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Abstract. Power quality analysis involves the measurement of quanti-
ties that characterize a power supply waveform such as its frequency.
The measurement of those quantities are regulated by internationally
accepted standards from IEEE or IEC. Monitoring the delivered power
quality is even more important due to recent advances in power electron-
ics and also due to the increasing penetration of renewable energies in
the electrical power grid. The primary suggested method by IEC to mea-
sure the power grid frequency is to count the number of zero crossings in
the voltage waveform that occur during 0.2 s. The standard zero crossing
method is usually applied to a filtered signal that has a non determin-
istic and frequency dependent delay. For monitoring the power grid a
range between 42.5 and 57.5 Hz should be considered which means that
the filter must be designed in order to attenuate the delay compensation
error. Fuzzy Boolean Nets can be considered a neural fuzzy model where
the fuzziness is an inherent emerging property that can ignore some out-
liers acting as a filter. This property can be useful to apply zero crossing
without false crossing detection and estimate the real timestamp with-
out the non deterministic delay concern. This paper presents a compari-
son between the standard frequency estimation, a Goertzel interpolation
method, and the standard method applied after a FBN network instead
of a filtered signal.
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1 Introduction

The quality of the electrical power grid is of utmost importance for normal opera-
tion of electrical equipment [1–3]. Due to its importance, power quality has been
regulated in various internationally recognized standards. Recent advances in
power electronics and the ever increasing penetration of renewable energies that
require distributed power converters makes the monitoring of the delivered power
quality even more important [4,5]. Monitored parameters include the frequency
of the supplied power waveform, its RMS amplitude, the existence of harmonics,
the effect of noise and the existence of distortions and transients.

Power quality measurements are typically performed only at predefined loca-
tions and not on a regular basis, usually to settle disputes between utility com-
panies and consumers. The main reason for this is that commercial power quality
analyzers are very accurate, but expensive and bulky. The alternative are smaller
analyzers that are less expensive but have worse specifications. Therefore, there
is an increasing demand for portable analyzers that can be easily and more uni-
versally deployed, with better accuracy than those that are presently available.
The advances in the processing power of digital signal processors, available mem-
ory, and sensors’ availability, have boosted the interest on the development of
embedded power quality analyzers that are low-cost, yet very powerful [6].

Frequency estimation and tracking methods are an active research topic in
many scientific areas as in power quality assessment [7]. The most basic spec-
tral based methods performs a FFT but to have good spectral resolutions the
computational cost increases. There are methods that can improve frequency
estimation performing an interpolation with the calculated DFT bins [8],[9].
But for some applications, as in power quality, there is no need to compute a
full FFT. Approaches as in [10] that uses Goertzel filters [11] or in [12] use a
warped DFT in order to select only a defined spectral area to perform frequency
estimation.

For some specific applications power grid frequency must be obtained in a
10 cycle time span, that in a 50 Hz electrical power grid system corresponds
to 0.2 s period as specified in IEC standard 61000-4-30 [13]. The fundamen-
tal frequency is the number of integral cycles counted during the considered
time interval, divided by the cumulative duration of those cycles. When using
the zero crossing (ZC) method, harmonics, interharmonics and noise should be
attenuated to avoid false zero crossings in frequency estimation. A particularly
effective solution is to digitally low-pass filter the acquired waveform to atten-
uate the unwanted effects [14]. A disadvantage of this method is the delay that
the filter introduces between the filtered and unfiltered signals. This delay, that
is frequency dependent, must be compensated to estimate the real zero crossing
timestamp. Another method to perform frequency estimation is based on the
Goertzel algorithm with interpolation for frequency estimation. The Goertzel
algorithm [11] is an efficient method to estimate individual components of the
signal Discrete Fourier Transform (DFT). In order to estimate the power grid
frequency, an interpolation algorithm based on the Interpolated Discrete Fourier
Transform (IpDFT) of [8] is applied.
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In this paper we study an alternative approach to estimate power grid fre-
quency based on zero crossing detection that uses Fuzzy Boolean Nets (FBN)
[15]. Natural or Biological neural systems have a certain number of features that
leads to their learning capability when exposed to sets of experiments from the
real outside world. They also have the capability to use the learnt knowledge to
perform reasoning in an approximate way. FBN are a neural fuzzy model where
the fuzziness is an inherent emerging property that were developed with the
goal of exhibiting those systems’ properties. FBN previous studies have shown
promising results in learning and interpolating in applications such as pultrusion
wastes [16] or dataflow management systems [17]. In [16] FBN method allows
to find the best balance between the material parameters that maximizes the
strength of the final composite. In [17] is used to augment performance, rational-
ization of resources, and task prioritization of dataflows based in probabilistic
results of the networks output.

