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Abstract. We introduce twelve operators called fuzzy quantifier-based
operators. They are proposed as a new tool to help to deepen the analysis
of data in fuzzy formal concept analysis. Moreover, we employ them to
construct a graded extension of Aristotle’s square, namely the graded
decagon of opposition.
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1 Introduction

Formal Concept Analysis (FCA) is a mathematical theory applied to the analysis
of data (see [6]). The input of FCA is a triple called formal context that consists
of a set of objects, a set of attributes, and a binary relation between objects and
attributes. FCA techniques extract a collection of formal concepts from every
formal context.

Formal concepts are special clusters that correspond to concepts such as
“numbers divisible by 5”, or “white roses in the garden”. Fuzzy Formal Con-
cept Analysis (FFCA) generalizes formal concept analysis to include also vague
information. The input of FFCA is an L-context (X,Y, I) where L is a support
of an algebra of truth values, X is a set of objects, Y a set of attributes, and I
is a fuzzy relation I : X × Y −→ L.

A fuzzy concept is a pair (A,B) where A,B are fuzzy sets A : X −→ L,
B : Y −→ L. A is called extent and it is a fuzzy set of all objects x ∈ X
that have all attributes of B, and B is called intent and it is a fuzzy set of all
attributes y ∈ Y being satisfied by all objects of A. Namely, A(x) is the degree to
which “x has all attributes of B”, and B(y) is the degree to which “the attribute
y is satisfied by all objects of A”.
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In this article, we define twelve special operators as a tool to deepen the
analysis of data. To explain their function, let us consider the following situation.

Let (X,Y, I) be an L-context, where X is a set of students, Y are their skills,
I(x, y) is the degree to which “a student x has the skill y”. Thus, given a fuzzy
concept (A,B), we know that A is the fuzzy set representing all students with
all skills in B.

Let us now ask, how many students share “almost all skills in B” (“most skills
in B”, or “many skills in B”). Additionally, we may need to classify students with
respect to how many skills of B they do not have and exactly, to consider the
following fuzzy sets of X: students sharing “few skills in B”, students who do not
have “most skills in B”, or students “do not have many skills in B”. Similarly,
we can also consider a fuzzy set of Y formed of all skills shared by “almost all”
(“most”, “many”, or “few”) students of A, and the fuzzy set of Y made of all
skills that are not shared by “most” (or “many”) students in A. Each of the
previous sets is generated by a fuzzy quantifier-based concept-forming operator,
that allows us to introduce an extended notion of fuzzy concept.

Fuzzy quantifier-based operators are defined taking into account expressions
of natural language extremely big, very big, and not small that are formalized
within the theory of evaluative linguistic expressions [8]. Finally, starting from
the �Lukasiewicz MV-algebra, we employ the fuzzy quantifier-based operators
to represent a graded decagon of opposition, which is a graded extension of
Aristotle’s square (see Fig. 1).

I: at least one in P is a Q

A: all P ’s are Q’s

O: at least one P is not a Q

E: all P ’s are not Q’s

Fig. 1. Aristotle’s square. The lines , , , denote that the corre-
sponding propositions are contradictories, sub-contraries, sub-alterns, and contraries,
respectively.

The article is organized as follows. Section 2 reviews some basic notions and
results regarding MV-algebras, fuzzy formal concept analysis, and the graded
square of opposition. Section 3 introduces the fuzzy quantifier-based operators
and the corresponding new notions of fuzzy concepts. In Sect. 4, we construct
a graded decagon of opposition using the former. Finally, in the last section we
discuss further possible development of our results.
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2 Preliminaries

This section describes some fundamental notions and results regarding MV-
algebras, fuzzy formal concept analysis, and the graded square of opposition.

2.1 MV-Algebras

Definition 1. A lattice 〈L,∨,∧〉 is complete if and only if all subsets of L have
both supremum and infimum.

Definition 2. A residuated lattice is an algebra 〈L,∨,∧,⊗,→,0,1〉 where

(i) 〈L,∧,∨,0,1〉 is a bounded lattice,
(ii) 〈L,⊗,1〉 is a commutative monoid, and
(iii) a ⊗ b ≤ c iff a ≤ b → c, for all a, b, c ∈ L (adjunction property).

