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Abstract. In this paper we focus on an Natural Language Inference
task. Being given two sentences, we classify their relation as NEUTRAL,
ENTAILMENT or CONTRADICTION. Considering the achievements
of BERT (Bidirectional Encoder Representations from Transformers) in
many Natural Language Processing tasks, we use BERT features to cre-
ate our base model for this task. However, several questions arise: can
other features improve the performance obtained with BERT? If we are
able to predict the situations in which BERT will fail, can we improve
the performance by providing alternative models for these situations?
We test several strategies and models, as alternatives to the standalone
BERT model in the possible failure situations, and we take advantage of
semantic features extracted from Discourse Representation Structures.

Keywords: Natural Language Inference · Feature engineering ·
Failure prediction model

1 Introduction

Natural Language Inference (NLI) is a known task in Natural Language Process-
ing (NLP)[1]. It can be implemented as a classification task in which the model
needs to decide about the relation between a pair of sentences. Usual categories
are ENTAILMENT, NEUTRAL and CONTRADICTION.

BERT (Bidirectional Encoder Representations from Transformers) [7] is a
state-of-the-art language model that has shown impressive performance on many
NLP tasks. Here, we take advantage of BERT to perform NLI. However, we also
implement other NLI classifiers, based on lexical and semantic features that
we extract from the Discourse Representation Structures obtained for each pair
of sentences we want to classify. Then, we implement two strategies to detect
possible failures. The first is based on the fact that BERT has lower results in
ENTAILMENT and CONTRADICTION situations. Therefore, we run BERT
and directly accept the NEUTRAL labels, while other classifiers are employed
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in the other cases. In addition, we also implement several models that try to
predict when BERT will fail. In the latter cases, other models are employed.
Results show that we can improve results with the models based on lexical and
semantic features.

This paper is organized as follows: Sect. 2 presents related work and Sect. 3
our models. Section 4 describes the experimental setup and Sect. 5 the results.
Finally, Sect. 6 presents the main conclusions and future work.

2 Related Work

A benchmark for systems aimed at Recognizing Textual Entailment (RTE) was
initially developed in the PASCAL challenge series [2]. The RTE task is to detect
entailment between a premise and an hypothesis, while a related task is to detect
NLI, where target labels are ENTAILMENT, CONTRADICTION and NEU-
TRAL (no semantic relation).

NLI is represented in the SICK corpus [13], composed by 10000 pairs of
sentences, seeded from corpora of image and video captions, and expanded by
rule based transformations to introduce particular linguistic phenomena, such as
negations. SICK is annotated by crowd-sourcing, and was the target of a shared
task on the Semeval evaluation series [12].

Following SICK, the much larger SNLI [5] corpus was released, containing
570000 examples also seeded from a corpus of captions and annotated by crowd-
sourcing, but instead expanded by crowd-sourcing. SNLI inspired the creation
of other corpora on NLI, for instance the e-SNLI corpus [6] that augments SNLI
with natural language explanations for the annotations, or the MultiNLI corpus
[21], that follows the same design procedure and size of SNLI, but instead of
captions includes sentence pairs from other text genres and sources, such as
fiction books or transcripts of conversations. MultiNLI is one of the targets of
the GLUE benchmark [20], that evaluates systems for their joint performance
on multiple Natural Language Understanding (NLU) tasks.

Various forms of assessing NLI are presented in the mentioned shared tasks
and benchmarks. However, as modern machine learning architectures partic-
ularly leverage large data collections, recent approaches suitable for NLI are
mostly applied to corpora such as SNLI or MultiNLI, both for their greater size
and complexity. One of such approaches is the BERT model [7].

BERT generates a dynamic embedding according to the context in which a
word is employed, and may even generate the embedding of a sentence pair, if the
aim is to verify entailment on the pair [7]. Training a BERT model is expensive
on time and resources, but models based on Wikipedia were made available in
its original release.

