypersequents. Indeed, as shown
in [10], one can systemically derive the logical rules of the hypersequent calculus
H�L, originally introduced in [16], in this manner.

In the following, we will apply the transformation of a semantic game into a
provability game, and thus a corresponding analytic proof system, to (a some-
what extended version of) Gödel logic.
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3 Extended Gödel Logic

Gödel logic occured for the first time in an article by Kurt Gödel [13] where he
proved that intuitionistic logic is not a finite-valued logic. It was axiomatized and
further investigated by Michael Dummett [9]. As a fuzzy logic, it is characterized
by the following truth functions for conjunction, disjunction, and implication:

‖A ∧ B‖J = min(‖A‖J , ‖B‖J ), ‖A ∨ B‖J = max(‖A‖J , ‖B‖J ),

‖A → B‖J =

{
1 if ‖A‖J ≤ ‖B‖J
‖B‖J otherwise.

These truth functions extend any interpretation, i.e., any assignment of truth
values to propositional variables to compound formulas. In principle, any set V ,
where {0, 1} ⊆ V ⊆ [0, 1] can be taken here as set of truth values. We are mostly
interested in infinite-valued Gödel logic G, which is a t-norm based fuzzy logic,
where V = [0, 1], min is the t-norm modeling conjunction, and the corresponding
residuum modeling implication. We include the propositional constants ⊥ and

 in G, interpreted by ‖⊥‖J = 0 and ‖
‖J = 1. The atomic formulas of G are
the propositional variables and the propositional constants.

Negation in G is a defined connective, given by ¬A = A → ⊥. We moreover
extend G to G� by including the following projection operator [2]:

‖�A‖J =

{
1 if ‖A‖J = 1
0 otherwise.

The set of all [0, 1]-valued interpretations is denoted Int[0,1]. An interpretation
J ∈ Int[0,1] satisfies a formula F and is called a model of F (written J |= F ) if
‖F‖J = 1. F is valid if all interpretations are models of F .

4 Truth Degree Comparison Games

Below, we will focus on truth degree comparison claims, or just claims, of the
form F ≤ G or F < G, where F and G are G�-formulas. An interpretation J
satisfies such a claim if ‖F‖J ≤ ‖G‖J or ‖F‖J < ‖G‖J , respectively.

Note that truth comparison claims can be reduced to single G�-formulas in
the following sense: J satisfies F ≤ G iff J satisfies F → G and J satisfies
F < G iff J satisfies ¬ � (G → F ).

We introduce a semantic game for the stepwise reduction of arbitrary truth
degree comparison claims to atomic ones. Game states consist of truth degree
comparison claims F � G, where � is either ≤ or <. Furthermore each non-
atomic claim carries a marking which points to a non-atomic formula in the
claim (either F or G). In the Hintikka-style game of Sect. 2 for CL we had to
distinguish between the players identities (I and You) and their current roles P
or O. The truth degree comparison game for G� does not feature role switches;
therefore we can identify the two players with P and O, respectively. Given an
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interpretation J , at any state F � G player P seeks to defend and O to refute
the claim that J satisfies F � G. If F and G are atomic formulas the game is in
an atomic state, where P wins (and O loses) if ‖F‖J � ‖G‖J .

At each state of the game, P and O make moves according to the rules below
resulting in a successor claim where the marked formula has been decomposed.
If the successor claim is not atomic, then in a final (implicit) move, a regulation
function ρ marks one of the non-atomic formulas in the successor claim. The
resulting claim is the successor state of the game.

For each connective there are four rules, according to whether the connective
appears in a marked formula on the left or on the right, and whether the truth
degree comparison is strict or non-strict, i.e., of the form F < G or F ≤ G. Some
of the rules can be represented in a uniform manner using � to stand for either
< or ≤ (consistently within the rule). In the following, the exhibited compound
formula is the marked formula of the state3.

A ∧ B � C: P chooses whether the game continues with A � C or with B � C.
C � A ∧ B: O chooses whether the game continues with C � A or with C � B.

A ∨ B � C: O chooses whether the game continues with A � C or with B � C.
C � A ∨ B: P chooses whether the game continues with C � A or with C � B.

A → B ≤ C: P chooses one of the following intermediary states, where it is O’s
turn to choose:
(1): the game continues with 
 ≤ C;
(2): O chooses whether the game continues with B < A or with B ≤ C.