Definition 3 ([3,11]). An MV-algebra is a residuated lattice

L = 〈L,∨,∧,⊗,→,0,1〉

where a∨b = (a → b) → b, for each a, b ∈ L. We will also work with the following
additional operations on L:

(i) ¬a = a → 0 (negation),
(ii) a ⊕ b = ¬(¬a ⊗ ¬b) (strong disjunction),
(iii) a ↔ b = (a → b) ∧ (b → a) (biresiduation).

Example 1. A special MV-algebra is the standard �Lukasiewicz MV-algebra

L�L = 〈[0, 1],∨,∧,⊗,→, 0, 1〉

where a ∨ b = max(a, b), a ∧ b = min(a, b), a ⊗ b = max(0, a + b − 1) and
a → b = min(1, 1 − a + b), ¬a = 1 − a and a ⊕ b = min{1, a + b}, for all a, b ∈ L.

In the following lemma, we list some properties of complete MV-algebras1

that will be used below.

Lemma 1. Let L = 〈L,∨,∧,⊗,→,0,1〉 be a complete MV-algebra. Then the
following holds for all a, b, c, d, e ∈ L:

(a) If a ≤ b and c ≤ d, then a ∧ c ≤ b ∧ d.
(b) Let I be any index set. Then for each k ∈ I,

∧
i∈I ai ≤ ak and ak ≤ ∨

i∈I ai.
(c) If ai ≤ bi for each i ∈ I, then

∨
i∈I ai ≤ ∨

i∈I bi.
(d) a ⊕ ¬a = 1 and a ⊗ ¬a = 0.
(e) If a ⊗ b ≤ e, then (a ∧ c) ⊗ (b ∧ d) ≤ e.
(f) If a ≤ b and c ≤ d, then a ⊗ c ≤ b ⊗ d and a ⊕ c ≤ b ⊕ d.

1 More generally, the properties (a), (b) and (c) hold in any complete lattice.
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2.2 Fuzzy Formal Concept Analysis

In this subsection, we recall the definition of two pairs of fuzzy concept-forming
operators (↑, ↓), and (∩, ∪) existing in literature. Given a complete residuated
lattice L, by a fuzzy set of the universe X we mean a function A : X −→ L.
If A is a fuzzy set on X, then we write A ⊂∼ X. For each A,B ⊂∼ X, we put
SX(A,B) =

∧
x∈X(A(x) → B(x)), which represents the degree of inclusion of A

in B2.

Definition 4 ([1,12]). Let (X,Y, I) be an L-context and A ⊂∼ X, B ⊂∼ Y . We
put

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) and B↓(x) =
∧

y∈Y

(B(y) → I(x, y)),

for all x ∈ X and y ∈ Y .

The A↑(y) and B↓(x) correspond to the truth degrees of the statements “an
attribute y is shared by all objects of A” and “an object x has all attributes of
B”, respectively.

Definition 5 ([13]). Let (X,Y, I) be an L-context. If A ⊂∼ X and B ⊂∼ Y , then

A∩(y) =
∨

x∈X

(A(x) ⊗ I(x, y)) and B∪(x) =
∧

y∈Y

(I(x, y) → B(y)),

for all x ∈ X and y ∈ Y .

The operators ∩ and ∪ are borrowed from the rough set theory. Namely, A∩(y)
and B∪(x) correspond to the truth degrees of the statements “an attribute y is
shared by at least one object of A” and “an object x has no attributes outside
B”, respectively.

Each pair (A,B) ∈ LX × LY such that A↑ = B and B↓ = A is called
standard L-concept. Analogously, each pair (A,B) ∈ LX ×LY such that A∩ = B
and B∪ = A is called property-oriented L-concept.

Theorem 1. The pair of mappings ↑ : LX → LY and ↓ : LY → LX forms an
antitone Galois connection between X and Y , i.e. SX(A,B↓) = SY (B,A↑), for
each A ⊂∼ X and B ⊂∼ Y .