The BERT model achieves competitive results on various NLU tasks, as
shown from its performance on the GLUE benchmark [7], but also specifically
in NLI, such as when applied only to MultiNLI [7], to SNLI [22], or to the recent
CommitmentBank corpus [10] which is part of the SuperGLUE benchmark [19],
that supersedes GLUE.
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Fig. 1. Simple model – M-BERT directly used to detect NEUTRAL relations.

Recent studies on the generalization of various models, including BERT, sug-
gest that performance is only consistent when assessed within the same bench-
mark [18], from combining train and test sets of different corpora. Other works
focus specifically on BERT failures in NLI, such as in [14] to hypothesize that
the success of BERT relies on the occurrence of certain linguistic patterns in the
data, or in [10] to suggest that BERT does not implicitly learn linguistic priors
and is mostly driven by statistical regularities. To the best of our knowledge, the
performance of BERT in the SICK corpus was not yet evaluated.

3 Entailment and Failure Models

In this section we describe the models we use to perform the NLI task and the
strategies we have implemented to predict when BERT will fail.

The BERT model, trained to perform NLI, uses BERT embeddings as fea-
tures. From now on we will call M-BERT to this model. A set of lexical and
semantic features, alone or associated with BERT embeddings, are also used to
train several classifiers that perform NLI. We call M-OTHER to these models.
Our semantic features are based on Discourse Representation Structures (DRS),
that is, a formal representation of meaning that follows the Discourse Represen-
tation Theory [11].

Our first strategy (from now on Strategy 1) takes advantage of M-BERT
results to decide which are the possible failure conditions. We have observed that
BERT has lower results in both ENTAILMENT or CONTRADICTION situa-
tions. Thus, we run M-BERT and accept all the NEUTRAL labels, according
to it. For the remaining labels we run the M-OTHER models, trained in the
NLI task, but in a corpus that only has ENTAILMENT or CONTRADICTION
labels. Figure 1 depicts this strategy.

We also implement a second strategy (from now on Strategy 2) in which
we train several models that try to predict when BERT will fail. The previous
mentioned lexical and semantic features, along with BERT, are used by these
models. We call M-FAIL to these models. Here, the idea is the following: if a
model of type M-FAIL predicts that BERT will fail, then the previous models,
trained in the NLI task, are used instead of M-BERT. Figure 2 illustrates this
strategy.

Finally, instead of using a single M-FAIL model to predict M-BERT failure,
we consider the predictions of the different M-FAIL models. Three options are
considered:
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Fig. 2. Pipeline with M-FAIL models.

– at least one: if one model from the M-FAIL family returns an M-BERT failure,
we will consider that M-BERT will fail;

– majority voting : if the majority of the models from the M-FAIL family returns
an M-BERT failure, we will consider that M-BERT will fail;

– all : if all the models from the M-FAIL family returns a M-BERT failure, we
will consider that M-BERT will fail

Considering the previous scheme, the different M-OTHER models will be
used if M-BERT is expected to fail.

4 Experimental Setup

4.1 Corpora

Our experiments rely on the SICK corpus [13] for English. As previously said,
sentences in SICK are image captions obtained by crowd-sourcing. Each instance
in SICK, that is, each pair of sentences, is labelled as NEUTRAL, ENTAIL-
MENT or CONTRADICTION regarding the semantic relation between the two
sentences. For instance, the pair composed by the sentences “Three kids are
jumping in the leaves” and “Three boys are jumping in the leaves”, is labeled
as ENTAILMENT, while the former sentence paired with “Three kids are sit-
ting in the leaves” is labeled as NEUTRAL. An example of a pair labeled as
CONTRADICTION in SICK is the pair composed by the sentences “Nobody
is riding the bicycle on one wheel” and “A person is riding the bicycle on one
wheel”.

We follow the partitions suggested in [13], but 5 SICK instances were dis-
carded as the DRS parser, Boxer [4], was unable to process them. Therefore,
our train, development and test set have 4436, 495 and 4904 pairs of sentences,
respectively. Notice that the train set is unbalanced, as 2522 pairs are labelled
as NEUTRAL, 1274 as ENTAILMENT and 640 as CONTRADICTION.