The contents of this paper is as follows: Sect. 2 describes the three different
methods in order to perform a frequency estimation; Sect. 3 presents results
for simulated data with some PQ events that can affect ZC detection; Sect. 4
compares the results between the three methods from the electrical power grid;
In Sect. 5 the conclusions about the comparison of the methods applied.

2 Frequency Estimation Methods

2.1 Filtered Signal with Zero Crossing

According to IEC 61000-4-30 standard [13], a signal power frequency measure is
the number of integral periods divided by the duration of those periods within
the considered time interval. This measure can be accomplished by estimating
the zero crossing timestamps trough interpolation between the acquired samples.
To avoid false zero crossings caused by PQ events, the acquired data should be
filtered. The digital filter introduces a delay which offsets the timestamps of the
filtered signal zero crossings that is dependent on the signal frequency but can
be corrected in order to have a real timestamp [14]. In Fig. 1 an example about
the effect of filtering a signal is shown.

2.2 Goertzel and Interpolation

The Goertzel algorithm [11] is an efficient method to compute a single DFT tone
without having to perform a full FFT. Since the power grid frequency bounds
have a limited range, only a few selected spectral components are needed. After
the Goertzel components computation, the Interpolated Discrete Fourier Trans-
form (IpDFT) [8] is applied. IpDFT is a spectral based method that estimates
the signal frequency based on the calculation of the signal FFT, selecting the
highest amplitude spectral component, then its largest neighbour and interpolat-
ing them. With Goertzel and IpDFT is possible to achieve an accurate frequency
estimation with a lower computational cost.
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Fig. 1. Example of frequency estimation using digital filtering and zero crossing detec-
tion. The input signal is filtered what causes a frequency dependant delay. With a
filtered signal is possible to estimate the real zero crossing compensating the delay.

In Fig. 2 5 DFT bins of a sine signal with spectral leakage are shown. Bold
lines represents 5 Goertzel outputs Gf that are used to perform a frequency
estimation. In this example the higher amplitudes are G50 and G55 which means
that these are the DFT bins to be used in IpDFT algorithm.

Fig. 2. Example of a signal with spectral leakage where the true frequency is not
centered in none of the DFT bins. Interpolation is performed using G50 and G55 in
order to obtain the signal frequency (53 Hz).
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2.3 Using FBN to Estimate Power Grid Frequency

FBN [15] exhibit the natural or biological neural systems features that lead to
a learning capability when exposed to sets of experiments from the real world.
They also have the capability to use newly gained knowledge to perform approx-
imate qualitative reasoning in the form of “if...then” rules. As in natural sys-
tems, FBN are robust and immune to individual neuron or connection errors
and present good generalization capabilities that automatically minimize the
importance of imbalances and sparseness in the training data. FBN use a Heb-
bian learning process and are capable of learning and implementing any possible
multi-input single-output function of the type: [0, 1]n × [0, 1].

FBN consist of neurons that are grouped into areas of concepts (variables).
Meshes of weightless connections between antecedent neuron outputs and conse-
quent neuron inputs are used to perform ‘if-then’ inference between areas. Neu-
rons are binary and the meshes are formed by individual random connections
(like in nature). Each neuron comprises m inputs for each antecedent area, and
up to (m+1)N internal unitary memories, where N is the number of antecedents.
(m + 1)N corresponds to maximum granularity. When stimulated, the value of
each concept is given by the activated/total neurons ratio. For rules with N
antecedents and a single consequent, each neuron has N ×m inputs.

