l‘)

Check for
updates

Evaluation of Uncertainty Quantification
in Deep Learning

Niclas Stahl®) @, Goran Falkman®, Alexander Karlsson
and Gunnar Mathiason

9

School of Informatics, University of Skévde, Hogskoleviagen 28, 54145 Skovde, Sweden
niclas.stahl@his.se

Abstract. Artificial intelligence (AI) is nowadays included into an
increasing number of critical systems. Inclusion of Al in such systems
may, however, pose a risk, since it is, still, infeasible to build AI systems
that know how to function well in situations that differ greatly from what
the AI has seen before. Therefore, it is crucial that future Al systems
have the ability to not only function well in known domains, but also
understand and show when they are uncertain when facing something
unknown. In this paper, we evaluate four different methods that have
been proposed to correctly quantifying uncertainty when the AI model
is faced with new samples. We investigate the behaviour of these models
when they are applied to samples far from what these models have seen
before, and if they correctly attribute those samples with high uncer-
tainty. We also examine if incorrectly classified samples are attributed
with an higher uncertainty than correctly classified samples. The major
finding from this simple experiment is, surprisingly, that the evaluated
methods capture the uncertainty differently and the correlation between
the quantified uncertainty of the models is low. This inconsistency is
something that needs to be further understood and solved before Al can
be used in critical applications in a trustworthy and safe manner.

1 Introduction

Much of the great progress of Al in the last years is due to the development
of deep learning (DL) [14]. However, one big problem with DL methods is that
they are considered to be “black box” methods, which are difficult to interpret
and understand. This becomes problematic when DL algorithms are taking more
and more critical decisions, impacting the daily life of people and no explanation
is given for why a certain decision is taken. There are some researchers, for
example Samek et al. [21] and Montavon et al. [18], that currently address this
problem and try to make DL models interpretable. This problem is far from
solved and it is an important research direction since it is likely that many
critical decisions taken by AI based algorithms in the near future will be in
consensus with a human [8]. Examples of such decisions would, for example, be
those of an autonomous car with a human driver and those of a doctor using an

© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 556-568, 2020.
https://doi.org/10.1007/978-3-030-50146-4_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_41&domain=pdf
http://orcid.org/0000-0003-2128-7090
http://orcid.org/0000-0001-8884-2154
http://orcid.org/0000-0003-2973-3112
http://orcid.org/0000-0001-7106-0025
https://doi.org/10.1007/978-3-030-50146-4_41

Evaluation of Uncertainty Quantification in Deep Learning 557

image to determine if a patient has skin cancer or not [2,4,22]. In these cases,
the AT will support and enhance the human decision maker. Here, the human
can act in contradiction to what is suggested by the AI, and, thus, prevent
erroneous decisions taken by the Al In both of the named cases, such erroneous
decisions could potentially cause a lot of human suffering and even fatalities.
However, there are problems where the AI cannot be supervised by a human
and, consequently, the AT itself needs to be able to determine when there is a
risk of an incorrect decision.

While wrongly taken decisions can be decreased by better models and more
and better training data, it is infeasible to cover all possible situations for all
but the most trivial problems. Consequently, a system built with an ML model
will always encounter situations that differ from all the previous samples used
for training. In order to be trustworthy, in this case, it is crucial that the model
shows that it encounters an unknown situation where it is forced to extrapo-
late its knowledge and emphasises that its outcome, therefore, is uncertain [12].
However, as pointed out by Gal and Ghahramani [3], Richter and Roy [20] and
Lakshminarayanan et al. [13], it is a challenging and still open problem to quan-
tify the uncertainty of deep learning models. Hendrycks and Gimpel [5] do, for
example, show that deep learning models that use the softmax activation func-
tion in the last layer are bad at estimating prediction uncertainty and often
produce overconfident predictions. It is not difficult to imagine that such over-
confident predictions can lead to catastrophic outcomes in some of the previously
mentioned cases, such as in the medical domain. Therefore, it is an important
research direction to find methods that allow for the quantification of uncertainty
in the provided predictions. In this paper, we do not propose such an approach,
but do instead evaluate existing models that have been proposed to solve this
problem. This is done in order to further understand their limitations and to
highlight the differences that arise when different models are selected.

