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Abstract. Neural networks are frequently applied to medical data. We describe
how complex and imbalanced data can be modelled with simple but accurate
neural networks that are transparent to the user. In the case of a data set on
cervical cancer with 753 observations excluding, missing values, and 32
covariates, with a prevalence of 73 cases (9.69%), we explain how model
selection can be applied to the Multi-Layer Perceptron (MLP) by deriving a
representation using a General Additive Neural Network.
The model achieves an AUROC of 0.621 CI [0.519,0.721] for predicting

positive diagnosis with Schiller’s test. This is comparable with the performance
obtained by a deep learning network with an AUROC of 0.667 [1]. Instead of
using all covariates, the Partial Response Network (PRN) involves just 2 vari-
ables, namely the number of years on Hormonal Contraceptives and the number
of years using IUD, in a fully explained model. This is consistent with an
additive non-linear statistical approach, the Sparse Additive Model [2] which
estimates non-linear components in a logistic regression classifier using the
backfitting algorithm applied to an ANOVA functional expansion.
This paper shows how the PRN, applied to a challenging classification task,

can provide insights into the influential variables, in this case correlated with
incidence of cervical cancer, so reducing the number of unnecessary variables to
be collected for screening. It does so by exploiting the efficiency of sparse
statistical models to select features from an ANOVA decomposition of the MLP,
in the process deriving a fully interpretable model.

Keywords: Explainable machine learning � FATE � KDD � Medical decision
support � Cervical cancer

1 Introduction

This paper is about explainable neural networks, illustrated by an application of a
challenging data set on cervical cancer screening that is available in the UCI repository
[3]. The purpose of the paper is to describe a case study of the interpretation of a neural
network by exploiting the same ANOVA decomposition that has been used in statistics
to infer sparse non-linear functions for probabilistic classifiers [2].

We will show how a shallow network, the Multi-Layer Perceptron (MLP) can be
fully explained by formulating it as a General Additive Neural Network (GANN). This
methodology has a long history [4]. However, to our knowledge there is no method to
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derive the GANN from data, rather a model structure needs to be assumed or
hypothesized from experimental data analysis. In this paper we use a mechanistic
model to construct the GANN and show that, for tabular data i.e. high-level features
that are typical of applications to medical decision support, a transparent and parsi-
monious model can be obtained, whose predictive performance comparable i.e. well
within the confidence interval for the AUROC, with that obtained an alternative,
opaque, deep learning neural network applied to the same data set [1].

Fairness, Accountability Transparency and Ethics (FATE) in AI [5] is emerging as
a priority research area that relates to the importance of human-centered as a key
enabler for practical application in risk-related domains such as clinical practice. Blind
spots and bias in models e.g. due to artifacts and spurious correlations hidden in
observational data, can undermine the generality of data driven models when they are
used to predict for real-world data and this may have legal implications [6].

There different approaches that may be taken to interpret neural networks, in
particular. These include derivation of rules to unravel the inner structure of deep
learning neural networks [7] and saliency methods [8] to determine the image elements
to which the network prediction is most sensitive.

An additional aspect of data modelling that is currently very much understudied is
the assessment of the quality of the data. Generative Adversarial Networks have been
used to quantify sample quality [9].

Arguably the most generic approach machine explanation is the attribution of
feature influence with additive models. A unified framework for this class of models
has been articulated [10]. This includes as a special case the approach of Local
Interpretable Model Agnostic Explanations (LIME) [11].

However, it is acknowledged in [10] that General Additive Models (GAMs) are the
most interpretable because the model is itself the interpretation, and this applies to data
at a global level, not just locally.

Recently there has been a resurgence of interest in GAMs [11, 12] in particular
through implementations as GANNs. These models sit firmly at the interface between
computational intelligence and traditional statistics, since they permit rigorous com-
putation of relevant statistical measures such as odds ratios for the influence of specific
effects [12].

A previously proposed framework for the construction of GANNs from MLPs will
be applied to carry out model selection and so derive the form of the GANN from a
trained MLP. This takes the form of a Partial Response Network (PRN) whose clas-
sification performance on multiple benchmarking data sets matches that of deep
learning but with much sparser and directly interpretable features [13].

This paper reports a specific case study of the application of PRN to demonstrate
how it can interpret the MLP as a GAM, providing complete transparency about the use
of the data by the model, without compromising model accuracy as represented by the
confidence interval of the AUROC. Our results are compared with those from a state-
of-the-art feature selection method for non-linear classification [2].