C ≤ A → B: P chooses whether the game continues with A ≤ B or with C ≤ B.
A → B < C: O chooses whether the game continues with B < A or with B < C.
C < A → B: P chooses between

(1): the game continues with C < B;
(2): O chooses whether the game continues with A ≤ B or with C < 
.

�A ≤ C: P chooses whether to continue with A < 
 or with 
 ≤ C.
C ≤ �A: P chooses whether to continue with 
 ≤ A or with C ≤ ⊥.
�A < C: O chooses whether to continue with A < 
 or with ⊥ < C.
C < �A: O chooses whether to continue with 
 ≤ A or with C < 
.

We can picture these game rules as decision trees. E.g, the rule for the game
state A → B ≤ C corresponds to the tree in Fig. 1. The leaves of this tree, i.e.,

 ≤ C,B < A and B ≤ C, are the possible successor claims of A → B ≤ C.
Given the regulation ρ, we can then further expand the successor claims into
decision trees according to the game rules.

We therefore see that each game can be viewed as a finite tree τJ
ρ [F � G]

of (marked) truth comparison claims, rooted in the initial claim F � G and
branching according to the rules of the truth degree comparison game and the
regulation ρ until all leaves are atomic states, i.e., states where the compared for-
mulas are either variables or propositional constants ⊥ or 
. If the interpretation

3 This convention will be followed often throughout the article.
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A → B ≤ C

� ≤ C

B < A B ≤ C

P P

O O

Fig. 1. Decision tree of a game rule

J satisfies the truth comparison claim at an atomic state ν then ν is a winning
state of τJ

ρ [F � G] for P.

Example 1. Below is the tree τJ
ρ [p ∧ (p → q) ≤ p ∧ q]. The formulas marked by

the regulation ρ are underlined.

p ∧ (p → q) ≤ p ∧ q

p ≤ p ∧ q p → q ≤ p ∧ q

p ≤ p p ≤ q 1 ≤ p ∧ q

1 ≤ p 1 ≤ q
q < p q ≤ p ∧ q

q ≤ p q ≤ q

P P

O O P P

O O
O O

O O

In the case that ‖q‖J < ‖p‖J < 1, the winning states are p ≤ p, q < p, q ≤ p
and q ≤ q.

A strategy σ for P in τJ
ρ [F �G] is a subtree of τJ

ρ [F �G] which is obtained from
pruning all but one P-labelled outgoing branches from every node in the tree,
while keeping O-labelled branches intact. Clearly, the remaining tree specifies
how P is to move at the given state, while all possible choices of O are still
recorded. σ is a winning strategy, hereinafter referred to as ws, for P if all leaf
nodes of σ are winning states for P.

Example 2. To the right is a strategy for P in the game
τJ
ρ [p∧(p → q) ≤ p∧q], which is obtained from the tree

in Example 1 by pruning the right branch stemming
from the root. It is a winning strategy if and only if
‖p‖J ≤ ‖q‖J .

p ∧ (p → q) ≤ p ∧ q

p ≤ p ∧ q

p ≤ p p ≤ q

P

O O

Each non-atomic game state F � G corresponds to exactly one of the 12 game
rules described above, and we describe its set Pow(F �G) of P-powers4 as follows:

4 This notion is similar to the general definition of a power in game theory, cf. [19].
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A set X is a P-power of F � G if it is a subset-minimal set of claims such that
in the game state F � G, P can enforce that the successor claim is among the
claims in X.

For example, in the game state A → B ≤ C with A → B marked (cf. Fig. 1),
P can make a move so that the successor claim is 
 ≤ C. Alternatively, she can
make a move ensuring that the successor claim is one of B < A or B ≤ C, but
she does not know which one since this depends on a move by O. Hence we have

Pow(A → B ≤ C) = {{
 ≤ C}, {B < A,B ≤ C}}.

As further examples,

Pow(A ∧ B � C) = {{A � C}, {B � C}},

and Pow(C � A ∧ B) = {{C � A,C � B}}.

For an atomic state F � G, we formally set Pow(F � G) = {{F � G}}.

Proposition 1 (Soundness of game rules). For any game state F � G and
any J ∈ Int[0,1], J |= F � G iff for some X ∈ Pow(F � G), J satisfies all
formulas in X.