Inference proceeds as follows: The single operation carried out by each neuron
is the combinatorial count of activated inputs from every antecedent. For all
counting combinations, neurons compare the sampled values with the ones in
their unitary memory (FF). If the FF that corresponds to the sampled value
of all antecedents contains the value “1”, then the neuron output is also “1”.
Otherwise, the neuron output is “0”. As a result of the inference process (which
is parallel), each neuron assumes a boolean value, and the inference result will
be given by the neural activation ratio in the consequent area.

Learning is performed by exposing the net to the data input and by modi-
fying the internal binary memories of each consequent neuron according to the
activation of the m inputs (per antecedent) and the state of that consequent
neuron. Each experiment will set or reset one binary memory of each individual
neuron. Due to its probabilistic nature, the FBN must be repeatedly exposed to
the same training data for a minimum number of times (r). The optimization
of r is not critical since FBN cannot be overtrained. Thus, it is only neces-
sary to guarantee a minimum value that depends on the net parameters (m, N ,
granularity) and sparsity of the training data set.

The idea is to use a 1-input/1-output FBN (N = 1) as a filter without causing
a delay. We start by feeding the network with a small set of training points
(timestamp/amplitude) sampled during one period; The second step consists in
letting the FBN interpolate/estimate the amplitude values for the whole period
(based on the few training points), and letting it infer the timestamps of the zero
crossing points; Finally we use a standard ZC procedure to estimate frequency.
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3 Simulated Results

Different events, such as transients, harmonics or noise can occur in electrical
power grids. In this section we present how FBNs behave reagarding ZC detection
when simulating such effects. All tests were performed training and testing the
FBN network with 100 repetitions.

3.1 Cosine

The first test consists in a fundamental cosine with 0.9 Vpp and 50 Hz. On the
left side of Fig. 3 a simulated one period signal is presented. 25 evenly spaced
points were automatically selected to train the FBN network (as shown on right
side of Fig. 3).

Fig. 3. On the left side a simulated cosine with 0.9 Vpp and 50 Hz is presented. 25
points were used to train the FBN network.

The system was tested with several parameter configurations, and the best
results were obtained using areas with 250 neurons, a sample size m = 60, and
maximum granularity (m + 1)N = 61.

Since the main signal is a cosine, the zero crossings should be detected at
0.005 s and 0.015 s. The FBN indicated zero crossings at 0.0049 s and 0.015 s.

3.2 Sum of Cosines with Same Phase

The fundamental frequency in electrical power grids is 50 Hz, but harmonics
can be present. In this simulation two harmonics (3rd and 5th) were added.
The 3rd harmonic has an amplitude of 5% of the fundamental signal and the
5th 6% V that are the maximum amplitudes allowed by the IEEE standard.
Figure 4 presents the effects of harmonics in the fundamental signal. Since this
frequencies are in phase, zero crossing should not be affected.
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Fig. 4. Representation of a sum of cosines in multiples of fundamental frequency with
standard maximum amplitudes.

The zero crossings should still be detected at 0.005 s and 0.015 s. Using the
same configuration as in the previous section, the FBN obtained zero crossings
at 0.0045 s and 0.0151 s.

3.3 Sum of Cosines with Different Phases

Harmonics out of phase with the fundamental signal can affect the ZC detection.
A filter attenuates higher frequencies, so, the ZC detection is performed only on
the fundamental one. In this case the FBN network will be trained with points
that can not represent the fundamental zero cross. In Fig. 5 is presented a sum
of signals with different phases and in Fig. 6 the obtained result.

In this test the first crossing was detected at 0.0047 s and the second one at
0.0150 s.

3.4 Cosine with Transients

Transients are another PQ event that could affect the frequency estimation. If
a transient occurs without causing a false zero crossing transition, there should
not be any problem with frequency estimation. But, as presented in Fig. 7, if
a transient occurs near a zero cross transition this event can lead to a false
transition getting a wrong frequency estimation.

As is shown in Fig. 8 the training points, represented as red crosses, were
affected by the transients. But the FBN network output, represented as the
black line, followed the fundamental frequency behavior. This result shows the
capability of ignoring some outliers making possible the ZC detection. In this
test the zero crossings were detected at 0.0049 s and 0.0153 s.



674 N. M. Rodrigues et al.

Fig. 5. Representation of a sum of signals with different phases in multiples of funda-
mental frequency.

