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Abstract. Theory of evidence has been successfully used in many areas
covering pattern recognition and image processing due to its effective-
ness in both information fusion and reasoning under uncertainty. Such
notoriety led to extension of many existing Bayesian tools such as hid-
den Markov models, extensively used for image segmentation. This paper
falls under this category of frameworks and aims to propose a new hidden
Markov field that better handles nonGaussian forms of noise, designed
for multichannel image segmentation. To this end, we use a recent kernel
smoothing- based noise density estimation combined with a genuine app-
roach of mass determination from data. The proposed model is validated
on sampled and real remote sensing images and the results obtained
outperform those produced by conventional hidden Markov fields.
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1 Introduction

Multichannel image analysis and processing have gained more interest among the
image and signal processing community following the development of computing
technologies [3,10,12,15]. The purpose of multichannel image classification, con-
sidered in this paper, is to produce a thematic map indicating the membership of
each pixel in a specific class based on two sources: the spectral information and
the spatial information. The first is represented by the different image channels.
Each channel corresponds to an interval of the electromagnetic spectrum, where
a dedicated sensor is used to measure the intensity of the spectrum received
over this interval. The use of spectral information for image classification can be
very effective especially in the supervised context because one has a knowledge
base used at the learning stage. The interest of taking into consideration the
second source of information, namely the contextual dependence, was quickly
noticed. Image modeling through hidden Markov fields takes into account such
dependencies which improves the classification performance [6,9,13,14].
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A more elaborated classification model should perform at both levels to pro-
duce significantly best class maps. For this purpose, we propose a new hidden
Markov model that better handles general forms of noise, typically nonGaussian.
More explicitly, we propose to adopt an evidential approach for estimating the
noise parameters, which thus allows a better use of spectral information in a
Markovian context towards a more effective multichannel image classification.

The remainder of this paper is organized as follows. Section 2 briefly recalls
Dempster- Shafer theory, Parzen- Rosenblatt density estimation and hidden
Markov fields. Section 3 describes the proposed approaches and related estima-
tion tasks. Experimental results are presented and discussed in Sect. 4. Conclud-
ing remarks and future directions are given in Sect. 5.

2 Preliminaries

In this section, we briefly recall some basic notions of Dempster-Shafer theory
and Hidden Markov Fields.

2.1 Dempster-Shafer Theory

Data fusion particularly enhances the quality of decision when more than one
source of information are available. This is mainly due to the possibility of
increasing the amount of relevant information by exploiting redundancy and
complementariness among sources. One powerful and flexible mathematical tool
that has shown its usefulness in this area is Dempster-Shafer theory (DST) [16],
[17] that generalizes the Bayesian frame by allowing on one hand to reap a con-
sensus decision from all information sources; and on the other hand, to handle
information uncertainty within each information source. Hence, DST has been
applied in many fields [4,5,7,11]. In what follows, we give a quick overview about
the DST concepts that will be needed for the sake of this paper.

Let Ω = {ω1, ..., ωK}, and let P(Ω) = {A1, ..., AQ} be its power set, with
Q = 2K . A function M defined from P(Ω) to [0, 1] is called a “basic belief
assignment” (bba) if M(∅) = 0 and

∑
A∈P(Ω) M(A) = 1. A bba M defines then a

“plausibility” function Pl from P(Ω) to [0, 1] by Pl(A) =
∑

A∩B �=∅ M(B), and
a “credibility” function Cr from P(Ω) to [0, 1] by Cr(A) =

∑
B⊂A M(B). Also,

both aforementioned functions are linked by Pl(A) + Cr(Ac) = 1. Furthermore,
a probability function p can be considered as a particular case for which Pl =
Cr = p.

When two bbas M1 and M2 describe two pieces of evidence, we can fuse
them using the so called “Dempster-Shafer fusion” (DS fusion), which gives
M = M1 ⊕ M2 defined by:

M(A) = (M1 ⊕ M2)(A) ∝
∑

B1∩B2=A

M1(B1)M2(B2) (1)

Finally, an evidential bba M can be transformed into a probabilistic one
using Smets method, according to which each mass of belief M(A) is equally
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distributed among all elements of A, leading to the so called “pignistic proba-
bility”, Bet, given by:

Bet(ωi) =
∑

ωi∈A⊆Ω

M(A)
|A| (2)

where |A| is the number of elements of Ω in A.