Theorem 2. The pair of mappings ∩ : LX → LY and ∪ : LY → LX forms an
isotone Galois connection between X and Y , i.e. SX(A,B∪) = SY (A∩, B), for
each A ⊂∼ X and B ⊂∼ Y .

Definition 6. Given a set X and a complete residuated lattice L, by a fuzzy
preposet we mean a pair (X,R) where R is a fuzzy relation on X that is reflexive,
i.e. R(x, x) = 1 for each x ∈ X, and ⊗-transitive, i.e. R(x, y) ⊗ R(y, z) ≤
R(x, z), for each x, y, z ∈ X.
2 Note that this formula is interpretation of the logical formula (∀x)(A(x) ⇒⇒⇒ B(x))

defining classical inclusion between (fuzzy) sets in a model of fuzzy predicate logic.
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2.3 Graded Square of Opposition and Fuzzy Concept-Forming
Operators

In this subsection, we define graded square of opposition referring to [5], and we
enunciate a theorem that shows how this square can be obtained using the fuzzy
concept-forming operators introduced in Subsect. 2.2.

Definition 7. Let PA and PB be properties represented by A,B ⊂∼ X, then we
say that

1. PA and PB are contraries if and only if A(x) ⊗ B(x) = 0 for each x ∈ X,
2. PA and PB are sub-contraries if and only if A(x)⊕B(x) = 1 for each x ∈ X,
3. PA and PB are sub-alterns if and only if A(x) → B(x) = 1 for each x ∈ X,
4. PA and PB are contradictories if and only if A(x) = ¬B(x) for each x ∈ X.

Definition 8. In a graded square of opposition the vertices A, E, I, and O
are fuzzy sets representing the propositions PA, PE, PI, and PO such that the
following conditions hold:

1. PA and PE are contraries;
2. PI and PO are sub-contraries;
3. PA and PI are sub-alterns, as well as PE and PO;
4. PA and PO are contradictories, as well as PE and PI.

From now, given the L-contexts (X,Y, I), we suppose that L is the �Lukasiewicz
MV-algebra, because we will need the double negation law, i.e. ¬¬a = a for each
a ∈ L. Moreover, we put (¬I)(x, y) = ¬I(x, y). In the standard �Lukasiewicz
algebra, ¬I(x, y) = 1 − I(x, y), for all x ∈ X and y ∈ Y .

This lemma follows from the results found in [5].

Lemma 2. Let A ⊂∼ X be a normal fuzzy set3, then

1. A↑
I(y) ⊗ A↑

¬I(y) = 0,
2. A∩

I (y) ⊕ A∩
¬I(y) = 1,

3. A↑
I(y) ≤ A∩I (y), and A↑

¬I(y) ≤ A∩
¬I(y),

4. ¬A↑
I(y) = A∩

¬I(y), and ¬A∩
I (y) = A↑

¬I(y),

for each y ∈ Y .

Theorem 3. Let A ⊂∼ X. If A is normal, then A↑
I , A↑

¬I , A∩
I and A∩

¬I are the
vertices of a graded square of opposition, and they represent proprieties that are
in relation of contrary, sub-contrary, sub-altern, and contradictory as shown in
Fig. 2.

Observe that we obtain the graded square of opposition defined in [4] when fixing
y ∈ Y .

Example 2. Let (X,Y, I) be an L-context, where X = {x1, x2, x3, x4},
Y = {y1, y2, y3, y4}, and I(x1, y1) = 0.25, I(x2, y1) = 0.6, I(x3, y1) =
1, I(x4, y1) = 0.25. The graded square of opposition associated to A =
{x1, 0.5/x2, 0.6/x3, 0.5/x4} and y1 is depicted in Fig. 3.
3 There exists x ∈ X such that A(x) = 1.
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A∩
I

A↑
I

A∩
¬I

A↑
¬I

Fig. 2. Graded square of opposition

A∩
I (y1) = 0.6

A↑
I(y1) = 0.25

A∩
¬I(y1) = 0.75

A↑
¬I(y1) = 0.4

Fig. 3. Example of graded square of
opposition

3 Fuzzy Quantifier-Based Operators

In this section, we introduce the fuzzy

0

1

1

0.5

0.5 0.910.67 0.79

VeBi

0.970.75 0.86

ExBi

0.1 0.360.24

Sm ¬Sm

Fig. 4. Shapes of the fuzzy sets BiEx,
BiVe, ¬Smν.

