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Abstract. Knowledge graphs are a data format that enables the repre-
sentation of semantics. Most of the available graphs focus on the repre-
sentation of facts, their features, and relations between them. However,
from the point of view of possible applications of semantically rich data
formats in intelligent, real-world scenarios, there is a need for knowl-
edge graphs that describe contextual information regarding realistic and
casual relations between items in the real world.

In this paper, we present a methodology of generating knowledge
graphs addressing such a need. We call them World-perceiving Knowl-
edge Graphs – WpKG. The process of their construction is based on
analyzing images. We apply deep learning image processing methods to
extract scene graphs. We combine these graphs, and process the obtained
graph to determine importance of relations between items detected on
the images. The generated WpKG is used as a basis for constructing
possibility graphs. We illustrate the process and show some snippets of
the generated knowledge and possibility graphs.

Keywords: Knowledge graph · Deep learning · Common sense ·
Possibility theory

1 Introduction

Knowledge graphs are composed of a set of triple relations, i.e. <subject – pred-
icate – object>, where subjects and objects are items connected via predicates
representing relations between them. The graphs are useful in representing data
semantics and are employed in different applications, such as common-sense and
causal reasoning [1,2], question-answering [3], natural language processing [4],
and recommender systems [5]. Some examples of existing knowledge graphs are
DBpedia [6], Wikidata [7], Yago [8], the now-retired Freebase [9], and WordNet
[10]. The aforementioned knowledge graphs contain information about facts,
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their features, and basic relations between them. They focus on people, geo-
graphical locations, movies, music, and organizations and institutions. They are
missing a piece of information about everyday real-world items, their contexts,
and arrangements.

From the human perspective, we can state that the visual information plays
a significant role in human learning processes [11]. At the same time, the eye’s
information transfer rate is quite high [12] that makes a visual stimulus to be
of significant importance in processes of gaining understanding about different
items and how they are related to each other. Given the importance of visual
data, it is appealing to develop systems that could observe, learn and create
knowledge based on such data. Additionally, traditional knowledge graphs do
not provide any degree of confidence associated with relations. It is assumed
that all of them are equally important.

In this paper, we look at the task of creating knowledge graphs based on
visual data. The idea is to process images, generate scene graphs from them,
and aggregate these graphs. Graphs constructed in such a way contain knowledge
about everyday objects, their contexts and their situational information, as well
as information related to the importance of common-sense relations between
multiple objects in their natural scenarios.

We call such a graph World-perceiving Knowledge Graph, WpKG in short.
The quality and suitability of knowledge we retrieve from images depend on the
capability of tools and methods we use for image processing. Processing an image
means generating a scene graph representing relations between objects/entities
present on this image. Once numerous images are processed, all scene graphs
are aggregated. This alone allows us to treat the process of constructing graphs
via aggregation as the human-like process of learning via processing of observed
images.

We also look at a process of using knowledge graphs – WpKGs – to construct
possibility graphs reflecting conditional dependencies between sets of entities as
observed in their usual environments. The information about the importance
of relations allows us to build possibilistic conditional distributions. They are
used for processing and reasoning about entities and relations between them in
their own relevant contexts. The included case study shows an application of the
presented procedure to Visual Genome (VG) dataset [13].

2 Related Work

Extracting information from different media to create a knowledge graph has
been examined in the literature. Yet, the area of focus of these works has been
different: some of them focus on images, some on text, and some on a combination
of both. Also, the methods used for information retrieval can be different –
automatic or manual. A brief overview is presented in Subsect. 2.1.

Possibilistic knowledge bases and graphs are important forms representing
uncertainty of data and information [14], and [15]. A set of basic definitions is
included in the following subsections.
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2.1 Knowledge Graph Construction

There is a number of different knowledge graph generation methods that focus
on text as the source of information, such as NELL [16], ConceptNet [17], ReVerb
[18], and Quasimodo [19]. Some other published approaches, such as WebChild
KB [20,21] or LEVAN [22], extract knowledge from text and image captions or
only from image objects without in-image relations. Probably, the most relevant
work to our work is NEIL [23], which create a knowledge graph directly from
images.

Compared to NEIL, our proposed automatic approach is capable of extract-
ing much more types of object-to-object relations. Compared to ConceptNet,
which represents an example of a semi-automatic method of retrieving knowl-
edge from text, our proposed approach can extract common-sense relations based
on only observing visual data.