Balancing the Training Data. In preliminary experiments, we have observed
that when a negation was involved in a sentence, the classifiers found more
difficult to return the appropriate label . In addition, we consider that a strong
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lexical overlap could be easy to identify (at least by the models using the lexical
features), and thus, that more complicated situations occur in scenarios of low
lexical overlap between sentences. Therefore, we tried to balance the train set,
in what respects these two characteristics (negation and low lexical overlap). We
decided, then, to split the original training into 2 partitions with 50% each, by
considering:

– the presence of a negation in at least one of the sentences of a pair, as identified
with DRS semantics, and

– low lexical overlap, as identified by a Jaccard score lower than 0.6 or a BLEU
score lower than 0.5.

In the 2522 NEUTRAL instances in the original train set, 416 have a nega-
tion and 2188 have low lexical overlap. In the 1274 ENTAILMENT instances,
10 have a negation and 634 have low lexical overlap. Finally, from the 640 CON-
TRADICTION instances, 575 have a negation and 318 have low lexical overlap.
Hence, training instances that contain a negation are almost equally distributed
among NEUTRAL and CONTRADICTION classes, and most of the examples
from these classes have low lexical overlap. Negations are almost not employed
in examples of the ENTAILMENT class, and there are as much examples with
low lexical overlap as those with high lexical overlap. We split the original train
set in two, each containing 50% of the examples from each class, and 50% of
the examples that comply with the above features. For instance, the first set
contains 319 examples of the CONTRADICTION class, of which 287 employ a
negation and 166 have low lexical overlap.

Building Corpora for Strategy 1 and 2. In order to implement Strategy
1, the one that takes advantage of M-BERT results, we removed from the train
corpus the NEUTRAL relation and train the M-OTHER models in order to
distinguish ENTAILMENT from CONTRADICTION situations.

Concerning Strategy 2, and in order to create a reference to train the
M-FAIL models (the FAIL-CORPUS), we split the training set in two (as pre-
viously described). In the first half we trained M-BERT. Then, we run it on the
second half, to build the corpus to train the M-FAIL model: every time M-BERT
successfully labelled an NLI relation, the associated sentence pair was labeled as
1; it was labeled as 0 otherwise. As usually, the development set was used for
tuning (and first tests) and the test set for the final evaluation. Figure 3 details
these partitions.

As we will see, since M-BERT model is successful in most examples, the
dataset to train M-FAIL models is unbalanced. Therefore, to train M-FAIL mod-
els we discard examples where BERT succeeded until reaching the same number
of examples where BERT failed to identify the entailment class, hence obtaining
a balanced FAIL-CORPUS.
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Fig. 3. Corpus partition.

4.2 Evaluation Metrics

The performance of our system on entailment detection is measured with Accu-
racy, Precision, Recall and F-measure (F1, as we consider precision and recall to
have the same weight/importance). All metrics produce values between 0 and 1,
where greater values are better, hence we report results in percentages.

As the entailment task on SICK configures a multi class classification setup,
and the Precision, Recall and F1 metrics are based on the assumption that a
positive label exists (as in binary classification), we calculate such metrics using
an average of scores from binary classifications, one for each class such that
the positive label represents belonging to the class. We chose to average by a
weighted mean that considers the number of instances of each class, since class
distribution is imbalanced in SICK.

Our definition of accuracy also considers class imbalance. In a multi class
setting, the accuracy is defined per class, and obtained by dividing each element
in the diagonal of the confusion matrix (true positives per class) by the sum of
elements in the corresponding row (the total number of examples of a class).
The balanced accuracy is the arithmetic mean of the per class accuracy values.

4.3 Features

Lexical Features. We employ the INESC-ID@ASSIN [9] system that generates
almost 100 features for a pair of sentences, based on the lexical aspects of their
words or by using some similarity measure. Examples of such features are the
length of the longest sentence, or the BLEU [16] metric.

Semantic Features. We obtain DRSs from the Boxer framework [4], containing
semantic aspects for each sentence, such as the implicit entities resulting from
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pronoun resolution, or the type of a quantity, for instance to distinguish parts
of a date from other numbers in a sentence.