quantifier based-operators extending
the notion of fuzzy concept. Our the-
ory is based on the theory of interme-
diate quantifiers presented in [7,9] and
elsewhere. The theory is based on the
concept of evaluative linguistic expres-
sion. These are expressions of natu-
ral language such as “small, very big,
rather medium”, etc. In this paper we
confine only to “not small”, “very big” and “extremely big” and use a simplified
model in which we consider only extensions in the (linguistic) context 〈0, 0.5, 1〉4
that are fuzzy sets BiEx,BiVe,¬Smν depicted in Fig. 4. For justification of this
model, see [8,10].

Remark 1. It is clear that BiEx(x) ≤ BiVe(x) ≤ ¬Smν(x) holds for all x ∈ [0, 1].

The cardinality of A ⊂∼ X is defined by |A| =
∑

x∈X A(x). Furthermore,
given A,B ⊂∼ X, we consider the following measure that expresses how large the
size of A is w.r.t. the size of B (see [9])

μB(A) =

⎧
⎪⎨

⎪⎩

1 if B = ∅ or A = B,
|A|
|B| if B �= ∅ and A ⊆ B,

0 otherwise.

For our further reasoning, we need a special operation called cut of a fuzzy
set. It is motivated by the need to form a new fuzzy set from a given one by
extracting several elements together with their membership degrees and putting
the other membership degrees equal to 0.

4 By a linguistic context for evaluative expressions, we understand a triple of numbers
〈vL, vS , vR〉 that determines an interval [vL, vS ] ∪ [vS , vR] in which all values range.
For the more detailed explanation, see [10].
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Definition 9 ([7]). Let A,B ⊂∼ X. The cut of A with respect to B is the fuzzy
set

(A|B)(x) =

{
A(x) if A(x) = B(x),
0 otherwise.

(1)

Now, we give the definition of positive and negative fuzzy quantifier based-
operators that are based on the relation I, and on the functions ¬Smv,BiVe and
BiEx. Our aim is to capture positive, or negative information in (X,Y, I).

Definition 10 (Fuzzy quantifier-based operators). Let us consider an
L-context (X,Y, I), A ⊂∼ X, B ⊂∼ Y , x ∈ X, and y ∈ Y . Let Ev ∈
{¬Smv,BiVe,BiEx}. Then we put:

(i) Positive fuzzy quantifier based-operators

A↑
I,Ev(y) =

∨

Z⊂∼X

(
∧

x∈X

((A|Z)(x) → I(x, y)) ∧ Ev(μA(A|Z))), (2)

and

B↓
I,Ev(x) =

∨

Z⊂∼Y

(
∧

y∈Y

((B|Z)(y) → I(x, y)) ∧ Ev(μB(B|Z))), (3)

(ii) Negative fuzzy quantifier based-operators

A↑
¬I,Ev(y) =

∨

Z⊂∼X

(
∧

x∈X

((A|Z)(x) → ¬I(x, y)) ∧ Ev(μA(A|Z))), (4)

and

B↓
¬I,Ev(x) =

∨

Z⊂∼Y

(
∧

y∈Y

((B|Z)(y) → ¬I(x, y)) ∧ Ev(μB(B|Z))), (5)

Informal explanation of the formulas in Definition 10 is the following:

(i) A↑
I,Ev(y) is the truth degree to which there exists a cut of A such that “all

its objects have the attribute y” and “its size is Ev (not small, very big or
extremely big) w.r.t. the size of A”. Analogous statement holds for B↓

I,Ev(y).
(ii) A↑

¬I,Ev(x) is the truth degree to which there exists a cut of A such that “all
its objects do not have the attribute y” and “its size is Ev (not small, very
big or extremely big) w.r.t. the size of A”. Analogous statement holds for
and B↓

¬I,Ev(y).