Proof For an atomic state F �G, this holds by definition. For non-atomic F �G,
this is proved for all 12 types of game states seperately. Consider for example
the state A → B ≤ C and its P-power

{{
 ≤ C}, {B < A,B ≤ C}}.

Let J ∈ Int[0,1]. Then either ‖A‖J ≤ ‖B‖J , in which case ‖A → B‖J = 1 and
so J satisfies the claim A → B ≤ C iff J satisfies 
 ≤ C. Or ‖A‖J > ‖B‖J :
Then ‖A → B‖J = ‖B‖J and so J satisfies the claim A → B ≤ C iff J satisfies
B ≤ C.

We prove the equivalence for the other two examples given above. For the
game state A ∧ B � C with

Pow(A ∧ B � C) = {{A � C}, {B � C}}
we observe that an interpretation J satisfies A ∧ B � C if and only if we either
have ‖A‖J ≤ ‖B‖J and ‖A‖J � ‖C‖J , or alternatively ‖A‖J > ‖B‖J and
‖B‖J � ‖C‖J .

Finally, for the game state C � A ∧ B with

Pow(C � A ∧ B) = {{C � A,C � B}}
we observe that an interpretation J satisfies C �A∧B if and only if J satisfies
both C � A and C � B.

The remaining 9 cases can be shown similarily. ��
Proposition 2. For any interpretation J and regulation ρ, if P has a winning
strategy in τJ

ρ [F � G] then J satisfies F � G, where � ∈ {<,≤}.
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Proof. By induction on the tree height of a ws σ ⊆ τJ
ρ [F � G]. If the height of

σ is 1, then F � G is atomic, and since σ is a ws, F � G must therefore be a
winning state of τJ

ρ [F � G]. Hence J |= F � G.
Now assume that the height of σ is at least 2, and let S1, . . . , Sn be the

successor claims of F � G in τJ
ρ [F � G] which are contained in σ. Since σ is a

strategy for P, the set {S1, . . . , Sn} is a P-power of τJ
ρ [F � G]. Now for each

i ≤ n, let σi be the subtree of σ with root Si. Then each σi is a ws for P in
τJ
ρ [Si], and so by induction hypothesis J |= Si for every i ≤ n. We have thus

shown that all claims in a P-power of τJ
ρ [F � G] are satisfied by J , and so by

Proposition 1 it follows that J satisfies F � G. ��
Proposition 3. If an interpretation J satisfies F � G, where � ∈ {<,≤},
then P has a winning strategy in τJ

ρ [F � G] for any regulation ρ.

Proof. If J satisfies F � G, then by Proposition 1 there is a power X ∈
Pow(F � G) (where the marking in F � G is set according to ρ) such that J
satisfies all claims in X. So P can enforce that the successor state of F � G in
the game τJ

ρ [F � G] is contained in X.
Repeating the same kind of reasoning, we see that P can always move ensur-

ing that the resulting game state is satisfied by J , and in particular, any atomic
state ν reached using this strategy will be a winning state in τJ

ρ [F � G] for P.��

5 Disjunctive Game States as Sequents-of-relations

As an immediate consequence of Propositions 2 and 3 we have:

Theorem 1. The following are equivalent:

1. F � G is valid in G�

2. For some regulation ρ, P has a ws in τJ
ρ [F � G] for every J ∈ Int[0,1]

3. For any regulation ρ, P has a ws in τJ
ρ [F � G] for every J ∈ Int[0,1].

In particular, although different regulations ρ lead to different games, the
choice of the regulation does not matter if one is only interested in the winnability
of a game.

A family (σJ )J ∈Int[0,1] of ws for the games τJ
ρ [F � G] witnesses that the

claim F � G is valid. We may think of (σJ )J ∈Int[0,1] as a proof of F � G,
but this notion of provability would not be efficient since (σJ )J ∈Int[0,1] is an
infinite object. However, we now show that an infinite family of strategies such
as (σJ )J ∈Int[0,1] can be encoded into a single disjunctive winning strategy. In
doing so, we follow the approach sketched in Sect. 2 for classical logic.

First, define a disjunctive state D to be a finite nonempty multiset of claims
written D = S1

∨
. . .