Given two DRS, we compute 16 features that represent aspects shared by
both or occurring in any of the DRS. These include: a) boolean features, such as
to indicate the presence of a negation in any of the DRS; b) count based features,
such as for the number of equivalent entities between the negated subsets of each
DRS; c) percentage based features, such as the ratio of equivalent entities and
total entities in both DRS, according to various entity comparison techniques,
and; d) distance based features, such as from measuring the mean gap between
dates from each DRS.

Entities within DRS are considered:

– not equivalent, if a word pair, one from each DRS, is an antonym in the
WordNet [8] database;

– equivalent, if it is a synonym in WordNet;
– equivalent if the cosine of their FastText [3] embeddings is greater than 0.4.

This threshold was chosen by observation, and as a compromise between the
cosines for synonyms and antonyms sampled from WordNet.

Any technique for entity comparison results in 2 features, one for the count
of entities matched and the other for the percentage of entities matched in the
total count of entities of both DRS.

Other than entities, a DRS is also composed of conditions, defined as rela-
tions between a source and a target entity. We consider the target entities from
a pair of conditions of the same type, one from each DRS, as equivalent if the
source entities are also equivalent according to matched entities from the previ-
ously mentioned entity comparison techniques. Thus, relative to conditions, we
consider two entities as equivalent if employed in the same type of condition,
with the same role and paired with equivalent entities.

BERT Embeddings. We employ the base and uncased version of BERT pre-
trained models for English only, as provided with the original BERT release1,
which produces embeddings with 768 dimensions. For such model, we lowercased
text and removed accents from sentence pairs before input to BERT.

4.4 Tools and Model Configuration

Machine learning and data processing is mostly provided by scikit-learn [17]. All
models are trained using Support Vector Machines (SVM) with a linear kernel,
from the LIBLINEAR implementation. To obtain the final model for a certain
combination of features, 7 different models are trained, corresponding to different
values for the C parameter, sampled from a logarithmic scale between 0.001 and
1000. The model with optimal C parameter is further calibrated to maximize
the performance of the SVM [15]. All model tuning is evaluated on the SICK
development set.
1 https://github.com/google-research/bert.

https://github.com/google-research/bert
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Lexical and semantic features are linearly scaled with various approaches,
according to the type of feature or feature vector. For instance, for all feature
vectors, values greater than 1 are scaled to the 0 to 1 range, while for feature
vectors that include BERT we do not employ feature centering around zero,
since BERT features are sparse.

5 Results and Discussion

As previously said, M-BERT and M-OTHER models were trained in the first
partition of the training set and evaluated in the test set. M-FAIL models were
trained in the FAIL-CORPUS. In this section, we will identify each model accord-
ing to the features that they use; we will use “b” for BERT features, “l” for the
lexical features and “d” for the DRS ones.

5.1 M-BERT and M-OTHER Results

Results obtained by M-BERT and M-OTHER models can be seen in Table 1.

Table 1. Performance in the entailment task of the different models.

Features Accuracy Precision Recall F1

b (M-BERT) 78.62% 80.47% 80.53% 80.46%

b+d 79.57% 81.16% 81.18% 81.13%

b+l 79.98% 81.73% 81.77% 81.71%

b+l+d 78.56% 79.96% 79.87% 79.89%

l 67.78% 74.96% 75.18% 74.58%

d 74.16% 75.99% 76.06% 75.93%

l+d 76.72% 78.92% 78.92% 78.79%

The two best results differ from the others in at least 1% of accuracy, and
almost the same for F1, and correspond to M-OTHER models trained on com-
binations of BERT embeddings with lexical or semantic features (b+l and b+d,
respectively). M-BERT is the third best result.

Other than BERT features, the most informative features of the M-OTHER
model based on semantic features include the previously described features for
the count of matched entities according to DRS conditions and the percentage
of matched entities from lexical semantics heuristics.

The most informative lexical features in the b+l model include various count
based features, after scaled to the 0 to 1 range. The only non scaled feature
in such set is the cosine distance between vector representations of trigram
sequences for each sentence.
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Table 2. Strategy 1.