Remark 2. (a) If Z ⊂∼ X and y ∈ Y , then
∧

x∈X((A|Z)(x) → I(x, y)) =

(A|Z)↑
I(y) and

∧
x∈X((A|Z)(x) → ¬I(x, y)) = (A|Z)↑

¬I(y).
(b) If Z ⊂∼ Y and x ∈ X, then

∧
y∈Y ((B|Z)(y) → I(x, y)) = (B|Z)↓

I(y) and
∧

y∈Y ((B|Z)(y) → ¬I(x, y)) = (B|Z)↓
¬I(x).
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Since BiEx, BiVe and ¬Smv lay behind the definition of the intermediate quan-
tifiers almost, most and many (cf. [9]), formulas A↑

I,Ev(y), A↑
¬I,Ev(y), B↓

I,Ev(x)
and B↓

¬I,Ev(x) can be understood as interpretation of the linguistic expressions
summarized in Table 1.

Table 1. Verbal description of the fuzzy quantifier-based operators

Truth degree Statement

A↑
I,BiEx(y) y is shared by almost all objects of A

B↓
I,BiEx(x) x has almost all attributes of B

A↑
I,BiVe(y) y is shared by most objects of A

B↓
I,BiVe(x) x has most attributes of B

A↑
I,¬Smv(y) y is shared by many objects of A

B↓
I,¬Smv(x) x has many attributes of B

A↑
¬I,BiEx(y) y is shared by few objects of A

B↓
¬I,BiEx(x) x has few attributes of B

A↑
¬I,BiVe(y) y is not shared by most objects of A

B↓
¬I,BiVe(x) most attributes of B are not satisfied by x

A↑
¬I,¬Smv(y) y is not shared by many objects of A

B↓
¬I,¬Smv(x) many attributes of B are not satisfied by x

In the sequel, new notions of fuzzy concepts are introduced considering addi-
tional information generated by the fuzzy-quantifier-based operators.

Definition 11. Let Ev ∈ {¬Smv,BiVe,BiEx} and H ∈ {I,¬I}. For each
A, Ã ⊂∼ X, and B, B̃ ⊂∼ Y , we set

(i) A⇑
H,Ev = (A↑

H , A↑
H,Ev) and (B, B̃)⇓

H,Ev = B↓
H ,

(ii) (A, Ã)

H,Ev = A↑

H and B�
H,Ev = (B↓

H , B↓
H,Ev).

Definition 12 (Extended fuzzy concepts). Let Ev ∈ {¬Smv,BiVe,BiEx},
A, Ã ⊂∼ X, and B, B̃ ⊂∼ Y . Then, we say that

(i) (A, (B, B̃)) is a positive concept with Ev-attributes if and only if A =
(B, B̃)⇓

I,Ev and (B, B̃) = A⇑
I,Ev.

(ii) (A, (B, B̃)) is a negative concept with Ev-attributes if and only if A =
(B, B̃)⇓

¬I,Ev and (B, B̃) = A⇑
¬I,Ev.

(iii) ((A, Ã), B) is a positive concept with Ev-objects if and only if (A, Ã) =
B�

I,Ev and B = (A, Ã)

I,Ev.

(iv) ((A, Ã), B) is a negative concept with Ev-objects if and only if if (A, Ã) =
B�

¬I,Ev and B = (A, Ã)

¬I,Ev.
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The following theorems state that the pairs of operators given by Definition 11
are both Galois connections between fuzzy preposets (see Definition 6). Given a
set X, for each A,B,C,D ⊂∼ X, we set

RX((A,B), (C,D)) = SX(C,A). (6)

Theorem 4. Let Ev ∈ {¬Smv,BiVe,BiEx} and H ∈ {I,¬I}. Then,

(a) the pair of mappings ⇑
H,Ev : LX → LY × LY and ⇓

H,Ev : LY × LY → LX is a
Galois connection between the fuzzy preposets (LX ,SX) and (LY × LY ,RY ),
i.e. SX(A, (B, B̃)⇓

H,Ev) = RY (A⇑
H,Ev, (B, B̃)) for each A ⊂∼ X and B, B̃ ⊂∼ Y ,

(b) the pair of mappings 

H,Ev : LY × LY → LX and �

H,Ev : LX → LY × LY is a
Galois connection between the fuzzy preposets (LY × LY ,RY ) and (LX ,SX),
i.e. RY ((A, Ã), B�

H,Ev) = SX((A, Ã)

H,Ev, B) for each A, Ã ⊂∼ X and B ⊂∼ Y .