2.2 Parzen-Rosenblatt Dempster-Shafer Classifier

In this subsection, we briefly recall the Parzen-Rosenblatt Dempster-Shafer
(PRDS) Classifier proposed in [8]. To this end, let us assume we have a sample of
N prelabeled multiattribute data (Z1, ..., ZN ) where each datum Zn = (Xn, Yn)
with Xn ∈ Ω = {ω1, ..., ωK} being the label, and Yn = (Y 1

n , ..., Y P
n ) ∈ R

P being
the P -attribute observation. The problem is then to estimate the label of any
new observation Yn′ that is optimal with respect to some criterion.

In what follows, we recall the training and classification procedures. Accord-
ing to the PRDS scheme, training consists in estimating for each class ωk ∈ Ω
and for each attribute p (1 < p < P ), the associated Parzen-Rosenblatt density
f̂p

k . For further weighting sake, 5-fold cross-validation classification is achieved
based on each attribute (taken alone) using the above Parzen-Rosenblatt PDFs
according to maximum likelihood.

For a given new observation Yn′ , partial report about the identity of Xn′ can
be made at each individual attribute level through a mass function Mp, on P (Ω),
generated based on the Parzen-Rosenblatt PDF estimated at the training stage.
Such reports are then combined, typically using DS- fusion to reap a consensus
report M . Final decision is then be deduced through the Pignistic transform
applied to M . In the following, we describe our approach step by step. For more
details, the reader may refer to [8].

2.3 Hidden Markov Fields

Let S be a finite set, with Card(S) = N , and let (Ys)s∈S and (Xs)s∈S be two
collections of random variables, which will be called “random fields”. We assume
that Y is observable with each Ys taking its values in R (or R

m) whereas X is
hidden with each Xs taking its values from a finite set of “classes” or “labels”.
Such situation occurs in image segmentation problem, which will be used in this
paper as illustrative frame. Realizations of such random fields will be denoted
using lowercase letters. We deal with the problem of the estimation of X = x from
Y = y. Such estimation subsumes the distribution of (X,Y ) to be beforehand
defined.

In hidden Markov fields (HMFs) context, the field X is assumed Markovian
with respect to a neighborhood system N = (N)s∈S . X is then called a Markov
random field (MRF) defined by

p (Xs = xs|(Xt)t∈S,t�=s) = p (Xs = xs|(Xt)t∈Ns
) (3)
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Under some conditions usually assumed in digital imagery, the Hammersley-
Clifford theorem [2] establishes the equivalence between an MRF, defined with
respect to the neighbourhood system N, and a Gibbs field with potentials associ-
ated with N. Such potentials, describing the elementary relationships within the
neighbourhood, are computed with respect to the system of cliques C, where a
clique c ∈ C is a subset of S which is either a singleton or a set of pixels mutually
neighbors with respect to N. Setting xc = (Xs)s∈c, φc(xc) denotes the potential
associated to the clique c.

Finally, the distribution of X is given by

p(X = x) = γ exp

[

−
∑

c∈C

φc(xc)

]

(4)

where γ is a normalizing constant which is impossible to compute in prac-
tice given the very high number of possible configurations KN . The quantity
E(x) =

∑
c∈C φc(xc) is called “energy” and can also be expressed locally through

Es(xs) =
∑

c	xs
φc(xc). Hence, the local conditional probability of (3) becomes

p (Xs = xs|(Xt)t∈S,t�=s) = γs exp [−Es(xs)]

where γs is a computable normalizing constant.
To define the distribution of Y conditional on X, two assumptions are usually

set:

(i) the random variables (Ys)s∈S are independent conditional on X;
(ii) the distribution of each Ys conditional on X is equal to its ditribution con-

ditional on Xs.