Features Accuracy Precision Recall F1

b 78.80% 80.45% 80.55% 80.46%

b+l 78.83% 80.47% 80.57% 80.48%

b+d 78.85% 80.53% 80.61% 80.53%

b+l+d 78.88% 80.56% 80.63% 80.56%

l 70.10% 76.21% 76.20% 76.02%

d 78.91% 80.85% 80.79% 80.76%

l+d 78.91% 80.85% 80.79% 80.76%

5.2 Strategy 1 Results

Table 2 shows the results obtained by following Strategy 1.
Of the 4904 instances in the test set, 58% were predicted as neutral by M-

BERT, and the remaining were classified by models trained only on ENTAIL-
MENT and CONTRADICTION instances.

The best result was obtained from the model based on semantic features, or
lexical and semantic features combined, while the worst result, with less 4% of F1
performance, is from the model based only on lexical features. In the l+d model,
the only semantic feature of its most informative set is the count of matched
entities according to heuristics, while lexical features in this set are once again
mostly count based features.

5.3 M-FAIL Results

Table 3 shows the results obtained by the different M-FAIL models.

Table 3. M-FAIL results

Features Accuracy Precision Recall F1

b 58.20% 84.78% 60.86% 70.86%

b+l 59.12% 84.94% 65.61% 74.03%

b+d 59.21% 85.00% 65.48% 73.97%

b+l+d 59.28% 85.00% 65.91% 74.25%

l 59.48% 84.87% 69.11% 76.19%

d 58.47% 84.11% 73.41% 78.39%

l+d 59.88% 85.01% 70.03% 76.80%

M-BERT predicts the correct entailment class on 80% of the test set
instances, hence the accuracy of M-FAIL models mostly represent their abil-
ity to predict that M-BERT will correctly identify the entailment class of a
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given example, which is low. However, F1 is more robust to such imbalanced
situations, since it considers recall, and better represents the ability of M-FAIL
to identify either of the classes.

Considering F1, the best model to identify that a given example has the
properties to be correctly classified by M-BERT, is based on semantic features.

The second best model, by a distance of more than 1%, also involves semantic
features, but combined with lexical features. However, the only semantic feature
in the most informative features for the second best model is once again the
count of matched entities according to heuristics, while lexical features in such
set include less count based features than in previous experiments, although still
in greater number among the top 10.

5.4 Strategy 2 Results

Table 4 shows the top-10 results considering the best combination between M-
FAIL and M-OTHER models, considering Strategy 2, that is, a M-FAIL model
predicts that BERT will fail and an M-OTHER model is activated in those
situations. We will represent these combinations by m1/m2 in which m1 is an
M-FAIL model or ensemble and m2 is an M-OTHER.

Table 4. Strategy 2 results

M-FAIL / M-OTHER features Accuracy Precision Recall F1

d / b+l 79.43% 81.28% 81.32% 81.26%

b+l / b+l 79.77% 81.39% 81.44% 81.39%

b+l+d / b+l 79.79% 81.41% 81.46% 81.41%

l / b+l 79.69% 81.44% 81.48% 81.42%

l+d / b+l 79.77% 81.48% 81.53% 81.47%

b+d / b+l 79.80% 81.47% 81.53% 81.47%

b / b+l 79.80% 81.57% 81.63% 81.56%

All / b+d 79.56% 81.11% 81.14% 81.09%

Majority voting / b+l 79.77% 81.44% 81.48% 81.43%

All / b+l 79.85% 81.61% 81.67% 81.60%

Results of classifying an instance with M-BERT according to at least one
M-FAIL model are not shown in Table 4, since in such setting 88.87% of the test
examples are classified with M-BERT, which results in performance similar to
using the standalone M-BERT on the full test set (i.e., without M-FAIL models),
hence lower than shown.

