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1 Introduction

In this paper, we continue our investigation of fuzzy quantifiers and their seman-
tic properties [3-5,8]. We are working with the general concept of generalized
quantifiers originating from works of Mostowski [12], Lindstrom [11] and many
others. For details, we refer to monograph [13]. For example, a generalized quan-
tifier @ with one argument (so-called type (1)!) over a set universe M can be
understood as a mapping from the powerset of M to the set of truth values {0, 1}
(i.e., false and true, respectively).

At first [3,8], we investigated a straightforward generalization of these gen-
eralized quantifiers, where arguments of fuzzy quantifiers were fuzzy sets and
the set of truth values {0,1} has been replaced by some more general structure.
Namely, we used a residuated lattice L and defined fuzzy quantifiers on M as
mappings from the power set of M to L. However, these generalized quantifiers
were still defined over a crisp universe M. Gradually, we started to be aware of
severe limitations of this approach. For example, it was not possible to define the
important operation of relativization in a satisfactory way (see [5]). The reason

! This notation originated in [11], where quantifiers are understood as classes of rela-
tional structures of a certain type (representing a number of arguments and variable
binding). It is widely used in the literature on generalized quantifiers [13].
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is that in the definition of relativization, the first argument of a quantifier (i.e., a
fuzzy set) becomes a new universe for the relativized quantifier. But, only crisp
sets have been permitted as universes for fuzzy quantification. To overcome this
limitation, in [5] we defined the so-called C-fuzzy quantifiers, where a fuzzy set
C served as a universe of quantification. We showed there that relativization can
be satisfactorily defined in this frame. However, also the approach of C-fuzzy
quantifiers has its limitations. In this contribution, we present initial observa-
tions on a more general approach, in which pairs (M, C'), where M is a crisp set
and C is a fuzzy subset of M, serve as universes for fuzzy quantification. As case
studies, important semantic notions of restriction and of living on a fuzzy set in
the setting of fuzzy quantifiers over fuzzy universes are investigated.

This paper is structured as follows: In Sect.2, we summarize necessary
notions on algebras of truth values and on fuzzy sets. Section 3 contains basic
definitions of generalized quantifiers, restricted quantifiers and quantifiers living
on a set. These notions are then generalized in Sect. 4. Finally, Sect.5 contains
conclusions and directions of further research.

2 Preliminaries

2.1 Algebraic Structures of Truth Values

In this article we assume that the algebraic structure of truth values is a complete
residuated lattice, i.e., an algebraic structure L = (L, A,V,®,—,0,1) with four
binary operations and two constants such that (L, A, V, 0, 1) is a complete lattice,
where 0 is the least element and 1 is the greatest element of L, (L, ®,1) is a
commutative monoid (i.e., ® is associative, commutative and the identity a ® 1 =
a holds for any a € L) and the adjointness property is satisfied, i.e.,

a<b—c iff a®b<c (1)

holds for each a,b,c € L, where < denotes the corresponding lattice ordering,
ie,a<bifaNb=afora,b€ L. A residuated lattice L is said to be divisible if
a ® (a — b) = aAbholds for arbitrary a,b € L. The operation of negation on L is
defined as ma = a — 0 for a € L. A residuated lattice L satisfies the law of double
negation if =—a = a holds for any a € L. A divisible residuated lattice satisfying
the law of double negation is called an MV-algebra. A residuated lattice is said
to be linearly ordered if the corresponding lattice ordering is linear, i.e., a < b
or b < a holds for any a,b € L.