When quantifying the uncertainty, it is essential that methods consider both
the epistemic uncertainty (the uncertainty that arises due to lack of observed
data) and the aleatory uncertainty (the uncertainty that arises due to underlying
random variations within the collected data) [7]. But, it is also important to
differentiate between these two causes of uncertainty. In the latter case, there is
an observed variation among the samples and, hence, the uncertainty can be well
quantified and all risks can be assessed. It is therefore possible to take a well-
informed decision, knowing the uncertainty. This is not the case for epistemic
uncertainty, where the uncertainty arises due to lack of data and, hence, the
model is forced to extrapolate its knowledge. When the model extrapolates it
takes an uniformed decision, which can be far from optimal.

To further highlight this problem, this paper examine how well current meth-
ods for the quantification of uncertainty manage to show the uncertainty that
arises from out of the distribution samples. Two experiments are therefore con-
ducted. In the first experiment, deep learning models that has been proposed to
support quantification of predictive uncertainty and that can be used for clas-
sification of data are evaluated. These models are: a deep neural network with

558 N. Stahl et al.

a softmaz output layer, an ensemble of deep neural networks [13] and a deep
Bayesian neural network [3], where two separate ways to quantify the uncer-
tainty are used for the softmax model. The first treats the output as a probabil-
ity while the second method considers the gradient information. The result from
these models are compared to another deep learning approach for the detection
of out of distribution samples, namely an autoencoder. Of these methods, there
are two, the Bayesian neural network and the ensemble of neural networks, that
are able to disentangle the epistemic and the aleatory uncertainties. A second
experiment is therefore conducted, with these two methods, in order to see if the
results can be further improved when the uncertainty is split into an aleatoric
and an epistemic part.

With these experiments, we show that there is a clear difference in how the
investigated methods quantify the uncertainty and what samples they consid-
ered to be uncertain. The correlations between the quantified uncertainty of the
different models are also very low, showing that there is an inconsistency in the
uncertainty quantification. Thus, there is a need for further study of uncertainty
in deep learning methods before these can be applied in real world applications
in an absolutely safe way.

2 Method

The different models and their setups are first described in this section. Since
the targets of the different models differ, there is a need to quantify the uncer-
tainty of these models differently. The second part of this section will therefore
describe different ways to quantify the uncertainty. In this section, the motiva-
tion behind the selection of how to quantify the uncertainty in the experiments
is also given. The last part of this section then describes the experimental setup
for all experiments.

2.1 Models

Different deep learning models for classification and uncertainty quantification
are used in the conducted experiments. They are all described below, together
with the corresponding architecture and parameter settings that are used in the
experiments. How the uncertainty is quantified is described in Sect. 2.2-2.3.

Softmax Deep Neural Network. The softmax function is often used in neural
networks to fuzzily assign a sample to a given class [1]. Thus, the softmax will
give the proportional belief of how much a sample belongs to a given class. This
is often used as an approximation of the probability for how likely it is that a
sample belongs to a given class. The softmax function is given by:

(1)

Evaluation of Uncertainty Quantification in Deep Learning 559

where z is the given output class, which belongs to the set of all possible out-
comes, Z. X is the input sample and f¥(z) is an arbitrary function, parame-
terised by w, giving the support that x belongs to class z. Equation (1) allows
us to find the probability distribution of all possible outcome classes. This dis-
tribution can be used to quantify the uncertainty, as described in Sect. 2.2.