Moreover, the model selection process itself will generate insights about the
structure of the data, illustrating the value of this approach for knowledge discovery in
databases (KDD).
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2 Data Description

2.1 Data Collection

Cervical cancer is a significant cause of mortality among women both in developed and
developing countries world-wide [1]. It is unusual among cancers for being closely
associated with contracting the Human Papillomavirus (HPV) [14] which is strongly
influenced by sexual activity. This makes cervical cancer one of the most avoidable
cancers, through lifestyle factors and by vaccination.

Screening for possible incidence of the cancer is a public health priority, with
potential for low-cost screening to be effective. The data set used in this study was
acquired for this purpose.

The data were collected from women who attended the Hospital Universitario de
Caracas in Caracas [3]. Most of the patients belong to the lowest socioeconomic status,
which comprises the population at highest risk. They are all sexually active. Clinical
screening includes cytology, a colposcopic assessment with acetic acid and the Schiller
test (Lugol’s iodine solution). This is the most prevalent diagnostic index and is the
choice for the present study.

2.2 Data Pre-processing

The data comprise records from a random sample of patients presenting between 2012
and 2013 (n = 858) [1, 3]. There is a wide age range and a broad set of indicators of
sexual activity, several of which overlap in what they measure. Four target variables are
reported, including the binary outcome of Schiller’s test.

This data set is challenging, first because of severe class imbalance, which is typical
in many medical diagnostic applications. The number of positive outcomes in the initial
data sample is just 74 cases for Schiller’s test, 44 for a standard cytology test and 35 for
Hinselmann’s test.

Secondly, the data include a range of self-reported behavioural characteristics,
where noise levels may be significant. Third, some of the variables were problematic
for data analysis. The report of STD: cervical condylomatosis comprises all zero
values. STD: vaginal condylomatosis, pelvic inflammatory disease, genital herpes,
molluscum contagiosum, AIDS, HIV, Hepatitis B, syphilis and HPV are all populated
in <2.5% of all cases. For this reason, these variables were removed from the study as
they are unlikely to provide statistical significance in predictive modelling and their
low prevalence can cause numerical instabilities for model optimisation.

The number of pregnancies was deemed to be less informative about sexual
behaviour than the number of sexual partners, so this was also excluded.

In total 105 rows of data had 20 or more of the 32 covariate values missing. While
these values can be imputed, such a large proportion of covariates for individual
observations can bias the study, since missingness can be informative. For this reason,
these rows were removed from the data.

Among the selected variables, several pairs of covariates measure the same indi-
cator in binary form and as an ordinal count. This applies to variables Smokes,
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Hormonal Contraceptives, IUD and STDs. Consequently, the initial pool of covariates
in this study comprises 9 variables. They are:

• Number of sexual partners;
• Age of first sexual intercourse;
• Years since first sexual intercourse, derived by subtracting the previous covariate

from Age;
• Number of years smoking;
• Number of years taking Hormonal Contraceptives
• Number of years using IUDs;
• STD: condylomatosis;
• Number of STDs;
• Number of diagnosed STDs.

The dataset used in this study is a reduced cohort (n = 753) with marginal values
summarized in Table 1. The prevalence of missing data in the study sample is now
much reduced, especially as the number of pregnancies is not used. The maximum
proportion of missing is 4.1% for IUD (years).

Missing values were imputed with the sample median. The reason for this is that the
standardisation used in the following section maps the median value of every covariate
to zero, which has the effect of discarding that instance from the gradient descent
weight updates, so minimising the impact of unknown information in the training of the
MLP.

Table 1. Summary statistics of the sample population for Cervical Cancer screening. {}
indicates a binary variable. [] shows the range of the variable.

Variable Median [Min, Max] Missing values

Age 26 [13, 84] 0
Number of sexual partners 2 [1, 28] 14
First sexual intercourse 17 [10, 32] 6
Number of pregnancies 2 [0, 11] 47
Smokes 0 {0, 1} 10
Smokes (years) 0 [0, 37] 10
Smokes (packs/year) 0 [0, 37] 10
Hormonal Contraceptives 1 {0, 1} 13
Hormonal Contraceptives (years) 0.5 [0, 30] 13
IUD 0 {0, 1} 16
IUD (years) 0 [0, 19] 31
STDs 0 {0, 1} 0
STDs (number) 0 [0, 4] 0
STDs: condylomatosis 0 {0, 1} 0
STDs: Number of diagnosis 0 [0, 3] 0
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3 Partial Response Network Methodology

In binary classification, GAMs model the statistical link function appropriate for a
Bernoulli error distribution. This is the logit, hence the inverse of the familiar sigmoid
function. An appropriate objective function is the equally familiar log-likelihood cost.