∨
Sn. A disjunctive state is called atomic if all of its dis-

juncts are atomic claims. We say that an interpretation J satisfies a disjunctive
state D, and write J |= D, if J satisfies at least one of the disjuncts of D. A
disjunctive state D is called winning if it is an atomic state satisfied by every
interpretation.
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For a set P = {X1, . . . , Xn} where each Xi is a set of claims, we define
∨ P

as the set of all disjunctive states

S1

∨
. . .

∨
Sn

where for each i ≤ n, Si ∈ Xi.

Definition 1 (disjunctive rule). Let S be a non-atomic claim and D a dis-
junctive state. A disjunctive rule is a rule of the form

D
∨

D1 . . . D
∨

Dk

D
∨

S

where for a game state S′ obtained from marking a formula in S, the sequence
D1, . . . , Dk is an enumeration of

∨
Pow(S′).

As an example, let S be the claim A → B ≤ C and S′ the corresponding
game state where A → B is marked. Recall that

Pow(A → B ≤ C) = {{
 ≤ C}, {B < A,B ≤ C}}
and so

∨
Pow(A → B ≤ C) = {(
 ≤ C

∨
B < A), (
 ≤ C

∨
B ≤ C)}.

The corresponding disjunctive rule is thus:

D
∨

(
 ≤ C)
∨

(B < A) D
∨

(
 ≤ C)
∨

(B ≤ C)
D

∨
(A → B ≤ C)

Figure 2 contains the disjunctive rules corresponding to all 12 types of game
states.

Definition 2 (Disjunctive strategy). Let D be a disjunctive state. A dis-
junctive strategy for P in D is a tree of disjunctive states built using disjunctive
rules, and with root D. A disjunctive strategy is called winning strategy if all its
leaves are disjunctive winning states.

For the time being, disjunctive strategies will just be syntactic objects rather
than strategies in some game. We will however discuss later on how to interpret
disjunctive strategies in a game theoretic sense.

Proposition 4 (Soundness of disjunctive rules). Let J ∈ Int[0,1]. Then
J satisfies the conclusion of a disjunctive rule iff J satisfies all of its premises.

Proof Let the disjunctive rule be presented as in Definition 1. Assume first that
J � D

∨
S. If J � D, then clearly J satisfies all premises of the disjunctive rule

as well. On the other hand, if J � S, then by Proposition 1 there exists a power
X ∈ Pow(S) such that all claims in X are satisfied by J . It follows that J � Di

for every i ≤ n because Di contains a disjunct from X.
For the other direction, assume that J � D

∨
S. Then J � D and J � S.

The latter implies, again by Proposition 1, that every power X ∈ Pow(S) contains
a state not satisfied by J . The disjunctive combination of all these failing states
is one of the Di’s, and so J does not satisfy the premise D

∨
Di. ��
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D
∨
(A � C)

∨
(B � C)

D
∨
(A ∧ B � C)

∧�
D

∨
(C � A) D

∨
(C � B)

D
∨
(C � A ∧ B)

�∧ D
∨
(A � C) D

∨
(B � C)

D
∨
(A ∨ B � C)

∨�

D
∨
(C � A)

∨
(C � B)

D
∨
(C � A ∨ B)

�∨ D
∨
(� ≤ C)

∨
(B < A) D

∨
(� ≤ C)

∨
(B ≤ C)

D
∨
(A → B ≤ C)

→≤

D
∨
(B < A) D

∨
(B < C)

D
∨
(A → B < C)

→<
D

∨
(C < B)

∨
(A ≤ B) D

∨
(C < B)

∨
(C < �)

D
∨
(C < A → B)

<→

D
∨
(A ≤ B)

∨
(C ≤ B)

D
∨
(C ≤ A → B)

≤→ D
∨
(A < �)

∨
(� ≤ C)

D
∨
(�A ≤ C)

� ≤ D
∨
(� ≤ A)

∨
(C ≤ ⊥)

D
∨
(C ≤ �A)

≤ �

D
∨
(A < �) D

∨
(⊥ < C)

D
∨
(�A < C)

� <
D

∨
(� ≤ A) D

∨
(C < �)

D
∨
(C < �A)

< �

Fig. 2. Disjunctive rules

Theorem 2. F � G is valid in G� iff there is a disjunctive ws for P in F � G.

Proof. Given the claim F �G (seen as a disjunctive state with one component),
we can exhaustively apply disjunctive rules to it in any order, and eventually
obtain a disjunctive strategy with atomic leaves. By Proposition 4 (and a simple
induction on the height of the tree), all leaves of this tree will be disjunctive
winning states because F � G is valid by assumption.