Proof. We prove only item (a), because item (b) can be proved analogously.
Let A ⊂∼ X, and B, B̃ ⊂∼ Y . By Definition 11(i), SX(A, (B, B̃)⇓

H,Ev) =

SX(A,B↓
H). Moreover, by Theorem 1, we know that SX(A,B↓

H) =
∧

x∈X(A(x) → B↓
H(x)) is equal to SY (B,A↑

H) =
∧

y∈Y (B(y) → A↑
H(y)).

Eventually, by (6), SY (B,A↑
H) = RY (A⇑

H,Ev, (B, B̃)). Then, we conclude that
SX(A, (B, B̃)⇓

H,Ev) = RY (A⇑
H,Ev, (B, B̃)). ��

4 Graded Decagon of Opposition with Fuzzy
Quantifier-Based Operators

In this section,we introduce the definition of gradeddecagon of opposition,which is
a generalization of the graded square of opposition given in Definition 8. Moreover,
we construct a graded decagon of opposition using some fuzzy quantifier-based
operators.

Definition 13 (Graded decagon of opposition). A graded decagon of oppo-
sition consists of vertices A1, . . . , A5 ⊂∼ X, and N1, . . . , N5 ⊂∼ X representing the
propositions PA1 , . . . , PA5 , PN1 , . . . , PN5 such that:

1. PAi
and PNj

are contraries, for each i, j ∈ {1 . . . , 4},
2. PA5 and PN5 are sub-contraries,
3. PAi

and PAi+1 are sub-alterns, as well as PNi
and PNi+1 , for each i ∈

{1, . . . , 4},
4. PA1 and PN5 are contradictories, as well as PA5 and PN1 .

The graded decagon of opposition is depicted in Fig. 5.
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A5

A4

N5

N4

N3A3

N2A2

A1 N1

Fig. 5. Graded decagon of opposition

In the sequel, we prove a few lemmas in order to construct a graded decagon
of opposition with the fuzzy quantifier-based operators.

Lemma 3. For each A ⊂∼ X and y ∈ Y , the following properties hold:

(a) A↑
I(y) ≤ A↑

I,BiEx(y) ≤ A↑
I,BiVe(y) ≤ A↑

I,¬Smv(y),
(b) A↑

¬I(y) ≤ A↑
¬I,BiEx(y) ≤ A↑

¬I,BiVe(y) ≤ A↑
¬I,¬Smv(y).

Proof. We give the proof of item (a) only. The proof of item (b) is analogous.

Let Ev ∈ {¬Smv,BiVe,BiEx}. Trivially, A↑
I(y) = (A|A)↑

I(y) ∧ Ev(μA(A|A)).
By Lemma 1(b),

(A|A)↑
I(y) ∧ Ev(μA(A|A)) ≤

∨

Z⊂∼X

((A|Z)↑
I(y) ∧ Ev(μA(A|Z))),

namely A↑
I(y) ≤ A↑

I,Ev(y). By Remark 1, for each Z ⊂∼ X,

BiEx(μA(A|Z)) ≤ BiVe(μA(A|Z)) ≤ ¬Smv(μA(A|Z)).

Consequently, by Lemma 1(a),

(A|Z)↑
I(y) ∧ BiEx(μA(A|Z)) ≤ (A|Z)↑

I(y) ∧ BiVe(μA(A|Z)) ≤
(A|Z)↑

I(y) ∧ ¬Smv(μA(A|Z)).