Obviously, the two elements residuated lattice, i.e., L = {0,1}, is a Boolean
algebra. We put 2 = L = {0, 1}. Other examples of complete residuated lattices
can be determined from left-continuous t-norms on the unit interval:

Ezample 1. The algebraic structure
Lt = {[0, 1], min, max, T, —7,0, 1),

where T is a left continuous t-norm on [0,1] and a —¢ b = \/{c € [0,1] |
T(a,c) < b}, defines the residuum, is a complete residuated lattice (see, e.g.,
[2,7,10]).
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2.2 Fuzzy Sets

Let L be a complete residuated lattice, and let M be a non-empty universe of
discourse. A function A : M — L is called a fuzzy set (L-fuzzy set) on M. A
value A(m) is called a membership degree of m in the fuzzy set A. The set of all
fuzzy sets on M is denoted by F(M). A fuzzy set A is called crisp if there is a
subset Z C M such that A = 15, where 1 denotes the characteristic function
of Z. Obviously, a crisp fuzzy set can be uniquely identified with a subset of M.
The symbol () denotes the empty fuzzy set on M, i.e., (m) = 0 for any m € M.
The set of all crisp fuzzy sets on M (i.e., the power set of M) is denoted by
P(M). The set Supp(A) = {m € M | A(m) > 0} is called the support of a fuzzy
set A.

Let A, B € F(M). We say that A is less than or equal to B and denoted it
as A C B if A(m) < B(m) for any m € M. Moreover, A is equal to Bif AC B
and B C A.

Let {A; | i € I} be a non-empty family of fuzzy sets on M. Then the union
and intersection of A; are defined as

(U Ai> (m) = \/ A;(m) and (ﬂ Ai> (m) = /\ Ai(m), (2)

for any m € M, respectively. Further, extensions of the operations ® and — on
L to the operations on F(M) are given by

(A® B)(m) := A(m)® B(m) and (A — B)(m):= A(m)— B(m), (3)

respectively, for any A, B € F(M) and m € M. Finally, we introduce the differ-
ence of fuzzy sets A and B on M as follows:

(A\ B)(m) = A(m) ® =B(m) (4)

for any m € M.

3 NL-Quantifiers and Generalized Quantifiers

By NL-quantifiers, we in this paper understand natural language expressions
such as “for all”, “many”, “several”, etc. For our purposes it is not necessary to
delineate the class of NL-quantifiers formally. In fact, we are interested in general
mathematical models of these NL-quantifiers. For the sake of comprehensibility,
we in the following informal explanation consider NL-quantifiers with two argu-
ments, such as “some” in the sentence “Some people are clever.”

3.1 Generalized Quantifiers

Generally (see [13]), a model of the NL-quantifier “some” takes the form of a
functional (the so-called global quantifier) some that to any universe of discourse
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M assigns a local quantifier somej,. This local quantifier is a mapping that to any
two subsets A and B of M assigns a truth value somey, (4, B). In the following,
if we speak about a quantifier (), we have in mind some global quantifier, that
is, the functional as above. If we consider only (classical) sets A and B and the
truth value of someys (A4, B) can be only either true or false, we say that this
some is a generalized quantifier. If A and B are fuzzy sets and the truth value
of somejs (A, B) is taken from some many-valued structure of truth degrees, we
say that this some is a fuzzy quantifier.

Definition 1 (Local generalized quantifier). Let M is a universe of dis-
course. A local generalized quantifier Qs of type (1™, 1) over M is a function
P(M)™ x P(M) — 2 that to any sets Ay,..., A, and B from P(M) assigns a
truth value Qp (A1, ..., An, B) from 2.

Definition 2 (Global generalized quantifier). A global generalized quan-
tifier @ of type (1™,1) is a functional that to any universe M assigns a local
generalized quantifier Qpr: P(M)™ x P(M) — 2 of type (1™,1).

Among the most important examples of generalized quantifiers of type (1)
belong the classical quantifiers V and 3. Their definitions are as follows: ¥, (B) =
1 if and only if B = M and 35,(B) =1 if and only if B # () for any B € P(M).
Formally, these definitions can be also expressed as Vj(B) := B = M and
Ap(B) := B # (. The important examples of type (1,1) generalized quanti-
fiers are all and some, defined as allp;(A,B) = 1 if and only if A C B and
someps (A, B) =1 if and only if AN B # () for any A, B € P(M). Note that the
universe M does not appear on the right side of definitions of all and some, which
is a difference from the quantifier Vj;, therefore, the truth values of these quanti-
fiers are not directly influenced by their universes. The quantifiers, which possess
this essential (semantic) property, are in the generalized quantifier theory said to
satisfy the extension. Among further essential properties of generalized quanti-
fiers belong the permutation and isomorphism invariance or the conservativity.
More about these properties can be found in [9,13].