When these two assumptions hold, the noise distribution is fully defined
through K distributions (fi)1≤i≤K on R where fi denotes the density, with
respect to the Lebesgue measure on R, of the distribution of Ys conditional on
Xs = ωi: p(Ys = ys|xs = ωi) = fi(ys). Then we have

p(Y = y|X = x) =
∏

s∈S

fxs
(ys) (5)

that can equivalently be written as

p(Y = y|X = x) = exp

[
∑

s∈S

log fxs
(ys)

]

(6)

Since p(x, y) = p(x)p(y|x), we obtain

p(X = x, Y = y) = γ exp −
[
∑

c∈C

φc(xc) −
∑

s∈S

log fxs
(ys)

]

(7)

Hence, according to (7), the couple (X,Y ) is a Markov field and also is the
distribution of X conditional on Y = y. This allows to sample a realization of
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X according to its posterior distribution p(x|y) and hence, to apply Bayesian
techniques like maximum posterior marginal (MPM) and maximum a posteriori
(MAP).

The feasibility of the different estimations of interest in HMFs stems from
the possibility of sampling realizations of the hidden process X from Y = y
according to the posterior distribution p(x|y), and which is possible when this
latter distribution is of Markov form. On the other hand, the Markovianity of
this latter distribution relies itself on the assumption that the random variables
(Ys)s∈S are independent conditionally on X.

3 Proposed Approach

The problem considered in this paper is to derive a thematic map from a multi-
channel (typically remote sensing) image. As described in the previous section,
the hidden Markov field (HMF) model allows to find a hidden field X represent-
ing in this case the thematic map, from an observed field Y representing the
observed multichannel image. The novelty in this paper is to adopt the Pignistic
probabilities provided by PRDS classifier [8] (after combination of different chan-
nel reports) instead of fxs

(ys) in Eq. (5). Thus, one need to achieve a training
process on the prelabeled set of pixels (typically a prelabeled image of subimage)
to derive noise densities associated to different channels which will later produce
parameters of spectral information. Such prelabeled data are not available how-
ever, given that we deal with unsupervised classification. Then, the estimation
of both spectral and spatial parameters is achieved in an unsupervised iterative
way. More explicitly, one starts by coarsely perform an initial clustering which
will service as a basis for initial parameters estimation. Indeed, when an initial
realization of X is available, one can perform training according to PRDS to
derive noise densities and, at the same time, estimation of spatial parameters as
in conventional HMF context.

In what follows, we describe PRDS training, parameter estimation and label-
ing procedures.

3.1 Training

As specified before, let us consider a set of prelabeled multichannel pixels. We
recall that such data may be available through an initial coarse clustering pro-
viding a realization of X and then iteratively through successive updates of X
during parameter estimation, as we are going to see later. Hence, training will be
concerned exclusively with spectral information. More explicitly, we use PR-DS
classifier to estimating for each class ωk ∈ Ω and for each channel p (1 < p < P ),
the Parzen-Rosenblatt density f̂p

k as described in the previous section. Let us
now show how the estimated Parzen-Rosenblatt densities will produce spectral
parameters. In other words, we demonstrate how one can replace the noise den-
sities fxs

(ys) in Eq. (5) for a given Yn ∈ R
P .



618 M. E. Y. Boudaren et al.

Step 1: Generation of Mass Functions. To define the mass associated to
channel p, let us consider the rank function δp defined from {1, ..,K} to Ω such as
δp(k) is the k–ranked element of Ω in terms of f̂p, i.e. f̂p

δp(1)
(Y p

n ) ≤ f̂p
δp(2)

(Y p
n ) ≤

... ≤ f̂p
δp(K)(Y

p
n ). Then, Mp is derived as follows:

⎧
⎪⎨

⎪⎩

Mp(Ω) ∝ Kf̂p
δp(1)

(Y p
n )

Mp({ωδp(k), ..., ωδp(K)}) ∝ (K − k + 1)
[
f̂p

δp(k)
(Y p

n ) − f̂p
δp(k−1)(Y

p
n )

]
, for k > 1

(8)

Step 2: Combination of Mass Functions. Mass functions associated to dif-
ferent attributes are then combined into one collaborative mass M =

⊕P
p=1 Mp:

M(B) ∝
∑

⋂P
p=1 Bp=B

[
P∏

p=1

Mp(Bp)

]

, for B,Bp ∈ P(Ω) (9)

Step 3: Deriving Noise Density. Based on M , the noise density is then
computed according to the Pignistic transform:

fk(yn) =
∑

A	ωk

M(A)
|A| (10)

3.2 Parameter Estimation

In this framework, we adopted ICE algorithm for parameter estimation. At each
iteration i, a realization of X is simulated using Gibbs sampler. Then, we use the
Derin and Elliott method for estimating spatial parameters φi; and the PRDS
method for spectral parameters ηi (which are noise densities as described in Step
3 above). The algorithm stops when an end criterion is reached. The parameter
estimation procedure is illustrated through Fig. 1.