2.2 Possibilistic Knowledge Base

A possibilistic base is a set of pairs (p, α) where p is a proposition, and α is
a degree to which p is true and is in the interval (0, 1) [14]. Let Ω be a set of
interpretations of the real world, and possibilistic distribution π a mapping from
Ω to the interval (0, 1). An interpretation ω that satisfies p has π(ω) = 1, and
1 − α when ω fails to satisfy p. In summary:

∀ω ∈ Ω, π{p α}(w) = 1 if ω |= p

= 1 − α otherwise

From now on, we identify the base as
∑

= {(pi, αi), i = 1, . . . , n}. Then all
interpretations satisfying propositions in

∑
have the possibility degree of 1, while

other interpretations are ranked based on the highest values of α associated with
proposition they do not satisfy, i.e., ∀ω ∈ Ω:

π∑(w) = 1 if ω |=
∑

= 1 − max{αi : (pi, αi) ∈
∑

and ω |= ¬pi} otherwise

In other words, π∑ induces a necessity ‘grading’ of pi that evaluates to what
extent pi is a consequence of the available knowledge. The necessity measure
Nec is:

Necπ∑(pi) = 1 − max{π∑(ω) | ω |= ¬pi}
Based on that, we can say that (pi, αi) is a plausible conclusion of π∑ if

Necπ∑(pi) > Necπ∑(¬pi)

and Necπ∑(pi) ≥ αi [24].
A possibility distribution π∑ is normal if there is an interpretation ω that it

totally possible, i.e., π∑(ω) = 1.
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2.3 Possibilistic Graph

A possibility graph ΠG is an acyclic directed graph [14]. The nodes of such a
graph are associated with variables Ai, each with its domain Di; while its edges
represent dependencies between elements of nodes. For the case of binary vari-
ables, i.e., when Di = {ai,¬ai}, the assignment of value to the variable is called
an interpretation ω. Let us denote a set of nodes that have edges connecting
them to a node Ai as its parents: Par(Ai). Possibility degrees Π associated with
nodes are:

for each node Ai without a parent Par(Ai) = 0 prior possibility degrees
associated with a single node are Π(a) for every value a ∈ Di of the vari-
able Ai; possibilities must satisfy the normalization condition: maxa∈Di

:
Π(a) = 1.

for each node Aj with parent(s) Par(Aj) �= 0 possibility degrees are con-
ditional ones Π(a|ωPar(Aj)) where a ∈ Dj , and ωPar(Aj) is an element
of the Cartesian product of domains Dk of variables Ak ∈ Par(Aj); as
above, conditional possibilities must satisfy the normalization condition:
maxa∈Dj

: Π(a|ωPar(Aj)) = 1.

In our case, a conditional probability measure is defined using min:

Π(p|q) = 1 if Π(q ∧ p) = Π(q)
= Π(q ∧ p) otherwise

and obeys [14]:

Π(q ∧ p) = min{Π(p|q),Π(q)}

3 Generation of Image-Based WpKG

We introduce a systemic approach to generate knowledge graphs given visual
data. Such graphs provide us with contextual information about objects present
in the world with very limited input from humans. There are unique challenges
associated with the generation of this type of graph. First, we need methods
able to detect objects in images, and second, we require tools to extract relations
between the detected objects.

Once we have the object recognition and relation extraction processes, we
execute them on a set of images. The obtained triples – <entity – relation –
entity> are aggregated into a single knowledge graph. The strength of relations
is determined by the number of co-occurrences of objects with specific relations.
The overall process is shown in Fig. 1.

Having a trained model, the process is liberated from specific visual data and
its annotations. Additionally, more visual data can be processed using the pro-
posed methodology and comprehensive context-specific knowledge graphs could
be created.
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Fig. 1. Overall procedure for generation of a knowledge graph from images

3.1 Detection of Objects

To detect objects and their corresponding bounding boxes, we use the Faster R-
CNN model [25]. In this model, the full image is passed through a convolutional
neural network (CNN) to generate image features. To detect image features, usu-
ally a pre-trained CNN, such as VGG network [26], trained on ImageNet [27] is
used. Given the image features as input, another neural network, called Region
Proposal Network (RPN), predicts regions that may contain an object and their
corresponding bounding boxes. This learning network is the principal contribu-
tion of the Faster R-CNN model compared to the Fast R-CNN model [28]. This
results in an improvement of performance in both training and inference. The
regions of interest (RoIs) are then mapped into the image feature tensor, and
via application of a process called RoI Pooling the regions are downsampled to
be fed to the next neural network. This allows for the prediction of image classes
and their correct bounding boxes. Given the error losses from the classification
and bounding box predictions, the entire network is trained end-to-end using
backpropagation and stochastic gradient descent (SGD) [29]. An illustration of
the process can be found in Fig. 1.