Recent studies, for example by Oberdiek et al. [19] and Vasudevan et al.
[26], suggest that the uncertainty of the model is reflected by the stability of the
model, where the stability can be measured by the gradients of the parameters.
Hence, the stability of the model is given by:

Vw»c =Vl (szfw(‘rz))a (2)

where L is the loss of the model given by an arbitrary loss function [, ¢; is the
predicted class for the i:th sample and f“(z;) is the prediction from the model
that is parameterised by w. We follow the same experimental setup as Oberdiek
et al. [19] and use the negative log-likelihood for the predicted class as the loss
function. In this case, Eq.2 can be written as

VoL =V, —log(p(y; = Jilwi,w)) - (3)

Furthermore, we use a deep neural network as the underlying model, that is,
p(y; = 9|z, w) in Eq. 3 is given by Eq. 1.

Bayesian Neural Network. We consider Bayesian neural networks to be neu-
ral networks that have a posterior distribution of weights instead of a single
point estimate. The same definition is, for example, used by Gal and Ghahra-
mani [3]. Hence, the training of a Bayesian neural network consists of finding a
good estimate to the probability distribution p(w|X,Y’), where w is the network
weights and X is the set of inputs and Y is the set of outputs. It is however,
unfeasible to find the exact solution to p(w|X,Y) and, hence, an estimate must
be used instead. In this paper we approximate p(w|X,Y’) with a network that
uses dropout [25] during both the training and the testing phase. This is the
same approach as Gal and Ghahramani [3]. With an estimated posterior distri-
bution, p(w|X,Y"), multiple network weights can be sampled. Hence, many likely
network weights can be used for predictions, which would allow for a smaller risk
of overfitting and a greater diversity in the output. The final classification of a
sample x of a Bayesian neural network is given by:

1 M
=0

where M is the total number of samples, f is a neural network parameterized by
w; that is the i:th sample from the posterior distribution, {2, of network weights.

Ensemble of Neural Networks. Ensemble methods are learning algorithms
that consist of a set of models. Each model makes its own prediction indepen-
dently of the other models in the ensemble. The final prediction is then derived

560 N. Stahl et al.

from the composition of all models in the ensemble. We use an ensemble of neural
networks, such as the one presented by Magsood et al. [17]. Such ensembles have
been shown to be good at quantifying the predictive uncertainty, as shown by
Lakshminarayanan et al. [13]. The classification of a sample x by the ensemble
is the average prediction over all classifiers. Hence, the prediction, y, is given by:

1 M
p(ylﬂf,UJ(],-..,UJM) = Mz.fw7(x)a (5)
=0

where M is the number of networks in the ensemble and w; is the parametrisa-
tion of the i:th classifier, f, in the ensemble. Note the similarity with the deep
Bayesian neural network as given in Eq. 4.

Autoencoder. An autoencoder is a neural network that has the same number of
input neurons as output neurons. This network consists of two parts: an encoder
that compresses the input to a compressed representation of the sample, with
an as low loss of information as possible, and a decoding part that decompresses
the compressed representation to the original representation [6]. These parts are
jointly trained and, hence, the encoder is forced to learn an encoding scheme
that the decoder can decompress. Therefore, these two models will learn how
to collaborate, but only on data that is similar to the data they see during
training. This means that the encoder would not be able to encode novel data
in such a way that it can be reconstructed by the decoder. This can be exploited
to detect how much a new sample diverges from an initial distribution. Thus,
the uncertainty of a prediction in a predictive model may be quantified by the
reconstruction error of a sample given to the autoencoder. This is, for example,
done by Leibig et al. [16], and the same approach will be used in our experiments.

2.2 Uncertainty Quantification

There are multiple ways that uncertainty can be quantified. Kendall and Gal [9],
for example, quantifies the uncertainty as the variance in the predictions. We
follow the same approach as Lakshminarayanan et al. [13] and use the Shannon
entropy [23]:

H(y,X)=—Zp(y=ilX)logp(y=i\X) (6)

as a measure of the uncertainty in the predictions of the models specified in
Sect. 2.1. This design choice is mainly selected to enable the comparison between
the uncertainties of the softmax network and the other models, since the softmax
network does not have any variation in its predictions.