Let us recall the definition of the relativization of generalized quantifiers [13]
mentioned in Sect. 1.

Definition 3. Let Q be a global generalized quantifier of type (1™,1). The rel-
ativization of Q is a global generalized quantifier Q™' of type (1"t 1) defined
as

(Q (A Ay, .. Ay B) :=Qa(ANAy,...,ANA,, AN DB) (5)
for all A, Ay,..., Ay, B € P(M). For the most common case of relativization
from type (1) to type (1,1),

(@a(A, B) = Qa(AN B). (6)

It is well known that V**! = all and 3"! = some. In [13], the authors argue
that all models of NL-quantifiers of the most common type (1,1) should be
conservative and satisfy the property of extension. It is very interesting that
each type (1,1) generalized quantifier, which possesses the above mentioned
properties, is the relativization of a type (1) generalized quantifier.
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3.2 Restriction

In the theory of generalized quantifiers, we can distinguish two interesting
notions, namely, global generalized quantifiers restricted to a set and local gen-
eralized quantifiers living on a set, that play an undoubtedly important réle in
the characterization of generalized quantifiers, but they have not been taken into
account for fuzzy quantifiers yet. Note that these notions are considered in [13]
for quantifiers of type (1). In this part, we recall (for type (1)) and extend (for
type (1™, 1)) the concept of the generalized quantifier restricted to a set.

Definition 4. Let Q be a type (1) global generalized quantifier, and let A be a
set. The quantifier Q is restricted to A if for any M and B C M we have

Qu(B) = Qa(ANB). (7)

The set of all type (1) global generalized quantifiers restricted to A is denoted by
RST1y(A).

A natural generalization of the concept of generalized quantifiers restricted
to a set for quantifiers of type (1",1) can be provided as follows:

Definition 5. Let Q be a type (1", 1) global generalized quantifier, and let A be
a set. The quantifier Q is restricted to A if for any M and Ay,...,A,,BC M
we have

Qum(Ay,..., A, B)=Qa(ANAy,...,ANA,, AN B). (8)
The set of all type (1™, 1) global generalized quantifiers restricted to A is denoted
by RST<17L71> (A)

One can see that if a global generalized quantifier @ is restricted to a set A,
then its evaluations over all considered universes are determined from the local
generalized quantifier Q4.

Lemma 1. If Q is a type (17, 1) global generalized quantifier restricted to a set
A, then Q is restricted to any set A" such that A C A’, i.e., RSTn 1y(A) C
RST(ln’1>(A/).

Now we show that global generalized quantifiers restricted to sets can be
used to introduce the relativization of a global generalized quantifier (). More
precisely, let @ be a type (1™, 1) generalized quantifier. Then, for each set A, we
can introduce the type (17, 1) global generalized quantifier Q4] as

Q"N (A, ..., Ay, B)=Qa(ANAy,...,ANA,, AN B)

for any M and A;,...,A,, B C M. It is easy to show that Q[ RST(1n 1y(4).
It should be noted that @ and Q!*] are different quantifiers. They become iden-
tical if @ is already restricted to A. Now, if we define the global generalized
quantifier Q' of type (171, 1) as

Qi (A AL, ... Ay, B) = (Q¥) ) (Ay,..., Ay, B) (9)

for all M and Ay,...,A,, B C M, then it is easy to show that Q' = Q"°!, where
Q™! has been defined in Definition 3.
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3.3 Generalized Quantifiers Living on a Set

A concept related to that of a global generalized quantifier restricted to a set is
the concept of a local generalized quantifier living on a set.