Finally, by Lemma 1(c), A↑
I,BiEx(y) ≤ A↑

I,BiVe(y) ≤ A↑
I,¬Smv(y). ��

In some relations, it is necessary to add the assumption that the fuzzy set
in concern is non-empty. In classical logic, we add the formula (∃x)A(x) that
assures us that “there exists at least one element x” and speak about existential
import (or presupposition). In fuzzy logic, the quantifier ∃ is interpreted by
supremum. This leads us to the following definition.
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Definition 14. Let A ⊂∼ X, y ∈ Y , Ev ∈ {¬Smv,BiVe,BiEx}, and H ∈ {I,¬I}.
Then the following formulas have existential import:

(i) (A↑
H(y))∗ =

∧
x∈X(A(x) → H(x, y)) ⊗ ∨

x∈X A(x),
(ii) (A↑

H,Ev(y))∗ =
∨

Z⊂∼X [(
∧

x∈X((A|Z)(x) → H(x, y)) ∧ Ev(μA(A|Z))) ⊗
∨

x∈X(A|Z)(x)].

The existential import is used in the following lemmas.

Lemma 4. Let A ⊂∼ X, y ∈ Y , Ev ∈ {¬Smv,BiVe,BiEx}, and H ∈ {I,¬I}.
Then,

(A↑
H,Ev(y))∗ ≤

(
∨

x∈X

A(x)

)

→ A∩
H(y).

Proof. By Lemma 1(b), the following inequality holds: for each Z ⊂∼ X and
x ∈ X

(A|Z)↑
H(y) ≤ (A|Z)(x) → H(x, y).

By the adjunction property, (A|Z)↑
H(y) ⊗ (A|Z)(x) ≤ H(x, y). By Lemma 1(f),

(A|Z)↑
H(y) ⊗ (A|Z)(x) ⊗ A(x) ≤ A(x) ⊗ H(x, y).

Hence,

(A|Z)↑
H(y) ⊗

∨

x∈X

(A|Z)(x) ⊗
∨

x∈X

A(x) ≤
∨

x∈X

A(x) ⊗ H(x, y).

By Lemma 1(e),

((A|Z)↑
H(y) ∧ Ev(μA(A|Z))) ⊗

∨

x∈X

(A|Z)(x) ⊗
∨

x∈X

A(x) ≤
∨

x∈X

A(x) ⊗ H(x, y).

Using the adjunction property, we conclude that (A↑
H,Ev(y))∗ ≤ (

∨
x∈X A(x)) →

A∩
H(y). ��

Lemma 5. Let A ⊂∼ X, y ∈ Y , and Ev1, Ev2 ∈ {¬Smv,BiVe,BiEx}. Then,

(A↑
I,Ev1

(y))∗ ⊗ (A↑
¬I,Ev2

(y))∗ = 0.

Proof. Let y ∈ Y , x ∈ X and Z1, Z2 ⊂∼ X. By Definition 4, and by Lemma 1(b),

(A|Z1)
↑
I(y) ≤ (A|Z1)(x) → I(x, y), and (A|Z2)

↑
¬I(y) ≤ (A|Z2)(x) → ¬I(x, y).

Then, by the adjunction property,

(A|Z1)
↑
I(y) ⊗ (A|Z1)(x) ≤ I(x, y), and (A|Z2)

↑
¬I(y) ⊗ (A|Z2)(x) ≤ ¬I(x, y).

By Lemma 1(e), ((A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1))) ⊗ (A|Z1)(x) ≤ I(x, y), and

((A|Z2)
↑
¬I(y) ∧ Ev2(μA(A|Z2))) ⊗ (A|Z2)(x) ≤ ¬I(x, y).
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By Lemma 1(d), (f),

((A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1))) ⊗ (A|Z1)(x) ⊗ ((A|Z)↑

¬I(y) ∧ Ev2(μA(A|Z)))⊗
(A|Z1)(x) = 0,

Finally,

∨

Z1⊂∼X

(

(A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1)) ⊗

∨

x∈X

(A|Z1)(x)

)

⊗

∨

Z2⊂∼X

(

((A|Z2)
↑
¬I(y) ∧ Ev2(μA(A|Z2))) ⊗

∨

x∈X

(A|Z2)(x)

)

= 0,

and hence, (A↑
I,Ev1

(y))∗ ⊗ (A↑
¬I,Ev2

(y))∗ = 0. ��
Lemma 6. Let A ⊂∼ X, y ∈ Y , and Ev ∈ {¬Smv,BiVe,BiEx}. Then,

(A↑
I,Ev(y))∗ ⊗ (A↑

¬I(y))∗ = 0 and (A↑
I(y))∗ ⊗ (A↑

¬I,Ev(y))∗ = 0.