It is, however, not possible to use this uncertainty metric for the experiments
that consider the gradient information. In this case, we use the approach sug-
gested by Oberdiek et al. [19], namely to use the Euclidean norm of the gradients.
The quantified uncertainty of a prediction is then given by ||V, L||2, where V,,L
is described in Eq. 3.

Evaluation of Uncertainty Quantification in Deep Learning 561

It is also impossible to measure the entropy of predictions in the autoen-
coder (described in Sect. 2.1) since the autoencoder does not provide any predic-
tions. Instead, we quantify the uncertainty by measuring the Euclidean distance
between the original sample and the encoded and decoded sample:

here z; is the original value of the i:th feature of x and z; is the reconstructed
value for the same feature. Hence, Eq.7 measures how well the autoencoder
manages to encode the vector and then decode the sample vector X of length n.

2.3 Heteroscedastic Aleatoric Uncertainty

The aleatoric uncertainty can be divided into two sub-categories: heteroscedastic
and homoscedastic uncertainty. Heteroscedastic uncertainty assumes that the
aleatoric uncertainty is data dependent and, thus, that the uncertainty varies
over different inputs. Hence, models that can capture the heteroscedastic uncer-
tainty are useful when the uncertainty is greater in some areas of the input space.
Such is the case in the MNIST dataset [15], where some of the digits are badly
written and the output class is uncertain.

The heteroscedastic uncertainty in the models will be treated in the same
way by Kendall and Gal [9] and furthermore described as in Kendall et al. [10].
Here, the expected variance of the noise in the output is modelled by the noise
parameter o. This parameter will be dependent on the input and the models will
learn how to predict it, given some particular input. In the presented multiclass
setting, the loss with included heteroscedastic uncertainty can be approximated
with:

£leo,2,9) = 5 Leclsoftmaa(£(2)), y,) + log(o), ®)

where L., is the categorical cross entropy loss and f“ is the model, parameterized
by w and predicting logits to the softmax function. The predicted logits are
assumed to be drawn from a Gaussian distribution with a variance of o, where o
is dependent on the input x. This loss function is used in the second part of the
experiments, where it is examined how well the Bayesian neural network and the
ensemble of neural networks can capture and separate epistemic and aleatoric
uncertainty.

2.4 Experiment Setup

All previously described models are trained on the MNIST dataset, which is a
dataset that contains 70,000 samples of hand-written digits [15]. The predefined
and commonly used training and test split, which uses 10,000 samples in the
test set, is used in our experiments as well. A randomly selected validation set,
consisting of 10% of the training set, is also used to prevent overfitting of the

562 N. Stahl et al.

models when training. All models are then evaluated on the MNIST test set
and the uncertainty of their predictions is quantified and split a set of correctly
classified samples and a set of incorrectly classified samples. The main hypothesis
is that the uncertainty would be much greater in the set of incorrectly classified
samples. These models are then applied to the manually cleaned notMNIST!
set that consist of 19,000 characters, set in different fonts. The objective of
the models is to detect that these samples are very different from the original
training data and attribute them with a high uncertainty. Since the autoencoder
is not used to perform any classification, we decided to use a feed forward neural
network that uses the latent encoding to predict the class of the output.

Parameter Settings. Both the Bayesian neural network and the softmax deep
neural network have two layers with 800 neurons each. This is the same network
architecture used by Simard et al. [24]. The inference in the Bayesian neural
network is conducted in the same way as described by Gal and Ghahramani
[3], with 60% dropout rate. The networks in the ensemble are each trained on
bootstrap samples, which have 60% less samples than the original dataset. Since
the amount of data is reduced, we also reduce the number of neurons in each
layer to 40 % of the size of the Bayesian neural network. Hence, the ensemble
will consist of 50 networks where each network has two layers of 320 neurons.