In order to control for overfitting of the original MLP, we apply regularisation using
Automatic Relevance Determination [15]. This model evaluates the strength of weight
decay using a Bayesian estimator, which enables a different weight decay parameter to
be used for the fan-out weights linked to each input node. This results in soft model
selection, that is to say a modulation of the weight values that compresses towards zero
the weights linked to the less informative input variables.

Input variables are divided by the standard deviation and shifted by the median
value, so that the median is represented by zero. This is important because in a Taylor
expansion of the logit function about the median values, setting an individual variable to
the median causes all of the terms involving that variable in the Taylor expansion to
vanish. It is then possible to capture much of the most significant terms by systematically
setting all bar one covariate to zero, then all but each pair of covariates to zero, and so on.

The MLP response when all but a few variables are zero is called the Partial
Response and the GANN obtained by mapping the partial responses onto its weights,
forms the Partial Response Network (PRN) [13].

The functional form of the PRN is given by the well-known statistical decompo-
sition of multivariate effects into components with fewer variables, represented by the
ANOVA functional model [2] shown in Eq. (1):

logit P Cjxð Þð Þ � u 0ð Þþ
X

i
ui xið Þþ

X
i 6¼j

uij xi; xj
� �þO xi; xj; xi

� � ð1Þ

where the partial responses uk(•) are evaluated with all variables held fixed at zero
except for one or two indexed as follows:

u 0ð Þ ¼ logit P Cj0ð Þð Þ ð2Þ

ui xið Þ ¼ logit P Cj 0; ::; xi; ::; 0ð Þð Þð Þ � u 0ð Þ ð3Þ

uij xi; xj
� � ¼ logit P Cj 0; ::; xi; ::; xj; ::0

� �� �� �� ui xið Þ � uj xj
� �� u 0ð Þ ð4Þ

The derivation of the PRN proceeds as follows:

1. Train an MLP for binary classification;
2. Obtained the univariate and bivariate partial responses in Eqs. (2)–(4).
3. Apply the Lasso to the partial responses;
4. Construct a second MLP as a linear combination of the partial responses so as to

replicate the functionality of the Lasso. Each partial response, whether univariate or
bivariate, is represented by a modular structure comprising the same number of
hidden nodes as the original MLP. The modules are assembled into a single multi-
layer structure represented as a GANN, shown in Fig. 1.

5. Re-train the resulting multi-layer network.
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The mapping of the partial responses onto the GANN requires matching the
weights and bias terms as follows:

1. Univariate partial responses

vj ! vj � bk � bklð Þ ð5Þ

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð6Þ

2. Bivariate partial response

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð7Þ

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð8Þ

The main limitation of the model as currently used is that it is restricted to uni-
variate effects and bivariate interactions. However, in many medical applications, this is
likely to suffice. The method can be extended to higher order interactions but it will
generate a combinatorially large number of partial responses.

Fig. 1. Representation of the Partial Response Network as General Additive Neural Network
(GANN). The weight values are derived from a trained MLP and re-calibrated by further training
of the network as a GANN.
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4 Experimental Results

This section explains how model selection took place and describes the models
obtained with the PRN applied to the Cervical Cancer screening data set described in
Sect. 2. The variables used in the model are the subset of Table 1 that is listed in 2.2
and the target variable is the outcome of Schiller’s diagnostic test for cervical cancer.

Given the low prevalence of positive outcome, 73 out of the 753 cases retained
(prevalence = 9.69%) the results presented are all for out-of-sample data using 2-fold
cross validation. This choice of number of folds is motivated by the need to retain a
meaningful number of events in each fold.

Model selection consisted of an iterative process of removing the least frequently
occurring variable or set of variables at each stage in the process. Table 2 shows the
frequency of occurrence of each covariate in the partial responses selected by the PRN.
It also shows the average AUROC for 10 random starts.

The results in Table 1 can be compared with those from a sparse non-linear sta-
tistical classifier, the Sparse Additive Model (SAM). This is an additive non-linear
model that estimates component functions in an ANOVA decomposition using the

Table 2. Model selection with the PRN applied to the Cervical Cancer screening dataset. ui;uij:
variable present in a univariate/bivariate partial response.