3.2 Identification of Relations Between Objects

Determining relations between objects is required to generate scene graphs and
it can be done in several ways. There has been several publications that propose
such methods as Iterative Message Passing [30], Neural Motifs [31], Graphical
Contrastive Losses [32], and Factorizable Net [33]. In our work, we use the Iter-
ative Message Passing model.

The Iterative Message Passing model predicts relations between objects
detected by the Faster R-CNN model. Mathematically, a scene graph generation
process means finding the optimal x∗ = arg maxx Pr(x|I,BI) that maximizes
the following probability function:

Pr(x|I,BI) =
∏

i∈V

∏

j �=i

Pr(xcls
i , xbbox

i , xi→j |I,BI). (1)
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where I is an image, BI represents proposed object boxes, x is a set of all vari-
ables, including classes, bounding boxes and relations (x = {xcls

i , xbbox
i , xi→j |i =

1 . . . n, j = 1 . . . n, i �= j}), with n representing the number of proposed boxes,
xcls

i as a class label of the i-th proposed box, xbbox
i as the offset of bounding box

relative to the i-th proposed box, and xi→j as a predicate between the i-th and
j-th proposed boxes.

3.3 Aggregation of Scene Graphs

The process of amalgamating generated image scene graphs that results in a
single knowledge graph has a number of challenges: 1) establishing a unique
identifier for each entity; 2) identifying the importance of connections; 3) dealing
with missing values and incorrect data; and 4) keeping the knowledge graph
updated in presence of new data.

In the specific case of the Visual Genome dataset, we use synsets from Word-
Net to identify nodes and relations, as well as different meanings of a specific
word. There are various methods to identify the uniqueness of words, such as
using words occurring in natural language, grouping similar words with the same
meaning, or trying to assign words to their specific synsets. Yet, another way is
to keep words and phrases as they are and let their occurrence numbers show
the importance of connections and nodes. Such a simple approach provides a
good indication which relations are more likely to occur.

Another challenge is to mitigate missing or incorrect information. For exam-
ple, the used methods/models could incorrectly label objects/relations and the
processes could fail to find unique words or synsets. Even the hand-annotated
data in the Visual Genome (VG) dataset [13], which is used for training, has
missing and incorrect data [34]. The unknowns are reduced by relying on the
information already present, such as recovering a missing synset based on an
already-known name to synset relation or WordNet.

4 Image-Based WpKG: Experimental Studies

The Iterative Message Passing model [30] is trained on the VG dataset. It con-
tains 108,077 images that capture everyday scenarios. For evaluation, only the
most common 150 object categories and 50 predicates are used.

The Faster R-CNN model that is applied to detect objects and their bounding
boxes is pre-trained on MS-COCO dataset. This dataset has 80 object categories.
The training set is of size 80k images. Validation and test sets are 40k and 20k
images, respectively. Around thirty percent of the VG dataset (test set) is used
to detect objects and predict predicates. The subset has around 30,000 images.
Running the process described in Sect. 3, a WpKG with 138 nodes and 7,287
relations is generated.

Neo4j [35] software is used to store and analyze the generated graph. It allows
us to store object and relationship names and synsets, as well as occurrence
numbers. Also, it visualizes a structure composed of triples subject-predicate-
object.
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One advantage of the generated WpKG is the existence of common sense
relations occurring in the actual world extracted during the processing of visual
data. The most important entities related to the entity of interest can be found
by inspecting the strength of connections between them. One way to accomplish
this is to measure how often these objects are associated with each other.

As an example, the entity plate together with the related entities is shown in
Fig. 2 (a). As we can see, removing non-frequent relations leads to identification
of tightly related objects relevant to the plate, Fig. 2 (b).
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Fig. 2. Relationships to/from plate entity: with at least one instance and interrelation-
ships between associated items (a); and at least 10 instances for each relationship and
without the interrelationships (b).

A sample of relation occurrence statistics is shown in Table 1. Based on the
analysis of visual data, we can find out about some common-sense knowledge,
such as places where a vase can be placed, and what can be put into it. Most
of the relations, such as flower-in-vase, make sense and agree with the crowd-
sourced VG dataset. However, some relations, such as vase-in-vase, may not make
sense. This could be a shortcoming of the method/model used for prediction of
relations. Besides a better model, processing more images and detecting more
types of relations and objects may improve the results.

The comparison of our method, which is based on image processing, with
other relevant automatic and semi-automatic methods is demonstrated in
Table 2.
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Table 1. Three most common relations in WpKG generated using Faster R-CNN and
iterative message passing models to recognize objects and predict relations, respec-
tively.