The autoencoder used in the experiment has 7 layers with the following num-
ber of neurons: 1000, 250, 50, 10, 50, 250, 1000. This is the same setup as used by
Wang et al. [27]. All models are trained using the ADAM optimisation algorithm
[11] with the commonly used learning rate of 0.001, to minimise the binary cross
entropy error between the model predictions and the targeted classes.

3 Experimental Results

All presented deep learning methods are trained on the MNIST dataset and then
evaluated on a smaller test set from MNIST as well as the notMNIST dataset.
Some examples of samples from these datasets are shown in Fig. 1. The accuracy
of all models are approximately the same and in line with what is expected from
a two layered neural network model and the MNIST dataset [24]. The Bayesian
neural network is, for example, the best performing model with an error rate of
1.3%, while softmax is the worst with an error rate of 1.6%.

Unlike the accuracy, there is a great difference in how the uncertainty of
the models are quantified. This can be seen in Fig. 2, where the distributions of
the quantified uncertainties are shown. The distributions over the uncertainty is
split into three different distributions: the distribution over the uncertainty for
correctly classified samples, the distribution over the uncertainty for incorrectly
classified samples and the distribution over the uncertainty for samples from the
notMNIST dataset. If a model acts as desirable, it should separate these three
classes and thus, that the distributions in Fig. 2 are disjoint. This optimal case

! Available at: http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html.

http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html

Evaluation of Uncertainty Quantification in Deep Learning 563

corresponds to that the model correctly detects digits that are easy to classify
and attribute them with a low uncertainty. Furthermore, the model detects odd
looking digits and correctly attribute them with medium uncertainty, since the
classification may be erroneous. Also, when a sample that is clearly not a number,
the model should attribute it to an even higher uncertainty, since the prediction is
extrapolated far from what the model knows. However, this implies that correct
and possibly incorrect predictions can be identified by the quantified uncertainty
and real digits can, thus, be filtered from non digits. This is not the case, the
distributions do indeed overlap, as can be seen by studying the 95% quantiles
for the distributions in Fig. 2.

The consensus of the uncertainties of the models are measured by their
Pearson correlation (see Fig.4). The measurements show a strong correlation
between gradient information and the softmax predictions, but no strong corre-
lation besides that. The quantified uncertainty of the softmax neural network is
even negatively correlated to the autoencoder.

The uncertainty is furthermore divided into an epistemic and an aleatoric
part, as shown in Fig.3. The expected result would be that the notMNIST
samples would have much greater epistemic uncertainty than all other samples,
while the misclassified MNIST samples would have a greater aleatoric uncer-
tainty. However, this can only partially be observed, since both the notMNIST
and the misclassified MNIST samples show a high epistemic uncertainty.

Bayesian neural network) Softmax networ!(
BEEPEE PR WZIZRIAEB 6) 7

ERIFBBIDCTD EEEEEBBBBES
AAG 7 IEEHAAA AAAFIYT 7 BRI

Ensemble of neural networks)Gradient Information
[z x]l#] 1+ «[8] 7 [W] % Slelflz)dllz18 &2 Lz

AADSADTDJSDD EEEEEEEEELEE
XX/X//B/BTX CCJCBGLIFDFC

Autoencoder

cla[dy 3 >[dd 2 s
(FIBABdIBA..ief F #
BBEEDEEE0ODD

Fig. 1. Examples of the behaviour of the evaluated methods tested on the MNIST
and the notMNIST datasets. The first row, for the given method, consists of the eleven
most uncertain predictions from the MNIST dataset. Incorrectly classified examples are
marked red. The second and the third row show the eleven most certain and uncertain
examples from the notMNIST dataset, respectively. (Color figure online)

4 Discussion

The results show that all the evaluated methods quantify the uncertainty differ-
ently. The results, furthermore, support the previous observation by Hendrycks