# var AUC #Sex
partners

Age first
sexual
Inter

Smokes
(Yrs)

Hormonal
Contraceptives
(Yrs)

IUD
(Yr)

#
STD

STD:
condylomatosis

p = 9 0.585
ui 1 1 1 3 1 1 3
uij 1 6 13 12 7 7

p = 5 0.621
ui – – – 4 4 3 2
uij – – 16 10 8 5 9

p = 4 0.593
ui – – – 4 5 – –

uij – – 5 6 5 4 –

p = 3 0.635
ui – – – 9 10 5 –

uij – – – 9 9 2 –

p = 2 0.621
ui – – – 9 10 – –

uij – – – 8 8 – –
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backfitting algorithm that is standard for GAMs. It combines that with l1 regularisation
similar to the Lasso [2]. This provides the attractive property of convex optimisation, so
that the model only needs to be estimated once.

In contrast, neural network models are not convex and so require multiple esti-
mation. By interpreting the MLP in the form of a GAM with sparse features, the PRN
model considerably reduces the variability in classification performance that is typical
of the MLP, providing more consistent results.

However, correlations between variables can result in multiple models with very
similar predictive power. This is the case for the present data set.

The SAM identified {#Years sexual intercourse; Smokes (years); STDs} for fold 1
and {Hormonal Contraceptives (years); IUD (years); STDs: condylomatosis; STDs}
for fold 2 as univariate models; {STDs} for fold 1 and {IUD (years); STDs: condy-
lomatosis; STDs; Number of sexual partners*IUD (years); #Years sexual inter-
course*Hormonal Contraceptives (years); STDs: condylomatosis*STDs} when
interaction terms were included.

The AUROCs for SAM in 2-fold cross validation are 0.599 and 0.565, respectively.

5 Discussion

The variable subsets extracted with model selection using the PRN model are all
consistent with the previously cited work on this data set, and indeed with cervical
screening literature.

The iterative process for feature selection applied in the previous section made use
of the variability of the MLP under random starts to explore the space of predictive
features in the presence of correlated variables. This enable the identification of stable
features that could be applied for both folds to build a model with a consistent
explanation. These two features are Hormonal Contraceptives (years) and IUD (years).

It cannot be claimed that these are the only predictive variables or indeed the best.
However, they are a representative subset that achieves a high predictive model with
parsimony, as can be seen from both the size of the derived feature set and high
AUROC compared with the SAM.

Equally of interest is the shape of the partial responses and their stability under 2-
fold cross validation, shown in Figs. 2, 3, 4 and 5.
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The partial responses are remarkably consistent given the challenges posed by the
low prevalence and high noise in the data. Differences are apparent in areas of low data
density, which is to be expected. Further work will involve quantifying the uncertainty
about these estimates.
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Fig. 2. Two univariate responses identified in the first fold. The abscissa measures the
contribution of the individual covariate to the logit response. The histogram represents the
empirical distribution of the covariate across the study population. The curves show the response
derived from the initial MLP and after re-training with the PRN.
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Fig. 3. Bivariate response found to be significant in the first fold of the data. The response is
shown as a heat map and as a 3-d surface.
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Fig. 4. Two univariate responses identified in the second fold, as in Fig. 2.
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Fig. 5. Bivariate response found to be significant in the second fold of the data, as in Fig. 3.
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6 Conclusion

The initial pool of 9 variables contains redundant information. This causes instability in
neural network models, as several different models will capture information with
similar predictive value. However, an iterative approach to feature selection can pro-
duce a stable sparse model.

It is perhaps remarkable how the same predictive information is contained in a
small number of covariates compared with the size of the original pool. Bearing in
mind that the typical standard deviation of the AUROC is 0.05, making the 95%
confidence interval 0.10, the AUROC values for all models listed in Table 2 are
comparable. Indeed, the average performance for ten random starts equals that of the
best cross-validated model, 0.621 CI [0.519,0.721]. The overall performance figure is
also consistent with the deep learning models in [1] and with a statistical approach to
non-linear classification with an ANOVA decomposition, the SAM [2].

The main conclusion of this paper is that it is possible to break the black box that is
the standard MLP, using it to derive a more interpretable structure as a GANN. Using
partial responses is a common way to interpret non-linear statistical models. Here, it is
shown that the responses can themselves be used directly in modelling, with little or no
compromise in predictive performance.

The result is a small model that explains a large and complex data set in terms of
variable dependencies that clinicians can understand and integrate into their reasoning
models. Iterative modeling is necessary because of the inherent redundancy in the data
set, but the sequence of models obtained is itself informative about the association with
outcome for individual and pairs of covariates.

Ultimately, the PRN model shows that it is possible to be sure that the model is
right for the right reasons. Moreover, the covariate dependencies provide the ability to
diagnose flaws in the data, whether because of sampling bias or artifacts in observa-
tional cohorts.

It is concluded that the PRN approach can add significant insight and modelling
value to the analysis of tabular data in general, and in particular medical data.
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