Proof. The proof is similar to that of Lemma 5. ��
The following theorem shows that we can obtain a decagon of oppositions

starting from our operators.

Theorem 5. Let (X,Y, I) be an L-context, where L is the standard �Lukasiewicz
MV-algebra, and let A ⊂∼ X. If A is normal, then

A↑
I , A

↑
I,BiEx, A

↑
I,BiVe, A

↑
I,¬Smv, A

∩
I , A↑

¬I , A
↑
¬I,BiEx, A

↑
¬I,BiVi, A

↑
¬I,¬Smv, A

∩
¬I

are the vertices of a graded decagon of opposition, and they represent proprieties
that are in relation of contrary, sub-contrary, sub-altern, and contradictory as
shown in Fig. 6.

Proof. The proof follows by Theorem 3, Lemma 3, Lemma 4, Lemma 5, and
Lemma 6. ��

Example 3. Let (X,Y, I) be an L-context, where X = {x1, . . . , x24}, Y = {y1,
. . . , y10}, and the L-relation I between the objects of X and the attribute y1

of Y is defined by Table 2. Let us fix the context 〈0, 0.5, 1〉. Then the functions
¬Smv : [0, 1] → [0, 1], BiVe : [0, 1] → [0, 1], and BiEx : [0, 1] → [0, 1] are defined
in [10] (cf. also Fig. 4). Furthermore, put

A = {1/
x1, . . . , 1

/
x7, 0.6/

x8, 0.93/
x9, 0.5/

x10, 1
/
x11, 0.7/

x12, 0.98/
x13,

1/
x14, . . . , 1

/
x16, 0.8/

x17, 1
/
x18, . . . , 1

/
x20, 0.5/

x21, 1
/
x22, 1

/
x23,

0.66/
x24, 1

/
x25, 1

/
x26}.

Then we obtain the graded decagon of opposition depicted in Fig. 7.
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Table 2. The fuzzy relation I between the objects of X and attribute y1.

I x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y1 0.5 0.15 0.31 0.5 0.66 0.5 0.5 0 0.73 0 0.5 0.8

I x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26

y1 0.98 0.25 0.5 0.5 0.27 0.5 0.5 0.6 0 0.37 0.5 0.02 0.5 0.6

A∩
I

A↑
I,¬Smv

A∩
¬I

A↑
¬I,¬Smv

A↑
¬I,BiVeA↑

I,BiVe

A↑
¬I,BiExA↑

I,BiEx

A↑
I A↑

¬I

Fig. 6. Graded decagon of opposi-
tion

A∩
I (y1) = 0.96

A↑
I,¬Smv(y1) = 0.5

A∩
¬I(y1) = 0.85

A↑
¬I,¬Smv(y1) = 0.5

A↑
¬I,BiVe(y1) = 0.4A↑

I,BiVe(y1) = 0.37

A↑
¬I,BiEx(y1) = 0.34A↑

I,BiEx(y1) = 0.31

A↑
I(y1) = 0.15 A↑

¬I(y1) = 0.04

Fig. 7. Example of graded decagon of opposi-
tion

5 Future Directions

In this article, a graded decagon of opposition is introduced as a graded gener-
alization of Aristotle’s square, and it is constructed using some fuzzy quantifier-
based operators. As future work, we intend to analyze more deeply the role that
the fuzzy quantifier-based operators could have in fuzzy formal concept analy-
sis. Moreover, fixed an evaluative linguistic expression Ev1, we will find another
evaluative linguistic expression Ev2 such that the pair of operators ↑

I,Ev1
and

↓
I,Ev2

forms a Galois connection. Finally, we would like to propose our opera-
tors as fuzzy generalizations of the scaling quantifiers used in Relational concept
analysis [2].
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