Fig. 6. FBN network output for the situation presented in Fig. 5. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

3.5 Cosine with Noise

Another event that is common in electrical power grid is the presence of noise.
As in the previous test, noise can affect zero crossing detection if occurs near
a zero cross transition. This test was performed with a noise of 30 dB and the
signal to estimate its zero crossing is represented in Fig. 9.

In Fig. 10 the output of FBN netowork is shown. Network training points,
represented as red crosses, were not following the fundamental signal as it can
be seen in the signal minimum peak. But the output of FBN, represented as the
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Fig. 7. Representation of transients in a cosine signal on the zero crossings.

Fig. 8. FBN network output for the situation presented in Fig. 7. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

black line, did not follow those transitions. This results shows that the FBN net-
work can attenuate noisy effects. In this simulation zero crossings were detected
at 0.0049 s and 0.0153 s.

4 Frequency Estimation with Power Grid Dataset

Once the best FBN parameters for ZC detection were selected (using the exam-
ples presented in the previous section), the system was tested on a real dataset.
This dataset was acquired in Instituto Superior Técnico - Taguspark with the
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Fig. 9. Representation of a cosine with a measured noise of 30 dB.

Fig. 10. FBN network output for the situation presented in Fig. 9. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

analog input module NI 9215. Data was acquired with a sampling frequency of
12.5 kHz, which gives a dataset containing 250 points per period (considering a
50 Hz frequency). Figure 11 shows an example of a period of a real power grid
signal (that corresponds to around 0.02 s). In this example it is possible to see
some fluctuations in the signal peaks.

As stated in section I, ZC is performed every 200 ms which translates into
10 periods if a fundamental signal with 50 Hz is considered. In Fig. 12 the three
methods are compared since the beginning of the process until t = 2 s, the equiv-
alent of 10 frequency estimations. “Goertzel with interpolation” starts and ends
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Fig. 11. A period of a real power grid signal acquired with a 12.5 kHz sampling fre-
quency during 0.02 s. In this example some transients occurred near the peaks.

Fig. 12. Frequency estimation along 2 s in all methods. Digital Filter method starts
with a poor estimation due to the time that digital filter takes to establish but then
gets a closer estimation to the Goertzel method. FBN with a maximum error of around
0.05 Hz

without visible fluctuations in this scale. The delay in digital filtering method
was already compensated in order to have a real timestamp but other effects are
shown. Filters need some time before the output is stable, and that is the rea-
son why the filtering method starts with a bad frequency estimation. The FBN
method provides good results, but not as precise as any of the other methods.
In this segment, the maximum estimation error, when compared with standard
and Goertzel methods, was around 0.05 Hz.
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Fig. 13. Zoomed in view: comparison of the three methods during the stable part of
the signal.

Figure 13 shows a magnified view of the “stable” part of the signal, where the
difference between the three methods is more clear. The estimated frequency is
around 49.98 Hz and, as shown in Fig. 12, FBN method precision is lower than
the other methods. Note that the difference is of a very low magnitude, and that
this decrease in precision is liked to be compensated when in the presence of
events as those exemplified in the previous section.

5 Conclusions

In this paper a comparison between three different methods to estimate the
power grid frequency is performed in order to study the possibility of using
Fuzzy Boolean Networks (FBN) for such application. The two other methods
used to validate FBN are the standard power grid frequency estimation which
corresponds to counting the number of periods within a given time frame after
filtering the input signal, and Goertzel with interpolation.

The main goal of this comparison was to understand the advantages and
limitations of using FBN in electrical power grid frequency estimation.

A compromise between time and accuracy was done and better results were
obtained training and testing the network 100 times, using 25 training points, an
area size of 250 neurons, m = 60 samples per neuron, and maximum granularity.
Comparing with other methods FBN results were marginally worse, but FBN
can ignore outliers caused by noise or transients, as shown in Fig. 8 and Fig. 10.
In addition, since the network is trained with only 25 points this method could
be useful when a low number of measuring points is available. One unavoid-
able limitation of using FBN is the training and testing time. This makes them
unsuitable for real-time applications unless using dedicated hardware.
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