Conversely, if there is a disjunctive ws for P in F � G, then by definition all
of its leaves are winning states. Again by Proposition 4 and a simple induction
on the tree height, it follows that all disjunctive states in the ws are valid. Hence
in particular, the claim F � G is valid. ��

To use disjunctive ws as a proof system for G�, the only thing left to establish
is that we can efficiently check whether the leaves of a disjunctive strategy are
winning. Indeed, this holds true:

Lemma 1. It is decidable in PTIME whether an atomic disjunctive state is
winning.

Proof. See Theorem 4 in [7]. ��
From this and Theorem 2 it follows that the disjunctive ws form a proposi-

tional proof system for G� in the sense of Cook-Reckhow (cf. the survey [17]).
The disjunctive strategies can be seen as strategies in the usual game-

theoretic sense, with respect to a game that we are going to define now. The
G�-provability game on D starts with a (disjunctive) state D. At each turn,
P picks one disjunctive rule whose conclusion matches the current disjunctive
state. Then, O chooses one of the premises of this disjunctive rule as the suc-
cessor state. If an atomic disjunctive state is reached, P wins if the state is a
winning state (in the earlier sense). Clearly, disjunctive ws are the same as ws
in the provability game, and so we have:
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Theorem 3. F � G is valid in G� iff there is a ws for P in the G�-provability
game on F � G.

We can think of the provability game as a game where multiple instances of a
truth degree comparison game τJ

ρ [F �G] are played simultaneously, for varying
interpretations J . Or alternatively, we may imagine that P plays τJ

ρ [F � G]
without knowing the interpretation J . Now whenever P faces a choice in one of
the degree comparison games, she simply encodes all possible moves she could
make into the strategy in the provability game. The claim that P then defends
is that for every J , at least one of the subgames she plays necessarily leads to a
winning state.

More compact representations of disjunctive strategies are sometimes possi-
ble. For example, consider the following disjunctive rule:

D1

∨
. . .

∨
Dn

D1

∨
. . .

∨
Dn

∨
Dn+1

ew

It is easy to see that whenever there is a disjunctive ws for P in D1

∨
. . .

∨
Dn,

then there is also a disjunctive ws for P in D1

∨
. . .

∨
Dn

∨
Dn+1. So if we

allow the rule ew in the construction of disjunctive ws, we still characterize
validity in G�. However, disjunctive ws with ew might be smaller. The intu-
itive (bottom-up) reading of ew is the following: If during the construction of a
disjunctive ws for D1

∨
. . .

∨
Dn

∨
Dn+1 player P finds out that already the dis-

juncts D1

∨
. . .

∨
Dn lead to a winning state, then she can discard the redundant

disjunct Dn.

Example 3. Below is a disjunctive ws for the claim in Example 1, which uses the
rule ew:

p ≤ p

(p ≤ p)
∨

(p → q ≤ p ∧ q)
ew

(p ≤ q)
∨

(q < p)
(p ≤ q)

∨
(
 ≤ p ∧ q)

∨
(q < p)

ew

(p ≤ q)
∨

(q ≤ p) (p ≤ q)
∨

(q ≤ q)
(p ≤ q)

∨
(q ≤ p ∧ q)

≤ ∧
(p ≤ q)

∨
(
 ≤ p ∧ q)

∨
(q ≤ p ∧ q)

ew

(p ≤ q)
∨

(p → q ≤ p ∧ q)
→≤

(p ≤ p ∧ q)
∨

(p → q ≤ p ∧ q)
≤ ∧

p ∧ (p → q) ≤ p ∧ q
∧ ≤

The disjunctive ws are very close to proofs in the sequents-of-relations cal-
culus RG∞, and its extension RG�

∞ capturing the � projection operator, as
developed in [3,4,6]. The approach there is algebraic rather then game-theoretic.

On a purely notational level, the sequents-of-relations calculus differs from
the disjunctive ws by the use of the symbol | instead of

∨
, making it fit into

the framework of hypersequent calculi as developed independently by Mints,
Pottinger and Avron (cf. the survey [5]).