3.3 Labeling

Once parameter set θ is estimated by the ICE method [1] while the MPM esti-
mator is used to infer X. Using the Gibbs sampler, T realization x1, x2, . . . , xT

of X are simulated according to p(X|Y = y). Then, one estimates p̂ (xs = ω | y)
of each Xs from the realizations x1, x2 . . . , xN . Finally, for each pixel xs, one
chooses the class whose number of appearances in the simulations is the highest.

4 Evaluation of the Proposed Approach

To validate our approach, we assess its performance in unsupervised segmenta-
tion of multichannel images against the conventional HMF model. To this end,
we consider two series of experiments. The first series deal with synthetic images
whereas the second series deals with a real multichannel remote sensing image.
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Fig. 1. Parameter estimation process.

4.1 Unsupervised Segmentation of Sampled Multichannel Images

To sample a synthetic multichannel image, we use Gibbs sampler with the fol-
lowing parameters: β = [1, 1, 1], αh = αvb = 2I and αd = 4I. Then, the obtained
image is noised considering multidimensional Gaussian mixture densities in two
different ways, considering two different sets of noise parameters η:

– Image 1: noisy version of the reference image, with a two-dimensional mixture

noise of four Gaussians and a variance-covariance matrix Σ =
[

28 3
3 28

]

.

* For the first class μ11 =
[
10 20

]
, μ12 =

[
25 20

]
, μ13 =

[
40 20

]
, μ14 =[

50 20
]
, Σ11 = Σ12 = Σ13 = Σ14 = Σ and a proportion of mixture p1 =[

0.25 0.25 0.25 0.25
]
;

* For the second class μ21 =
[
10 30

]
, μ22 =

[
25 30

]
, μ23 =

[
40 30

]
, μ24 =[

50 30
]
, Σ21 = Σ22 = Σ23 = Σ24 = Σ and a proportion of mixture p2 =[

0.25 0.25 0.25 0.25
]
;

* For the third class μ31 =
[
10 40

]
, μ32 =

[
25 40

]
, μ33 =

[
40 40

]
, μ34 =[

50 40
]
, Σ31 = Σ32 = Σ33 = Σ34 = Σ and a proportion of mixture p3 =[

0.25 0.25 0.25 0.25
]
;

– Image 2: noisy image with a three-dimensional mixture noise of five Gaussians
and a variance-covariance matrix for each element of the mixture for each class
c: Σc1 = Σc2 = Σc3 = Σc4 = Σc5 = Σ such as c ∈ {1, 2, 3} and
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(a) (b) (c) (d)

Fig. 2. Classification of synthetic data using HMF and PRDS-HMF. (a) Original class
image. (b) Noisy image. (c) Classification of the image using HMF, success rate τ =
58.3740%. (d) Classification of the image using PRDS-HMF, success rate τ = 84.2285%.

Σ =

⎡

⎣
28 3 1
3 28 3
1 3 28

⎤

⎦.

* For the first class μ11 =
[
10 20 20

]
, μ12 =

[
25 20 20

]
, μ13 =

[
40 20 20

]
,

μ14 =
[
50 20 20

]
, μ15 =

[
65 20 20

]
and a proportion of mixture p1 =[

0.2 0.2 0.2 0.2 0.2
]
;

* For the second class μ21 =
[
10 30 25

]
, μ22 =

[
25 30 25

]
, μ23 =[

40 30 25
]
, μ24 =

[
50 30 25

]
, μ25 =

[
65 30 25

]
and a proportion of mix-

ture p2 =
[
0.2 0.2 0.2 0.2 0.2

]
;

* For the third class μ31 =
[
10 40 30

]
, μ32 =

[
25 40 30

]
, μ33 =

[
40 40 30

]
,

μ34 =
[
50 40 30

]
, μ35 =

[
65 40 30

]
and a proportion of mixture p3 =[

0.2 0.2 0.2 0.2 0.2
]
;