564 N. Stahl et al.

Bayesian NN Ensemble of NNs Softmax NN

. [
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.00 025 050 0.75 1.00 1.25 1.50 1.75
Entropy Entropy Entropy

Gradients Autoencoder

0.5

0.0

0 5 10 15 20 0 10 20 30 40
Eucleadian norm Eucleadian distance

Fig. 2. The distribution of the quantified uncertainty for the different methods. In
green is the distribution of correctly classified digits in the MNIST dataset. In blue
is the distribution of incorrectly classified digits and in red is the distribution of the
quantified uncertainty for samples from the notMNIST dataset. The 95% quantile of
the quantified uncertainty of all samples from the MNIST dataset is marked with the
dashed line to the left. The right dashed line is the 95% quantile of the quantified
uncertainty when only the misclassified samples are considered. (Color figure online)

Epistemic uncertainty Aleatoric uncertainty
Ensemble of NNs Ensemble of NNs
o o " entrony % = o T B o
Epistemic uncertainty Aleatoric uncertainty

Bayesian NN

Bayesian NN

10 15
Entropy

Fig. 3. The distribution of the quantified uncertainty for the different methods, split
up into aleatoric and epistemic uncertainty for the Bayesian neural network and the
ensemble of neural networks. In green is the distribution of correctly classified digits in
the MNIST dataset. In blue, the incorrectly classified digits in MNIST and, in red is
the distribution of the quantified uncertainty for samples from the notMNIST dataset.
The 95% quantile of the quantified uncertainty of all samples from the MNIST dataset
is marked with the dashed line to the left. The right dashed line is the 95% quantile of
the quantified uncertainty when only the misclassified samples are considered. (Color
figure online)

and Gimpel [5] that deep learning models that only use the softmax activation
function to quantify the uncertainty are overconfident when faced with out of
the distribution samples. The same holds true when the gradient information of
the softmax neural network is used to quantify the uncertainty.

Evaluation of Uncertainty Quantification in Deep Learning 565

- Ensemble of NNs

=z
=z
c
o
0
o
>
©
@

- Softmax NN
Gradients
- Autoencoder

®
W
i

Bayesian NN
Ensemble of NNs -
Softmax NN -
Gradients -

Autoencoder -

Fig. 4. The Pearson correlation between the quantified uncertainty of all tested meth-
ods. Many of the methods are very weakly correlated and the softmax neural network
is even negatively correlated to the uncertainty of the autoencoder.

When the results in Fig. 1 were furthered studied, we identified several inter-
esting behaviours of the models. The models that are used for classification
extract knowledge about the shape of digits and apply it to the notMNIST
data. Both the Bayesian neural network and the ensemble of neural networks
do, for example, pick up the curvy shape of a “B” and interpret this as the digit
“3” and, hence, the models are certain of the output in these cases. The round
shape and the empty middle of the letter “D” being classified as the digit “0” is
another example of the extrapolation of features into the new domain. The two
methods that are based on a softmax neural network do an even cruder extrap-
olation and classify everything with a straight horizontal line at a certain height
as a “7” (all the first eight samples shown in Fig. 1 for the softmax network and
the gradient information is classified as the digit “7”).

No model achieved the optimal goal of quantifying the uncertainty in such
a way that it separates the three different cases of input: digits that could be
classified correctly, digits that could not be classified correctly and characters
from the notMNIST set. However, the autoencoder correctly uses the uncertainty
quantification to separate all notMNIST samples from the MNIST samples, while
the Bayesian neural network and the ensemble of neural networks can correctly
separate classified MNIST samples from the other two cases. It can, consequently,
be efficient to use an autoencoder as a first filtering step to remove all out of the
distribution samples. Another method, such as a Bayesian neural network, can
then be used to perform safer classifications, where the uncertainty quantification
can be used to identify possibly misclassified samples. There is no downside of
such a combination of models, besides the slightly higher computational cost.
It is, therefore, an interesting future research question how different models can
be combined in order to handle and distinguish between the different cases that
may cause these models to be uncertain.