Subject Predicate Object Occurrence number

Woman

Woman Wearing Shirt 192

Woman Holding Umbrella 168

Woman Has Hair 141

Plate

Plate On Table 388

Plate On Plate 193

Plate On Pizza 19

Flower

Flower In Vase 173

Flower On Table 41

Flower On Tree 15

Vase

Vase On Table 116

Vase In Vase 44

Vase Has Flower 31

5 WpKG-Based Possibilistic Graph and Base

The generated WpKGs consist of an enormous amount of nodes and relations.
The relations – as built via aggregation of scene graph relations – contain infor-
mation about the frequency of occurrence. This means that each relation is
equipped with a weight indicating its strength and importance. For practical
use, WpKG can be further processed and a subset of nodes together with rela-
tions between them can be used to construct a possibilistic graph.

Table 2. Comparison of relevant generated knowledge graphs from literature. Our
method and NEIL are the ones that focus on in-image relations.

Method In-image Input source(s) Relation types Triples Automation

relations

NEIL [23] Yes Image <10 <10K Automated

ConceptNet [17] No Text <100 34M Semi-automated

LEVAN [22] No Text and <10 <100K Automated

Objects in

Images

WebChild KB 2.0 [21] No Text and >1000 >18M Automated

Image/Video

Captions

Quasimodo [19] No Text (logs and Dynamic 2.3M Automated

QA forums)

Our work Yes Image <50 (Dynamic) >7K Automated
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5.1 Extracting Possibilistic Graph from WpKG

A WpKG is constructed with no constrains. It contains cycles, very strong and
weak relations, as well as erroneous information due to the imperfection of used
image processing tools. In that context, a possibilistic graph is more organized
and ‘clean’. Therefore, extracting nodes and edges from WpKG and building a
graph that satisfies rules of the possibilistic graph (Sect. 2.3) seems important
steps in utilizing generated WpKGs.

First, a proto-possibilistic graph is constructed. It is free of cycles and con-
tains outwards relations linked to the entity of interest. The procedure used to
extract relevant entities and connections is presented as Algorithms 1 and 2. The
important aspects of this process are:

Algorithm 1, line 4 the value of Depth identifies the allowed length of a
‘relation chain’ at the process of building a graph;

Algorithm 2, line 6 the procedure randomize createGroups() is crucial in
the construction process: 1) randomization of a sequence of entities allows
to generate graphs with different paths; once this is combined with a process
presented in line 8 (explained below) it prevents the existence of cycles in the
generated graph; 2) grouping of relations/predicates connected to the same
object, i.e., prepositions/adjectives playing the role of relations; as illustra-
tion, see entities flower, window, table, plant, Fig. 3;

Algorithm 2, line 8 this allows to solve an issue of cycles, i.e., relations between
pairs of entities flower-vase, plant-vase and table-vase, Fig. 3, would lead to
cyclic directed graph; however, if a connection between both entities already
exist, a new one – in the opposite direction – is not created.

Algorithm 1: Construction of Proto-Possibilistic Graph
Data: Image-based WpKG; Seed Entity; Depth
Result: Proto-Possibilistic Graph

1 begin
2 root ← Seed Entity;
3 d ← 1;
4 call CreateConn(root, d,Depth);
5 return;

The application of the presented procedure leads to a graph that is acyclic
and direct. It also contains occurrences associated with each connection. The
last step of constructing a possibilistic graph is to determine possibility degrees.
To do so, all input connections to a given node are analyzed. The maximum
value is identified and is used for normalization of all other occurrence values
associated with inward connections to the node. This ensures satisfaction of the
requirement of maximum possibility equal to 1.0 (Sect. 2.3).
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Algorithm 2: Generation of Connections
1 CreateConn(r, d,Depth)
2 begin
3 if d <= Depth then
4 listChild ← create list children(r);
5 if listChild �= ∅ then
6 randomize createGroups(listChild);
7 for e ∈ listChild do
8 if e not connected to r then
9 setupConnection(r, e);

10 call CreateConn(e, d + 1, Depth);

11 else
12 return;

13 else
14 return;

15 return;

5.2 Construction of Possibilistic Base

The extracted possibilistic graph allows us to build a possibilistic knowledge
base. Here, we follow the process presented in [14]. For that purpose, we consider
the graph as a set of triples:

ΠG = {(a, Pa, α) : Π(a|Pa) = α}

where a is an instance of Ai and Pa is the Cartesian product of domains Dk of
variables Ak ∈ Par(Ai). Each such triple can be represented as a formula:

(¬a ∨ ¬Pa, 1 − α)

so, following [14], we have that the possibilistic knowledge base associated with
ΠG defined as:

∑
= {(¬ai ∨ ¬Pai

1 − αi) / (ai, Pai
, αi) ∈ ΠG}

6 Possibilistic Graph and Base: Experimental Studies

Let us illustrate the process of building a simple possibilistic graph and a possi-
bilistic knowledge base. We apply the procedure to build a graph of facts related
to the entity vase, and relations between this entity and other entities from the
vase’s environment.
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Application of Algorithm1 to the generated WpKG allows us to extract enti-
ties related to the entity of interest, vase. The Neo4j snapshot of WpKG with
vase and relations to ‘relevant’ entities is shown in Fig. 3(a). The version pro-
cessed by the algorithm is shown in Fig. 3(b). It contains – marked as dashed
lines – the pairs flower-vase, plant-vase, and table-vase that could result in differ-
ent graphs depending on the element of randomness embedded in the procedure
randomize createGroups(), Algorithm 2.

The WpKG with occurrences assigned to connections allows us to determine
conditional degrees. We have simplified our graph, i.e, combined all inward con-
nections to a node into a single one, as shown in Fig. 3(c). This graph is further
processed – the occurrence numbers are used to determine possibility values.
Based on the graph in Fig. 3(c), we build conditional possibility degrees. All of
them are presented in Tables 3, 4, and 5.

(a) WpKG (b) proto-possibilistic graph (c) possibilistic graph

Fig. 3. A fragment of WpKG and a possibilistic graph constructed based on it.

Table 3. Possibility degrees for Vase, Flower, Counter, and Plant.

(a) Π(Vase)

vase 1.

¬ vase 1.

(b) Π(Counter|Vase)

Counter|Vase vase ¬ vase

counter 1. 1.

¬ counter 1. 1.

(c) Π(Flower|Vase)

Flower|Vase vase ¬ vase

flower 1. 1.

¬ flower 1. 1.

(d) Π(Plant|Vase)

Plant|Vase vase ¬ vase

plant 1. 1.

¬ plant 1. 1.
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Table 4. Possibility degrees for Window – Π(Window|Vase, Flower)

Window|Vase, Flower vase, ¬flower ¬vase, flower Elsewhere

window 1 .545 1.

¬window 1. 1. 1.

Table 5. Possibility degrees for Table –Π(Table|Window, Vase, Flower, Counter)

Shelf|Window,
Vase, Flower,
Counter

window,
¬vase,
¬ flower,
¬counter

¬window,
vase,
¬flower,
¬counter

¬window,
¬vase,
flower,
¬counter

¬window,
¬vase,
¬ flower,
counter

Elsewhere

table .017 1. .347 .017 1.

¬table 1. 1. 1. 1. 1.

The last step of our case study is dedicated to the construction of a possi-
bilistic knowledge base, Sect. 5.2. As a result, we obtain:

∑
= { (¬window ∨ vase ∨ ¬flower, .455),

(¬table ∨ ¬window ∨ vase ∨ flower ∨ counter, .983),
(¬table ∨ window ∨ ¬vase ∨ flower ∨ counter, .653),
(¬table ∨ window ∨ vase ∨ flower ∨ ¬counter, .983) }.

7 Conclusion

The paper focuses on the automatic construction of a knowledge graph – called
World-perceiving Knowledge Graph (WpKG) – that contains results of the anal-
ysis of multiple images. Further, the generated WpKG is processed and multiple
possibilistic graphs can be constructed based on it.

It is shown that using deep learning models, we can extract common-sense
situational information about objects present in visual data. The trained neural
networks may already know these relations implicitly, but extracting this knowl-
edge in the form of a knowledge graph provides the ability to have this infor-
mation explainable and explicit. The strength of the overall procedure depends
on the capabilities of the applied learning model as well as the data it has been
trained on. By improving the models themselves, the overall procedure can be
improved.

Constructed WpKGs are contextualized by images used as an input to the
presented process. A different graph will be obtained when images representing
a specific geographical location are used, while a different graph will be built
based on images illustrated a specific historical event. Also, multiple different
possibilistic graphs can be created to reason about the correctness of contextual
utilization of specific items and relations between them.
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Given the adaptability of WpKG to new scenarios, context-aware and even
time-variant knowledge graphs can be constructed. For example, processing car
images from a specific country will lead to the construction of WpKG repre-
senting a very specific information related to cars’ details and their contextual
settings. Another important aspect that can be considered is time. It can affect
both occurrences of relations and meanings of words linked to the nodes.

As future work, better models can be used to improve the overall construction
process, biases can be reduced by implementing procedures to diversify the input
images, and prediction of unknown objects can be added.
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