The other differences are: RG�
∞ includes the structural rules

D
D

∨
S

ew
and

D
∨

S
∨

S

D
∨

S
ec
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of external weakening (see the discussion above) and external contraction, and
it features the logical rules

D
∨

(� ≤ C)
∨

(B < A) D
∨

(B ≤ C)

D
∨

(A → B ≤ C)
→≤∗ D

∨
(C < B)

∨
(A ≤ B) D

∨
(C < �)

D
∨

(C < A → B)
<→∗

instead of our rules →≤ and <→ (cf. Fig. 2). All other rules are the same.
To show the equivalence of both calculi, we can proceed as follows. First, for

the rule variants →≤∗ and <→∗ the analogue of Proposition 4 can be shown:

Lemma 2. Let J ∈ Int[0,1]. Then J satisfies the conclusion of the rule →≤∗

(resp. <→∗) iff J satisfies all of the premises of →≤∗ (resp. <→∗).

Proof. Assume J � D (otherwise the statement is obvious).
If ‖A‖J ≤ ‖B‖J , then J satisfies the conclusion of →≤∗ iff ‖C‖J = 1,

and this is equivalent to the statement that J satisfies the premises of →≤∗,
since J � D and J � (B < A). If on the other hand ‖A‖J > ‖B‖J , then J
satisfies the conclusion of →≤∗ iff ‖B‖J ≤ ‖C‖J . This in turn is equivalent to
saying that J satisfies the premises of →≤∗ since it satisfies the left premise by
assumption, and the right premise reduces to B ≤ C since J � D.

The argument for the rule <→∗ is similar. ��
It follows that the proof of Theorem 2 goes through if we use →≤∗ and

→≤∗ as disjunctive rules instead of their non-starred versions. The additional
structural rules ew and ec are in fact redundant, since already the system with-
out them is complete for G�. Note however that the inclusion of redundant
rules might lead to shorter proofs. More such rules for the sequents-of-relations
calculus are discussed in [6].

6 Summary and Conclusion

We have investigated Gödel logic, one of the fundamental fuzzy logics, from a
game semantic perspective. In Sect. 4, we presented a game for reducing truth
degree comparison claims F < G or F ≤ G, i.e., claims about the relative
order of arbitrary G�-formulas, to atomic comparison claims. This amounts to
a generalization of Hintikka’s well known semantic game for classical logic. As
illustrated in Sect. 2 for the simple case of classical propositional logic, semantic
games can be systematically lifted to provability games. The latter operate on
the level of validity rather than the level of truth in a model and thus corre-
spond to analytic proof systems. Indeed, Gentzen’s sequent system for classical
logic can be interpreted from a game perspective in this manner. In Sect. 5, we
have applied this general scheme to the more involved case of the truth degree
comparison game and demonstrated that moving from single states to disjunc-
tions of states yields a characterization of validity in G� in terms of ‘disjunctive
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winning strategies’. Moreover, disjunctions of states can be viewed as sequents-
of-relations in the sense of [3,6]. Hence, disjunctive winning strategies provide
an interpretation of proofs in this calculus.

A number of topics for further research arise from our game based take on
Gödel logic. While it has already been shown in [10] that a similar approach
relates Giles’s game for �Lukasiewicz logic to a corresponding hypersequent cal-
culus, it remains open whether and how this method can be extended to yet
further fuzzy logics. Even for Gödel logic itself, one may ask whether not only
sequents-of-relations but also the arguably better known hypersequent calculus
HLC of Avron [1] can be systematically related to a truth degree comparison
game. This might also open the way to generalize to the first order level, since
in contrast to the sequents-of-relations calculus, HLC can straightforwardly be
extended to include quantifier rules. Due to its attractiveness for certain applica-
tions, an extension of Gödel logic featuring an involutative negation, in addition
to standard Gödel-negation, has received some attention [8]. In future work we
plan to extend our truth degree comparison games to include also this type of
negation. Finally, we like to point out that a game based approach to fuzzy logics
may open the route to more sophisticated models of reasoning under vagueness
than can be achieved by sticking with truth functional logics. It is natural to ask
what happens if the players of a game have only imperfect information about
their opponent’s moves. For classical logic this leads to Independence Friendly
(IF) logic of Hintikka and Sandu [15]. Given the fact that vagueness may be seen
as a phenomenon involving a lack of full share of (precise) information between
speaker and hearer of vague statements, it seems attractive to explore the impact
of imperfect information on truth degree comparison games.
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