Then, unsupervised segmentation is performed using conventional HMFs;
and the proposed PRDS- HMF. The results obtained are illustrated in Fig. 2
and Fig. 3 where the noisy multichannel images are depicted in monochannel
gray level by averaging the channels’ intensities for illustrative purpose. The
segmentation accuracy rates obtained confirm the interest of the proposed model
with respect to the classic HMF. The supremacy of the proposed model is mainly
due to the possibility of considering more general forms of noise by the PRDS-

(a) (b) (c) (d)

Fig. 3. Classification of synthetic data using HMF and PRDS-HM. (a) Original class
image. (b) Noisy image. (c) Classification of the image using HMF, success rate τ =
32.7332%. (d) Classification of the image using PRDS-HMF, success rate τ = 80.8350%.
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HMF thanks to the kernel smoothing technique that makes it possible to fit any
form of noise instead of assuming it Gaussian as in HMF context.

4.2 Unsupervised Segmentation of Multichannel Remote Sensing
Image

In this series of experiments, we consider a multichannel image of the Landsat-7
satellite ETM+ sensor acquired on June 03, 2001. The acquisition was made in
an area around the city of Algiers. The image used has a resolution of 30 m × 30
m and a size of 256 × 256. The area of study includes 4 classes: (i) Urban Dense
(UD); (ii) Urban Less Dense (ULD); (iii) Barren Land (BL); and (iv) Vegetation
(V).

Figure 4 represents the 6 bands at the gray scale image.

Fig. 4. Different channel observations of the studied image.

To quantitatively assess the performance of the proposed approach against
the conventional HMF model, we have a partial ground truth (see Fig. 4).

Qualitative assessment of the results obtained shows that the thematic map
provided by the proposed approach contains less salt and pepper effect. This is
confirmed by the quantitative assessment in terms of overall accuracy and kappa
metrics. Indeed, the PRDS- HMF yields an accuracy rate of 79% (resp. a kappa
of 0.70) against an accuracy of 68% (resp. a kappa of 0.5) by the conventional
HMF model (Figs. 5 and 6).
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Fig. 5. Partial ground truth of the studied area

(a) (b)

Fig. 6. Classification of a multichannel image using HMF and PRDS-HMF: Urban
Dense (red), Urban Less Dense (orange), Barren Land (Yellow) and Vegetation (Green).
(a) Thematic map obtained by PRDS-HMF: accuracy= 79.42%, Kappa= 0.70 (b) The-
matic map obtained by HMF: accuracy= 68.23%, Kappa= 0.55. (Color figure online)

Table 1. Confusion matrix obtained by PRDS-HMF.

(UD) (ULD) (BL) (V) Truth Recall

(UD) 41 0 0 1 42 97.62%

(ULD) 19 84 7 1 111 75.68%

(BL) 0 2 192 31 225 85.33%

(V) 4 22 27 123 176 69.89%

Classification 64 108 226 156 554

Precision 64.06% 77.78% 84.96% 78.85%
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Table 2. Confusion matrix obtained by HMF.

(UD) (ULD) (BL) (V) Truth Recall

(UD) 41 0 0 1 42 97.62%

(ULD) 43 60 7 1 111 54.05%

(BL) 1 1 164 59 225 72.89%

(V) 7 16 40 113 176 64.20%

Classification 92 77 211 174 554

Precision 44.57% 77.92% 77.73% 64.94%

Confusing matrices obtained by PRDS-HMF and HMF classifications are also
given in Tables 1 and 2. We can confirm that the proposed HMF outperforms
the plain one in terms of both precision and recall per each class. It is worth
mentioning that a better modeling of noise allows also to a better estimation
of spatial parameters. In fact, parameter estimation is an iterative process in
which a good perception of noise leads to a better parameter estimation of
spatial features.

5 Conclusion

In this paper, we proposed a new hidden Markov field model designed for unsu-
pervised segmentation of multichannel images. The main novelty of the proposed
model relies in the use of Dempster-Shafer theory and Parzen-Rosenblatt win-
dow for noise density estimation which makes it possible to model general forms
of multidimensional noise. To assess the performance of the proposed PRDS-
HMF, experiments were conducted on both synthetic and real multichannel
images. The results obtained confirmed its interest with respect to the con-
ventional HMF model. A possible future direction of this approach would be to
consider more general Markov models with the same extension.
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