A surprising observation is that the quantified uncertainties of most of the
models are weakly correlated. All three models that are used for prediction
are, for example, weakly correlated to the autoencoder, which is considered to

566 N. Stahl et al.

capture the initial distribution well. Since we only measure the linear correlation
it is difficult to draw any major conclusions from this, but it still gives us some
insights into the behaviour of the models. We, therefore, suggest that these
methods do not capture the uncertainty that arises due to the extrapolation, but
instead finds fuzzy decision boundaries between the different classes and, hence,
are able to spot odd looking samples between the different classes. However, this
implies that there is no guarantee that predictions on out of the distribution
samples will be considered uncertain. This poses a potential risk when using
these kind of models in critical real world applications.

The use of an autoencoder is a good way to approximate the distance between
a new sample and its closest neighbour in the training set. This is a promising
result since the autoencoder is more efficient, when considering the computa-
tional complexity, compared to finding the closest neighbour in the training set
and calculating the Euclidean distance. The computational complexity of finding
the closest neighbour in the training set grows linearly in terms of the cardinality
of the training dataset, while the computational complexity of the autoencoder
is constant. Hence, it appears that the autoencoder correctly discovers when a
model is faced with a sample that is far from what the model has seen before and,
hence, forces the model to extrapolate. Thus, an autoencoder could potentially
be used to detect when a sample would force a predictive model to extrapolate,
if trained with the same data.

Splitting up the uncertainty into an epistemic and an aleatoric part and then
use the epistemic uncertainty to detect outliers is not a successful approach in
the performed experiments. While we expect the epistemic uncertainty to be
much higher for such samples, it is not the case, since both the badly written
MNIST digits and the notMNIST samples are attributed with a high epistemic
uncertainty. However, the notMNIST samples distinguish themselves from the
rest by having a very low aleatoric uncertainty. Hence, the outlier samples dis-
tinguish themselves from the rest by having a low aleatoric uncertainty, rather
than having a high epistemic uncertainty. The combined epistemic and aleatoric
uncertainty can therefore be used to detect the not MNIST samples. The reason
why outlier samples are attributed with a low uncertainty can be seen in Eq. 8.
Since the models are good at predicting the outcome, the expected cross entropy
loss would be rather small. Hence, it is more beneficial for the model to minimise
the log(o) term for new unknown samples than to expect a large cross entropy
error.

5 Conclusion and Summary

In this paper, several models for the quantification of uncertainty are evaluated.
Even though the experimental setup is rather basic, it is shown that there is
no consensus in the uncertainty of the models and that they capture different
dimensions of the uncertainty. This problem is likely to persist, and may even be
worse, when more advanced models are used or when more complicated prob-
lems are tackled. It is shown that the uncertainty quantification of some models

Evaluation of Uncertainty Quantification in Deep Learning 567

(the Bayesian neural network and the ensemble of neural networks) can be used
to distinguish between samples that are easy to classify and those that are dif-
ficult. Hence, these models quantify the uncertainties around the hyperplanes
separating the different classes. The autoencoder, on the other hand, is good
at quantifying the uncertainty that arises due to the extrapolation of points far
from the training distribution. The performed experiments show that it can be
beneficial to split up the uncertainty into an epistemic and an aleatoric part.
However, the notMNIST samples did not differentiate themselves from the rest
by having much higher epistemic uncertainty than the other samples, as was
expected. Instead, the not MNIST samples stood out by having the combination
of a high epistemic uncertainty and a low aleatoric uncertainty. However, none
of the models managed to separate the three different cases of samples that
were studied, namely correctly classified samples, incorrectly classified samples
and samples that are far from the training distribution. On the others hand, as
described above, some methods succeeded partially, and managed to separate
one of the cases from the other. It can, therefore, be beneficial to use several
models in real world applications to capture all uncertainties that may arise, in
order to build safer Al systems.