For the remaining settings, both from using a single M-FAIL model or an
ensemble of M-FAIL models, M-BERT is employed to classify at least 32.99% of
the test examples, in any of the “all” ensemble setting, and at most 70.07%, in
any setting using only the M-FAIL model based on semantic features.
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5.5 Results According to the Labels

Just to give an idea of how the best results relate with the different labels,
Table 5 shows the results of the best model (d or l+d; see Table 2) according to
Strategy 1, and Table 6 shows the results of the best model (all / b+l; see
Table 4) according to Strategy 2.

Table 5. Performance per entailment label, of the best result with Strategy 1.

Label Accuracy Precision Recall F1

NEUTRAL 85.80% 82.77% 85.80% 84.26%

ENTAILMENT 71.56% 72.75% 71.56% 72.15%

CONTRADICTION 79.35% 89.26% 79.35% 84.01%

Table 6. Performance per entailment label, of the best result with Strategy 2.

Label Accuracy Precision Recall F1

NEUTRAL 86.66% 83.58% 86.66% 85.09%

ENTAILMENT 72.27% 75.06% 72.27% 73.64%

CONTRADICTION 80.62% 86.84% 80.62% 83.61%

In both cases, entailment relation is the most difficult to identify.

6 Conclusion and Future Work

We have presented several classifiers that perform NLI. Along with state-of-
the-art BERT, other features were considered. We also implemented a model
that tries to predict when BERT will fail. Various experiments here presented
suggest that our semantic features are able to improve results, for instance in
distinguishing ENTAILMENT from CONTRADICTIONS, as seen in results for
Strategy 1. Moreover, we presented data analysis and manipulation techniques
to better leverage a corpus for supervision of our models, and a novel approach
to assess NLI by training a classifier to predict when a typically successful model
might fail.

Machine learning in our experiments was based on linear SVM, to achieve
the best performance for the least computation time and resources. However, as
future work, we plan to experiment with non linear kernels, and other machine
learning algorithms, such as decision trees or an ensemble of different models.

Our setup is adaptable to other corpora or features, but human supervision
is required on balancing the training data and building the FAIL-CORPUS,
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to prevent extreme cases on particular corpora, for instance an empty FAIL-
CORPUS due to sucess of M-BERT. As such, future work also includes assessing
the performance of our strategies in other corpora, and inspection of models with
low performance, such as the M-FAIL models, by example analysis.
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Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 32, pp. 3266–3280. Curran Associates, Inc. (2019)

https://doi.org/10.18653/v1/D19-1630
https://doi.org/10.18653/v1/D19-1630
https://www.aclweb.org/anthology/D19-1630
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://www.aclweb.org/anthology/S14-2001
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://doi.org/10.1145/1102351.1102430
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://www.aclweb.org/anthology/P02-1040
https://doi.org/10.18653/v1/W19-4810
https://doi.org/10.18653/v1/W19-4810
https://www.aclweb.org/anthology/W19-4810


To BERT or Not to BERT 747

20. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.: GLUE: a multi-
task benchmark and analysis platform for natural language understanding. In: Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 353–355. Association for Computational Linguistics,
Brussels, November 2018. https://doi.org/10.18653/v1/W18-5446, https://www.
aclweb.org/anthology/W18-5446

21. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sen-
tence understanding through inference. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122. Associ-
ation for Computational Linguistics, New Orleans, June 2018. https://doi.org/10.
18653/v1/N18-1101, https://www.aclweb.org/anthology/N18-1101

22. Zhang, Z., Wu, Y., Li, Z., Zhao, H.: Explicit contextual semantics for text compre-
hension. In: Proceedings of the 33rd Pacific Asia Conference on Language, Infor-
mation and Computation (PACLIC 33) (2019)

https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/N18-1101

	To BERT or Not to BERT Dealing with Possible BERT Failures in an Entailment Task
	1 Introduction
	2 Related Work
	3 Entailment and Failure Models
	4 Experimental Setup
	4.1 Corpora
	4.2 Evaluation Metrics
	4.3 Features
	4.4 Tools and Model Configuration

	5 Results and Discussion
	5.1 M-BERT and M-OTHER Results
	5.2 Strategy 1 Results
	5.3 M-FAIL Results
	5.4 Strategy 2 Results
	5.5 Results According to the Labels

	6 Conclusion and Future Work
	References