References

1. Bridle, J.S.: Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In: Touretzky, D.S.
(ed.) Advances in Neural Information Processing Systems 2, pp. 211-217. Morgan-
Kaufmann (1990)

2. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639), 115 (2017)

3. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Pro-
ceedings of The 33rd International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 48, pp. 1050-1059. PMLR, New York (2016)

4. Gerdes, J.C., Thornton, S.M.: Implementable ethics for autonomous vehicles. In:
Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 87—
102. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45854-9_5

5. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

6. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and
Helmholtz free energy. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances
in Neural Information Processing Systems 6, pp. 3—10. Morgan-Kaufmann (1994)

7. Hillermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: a tutorial introduction. arXiv preprint arXiv:1910.09457 (2019)

8. Jarrahi, M.H.: Artificial intelligence and the future of work: human-AI symbiosis
in organizational decision making. Bus. Horiz. 61(4), 577-586 (2018)

9. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning
for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information
Processing Systems 30, pp. 5574-5584. Curran Associates, Inc. (2017)

https://doi.org/10.1007/978-3-662-45854-9_5
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1910.09457

568

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. Stahl et al.

Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 7482-7491 (2018)

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using
calibrated regression. arXiv preprint arXiv:1807.00263 (2018)

Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Guyon, 1., et al. (eds.) Advances
in Neural Information Processing Systems 30, pp. 6402-6413. Curran Associates,
Inc. (2017)

LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436—444
(2015)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278-2324 (1998)

Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty
information from deep neural networks for disease detection. Sci. Rep.-UK 7(1),
17816 (2017)

Magsood, 1., Khan, M.R., Abraham, A.: An ensemble of neural networks for
weather forecasting. Neural Comput. Appl. 13(2), 112-122 (2004). https://doi.
org/10.1007/s00521-004-0413-4

Montavon, G., Samek, W., Miiller, K.R.: Methods for interpreting and understand-
ing deep neural networks. Digit. Sig. Process. 73, 1-15 (2018)

Oberdiek, P., Rottmann, M., Gottschalk, H.: Classification uncertainty of deep
neural networks based on gradient information. In: Pancioni, L., Schwenker, F.,
Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol. 11081, pp. 113-125. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99978-4_9

Richter, C., Roy, N.: Safe visual navigation via deep learning and novelty detec-
tion. In: Robotics: Science and Systems Conference. Robotics: Science and Systems
Foundation, July 2017

Samek, W., Wiegand, T., Miiller, K.R.: Explainable artificial intelligence: under-
standing, visualizing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296 (2017)

Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295 (2016)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379-423 (1948)

Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural
networks applied to visual document analysis. In: Proceedings of the Seventh Inter-
national Conference on Document Analysis and Recognition, pp. 958-963 (2003)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Vasudevan, V.T., Sethy, A., Ghias, A.R.: Towards better confidence estimation for
neural models. In: ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 7335-7339. IEEE (2019)
Wang, Y., Yao, H., Zhao, S.: Dropout: a simple way to prevent neural networks
from overfitting. Neurocomputing 184, 232-242 (2016)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1807.00263
https://doi.org/10.1007/s00521-004-0413-4
https://doi.org/10.1007/s00521-004-0413-4
https://doi.org/10.1007/978-3-319-99978-4_9
http://arxiv.org/abs/1708.08296
http://arxiv.org/abs/1610.03295

	Evaluation of Uncertainty Quantification in Deep Learning
	1 Introduction
	2 Method
	2.1 Models
	2.2 Uncertainty Quantification
	2.3 Heteroscedastic Aleatoric Uncertainty
	2.4 Experiment Setup

	3 Experimental Results
	4 Discussion
	5 Conclusion and Summary
	References