Definition 6. Let M and A be sets. A local generalized quantifier Qpr of type
(1) lives on A if, for any B C M, we have

Qu(B) =Qum(ANB). (10)

One can see that each local generalized quantifier Qps, where @ € RST 3y(A)
(that is, @ is a global generalized quantifier restricted to A and Qs is the
corresponding local quantifier over M), lives on A. Indeed, by (7), we have

Qum(B) =Qa(ANB) =Qa(AN(ANB)) =Qu(ANB).

Note that A need not be the smallest set on which Qs lives (Q € RST(1y(A)).
Moreover, the concept of conservativity can be introduced in terms of local
generalized quantifiers living on sets. Let @) be a global conservative quantifier
of type (1,1).2 For any M and A C M, define a type (1) local quantifier (Q[A]) s
as follows

(Q[A])m(B) = Qu (A, B) (11)

for all B C M. One can see that, as a simple consequence of the conservativity
of @, we obtain that (Q[A])as lives on A. Vice versa, if each local generalized
quantifier (Q[A])a lives on A for any M, then @ is conservative. Note that
Barwise and Cooper expressed the concept of conservativity as we described
above using the live-on property [1].

A natural generalization of the concept of a local generalized quantifier living
on a set for quantifiers of type (1™, 1) can be defined as follows:

Definition 7. Let M and A be sets. The local generalized quantifier @y of type
(1™, 1) lives on A if, for any Ay, ..., A,, B C M, we have

Qu(A1, ..., An,B) = Qu(ANAy,...,ANA,, AN B). (12)

Also in this case, a conservativity of global generalized quantifiers of type (17, 1)
can be expressed in terms of the live-on property. Indeed, let @) be a global
quantifier of type (1",1) for n > 1. For any M and Ay, ..., A, C M, define local
quantifier (Q[A1, ..., A,])m of type (1) as

QA1+, An)m(B) = Qu(As, ..., A, B). (13)

2 Recall that a type (1,1) global generalized quantifier is conservative if Qar(A, B) =
Qm (A, B’) holds for any A, B,B’ € P(M) such that AN B = AN B’. The con-
servativity for a type (1", 1) generalized quantifier is defined analogously such that
QIW(Al, ey A»,“ B) = 621\/[(1417 ey An7 B/) holds for any Al, ey An7 B7 B e P(M)
such that A,NB=A;NB fori=1,...,n.
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It is easy to see that ) is conservative if and only if each local generalized
quantifier (Q[Ay, ..., Ay])ar lives on A = JI, A;.

The following lemma contains useful facts about generalized quantifiers living
on sets (cf. [13, Section 3.2.2]).

Lemma 2. Let Q be a type (1™, 1) global generalized quantifier, and let M be a
set. Then

(i) Qur lives on M.

(i1) Qur lives on O if and only if Qur is trivial (i.e., Qpr(As,..., An,B) =0 for
any Ay,...,Ap,BC M orQp(As,...,An,B) =1 forany Ay,...,A,, B C

(iti) If Qur lives on Cy and Cs, then it lives on Cy N Cy. Hence, if M is finite,
there is always a smallest set on which Qpy lives. This fails, however, when
M s infinite.

(iv) (QM) s lives on A and its supersets. If (Q) s is non-trivial, A need not
be the smallest set on which (QM)) s lives.

4 Fuzzy Quantifiers over Fuzzy Universes

The aim of this section is to introduce the concept of fuzzy quantifiers defined
over fuzzy universes. We start with the introduction of (local and global) fuzzy
quantifiers over crisp universes, where we demonstrate the limitation of their
definitions. This motivates us to introduce the concept of fuzzy universe and
define (local and global) fuzzy quantifiers over such universes.

4.1 Fuzzy Quantifiers over Crisp Universes

An immediate generalization of Definitions 1 and 2 consists of replacing classical
sets Ay,..., A, and B by fuzzy subsets of M and of using a residuated lattice
L instead of the Boolean algebra 2 (see [6,8]).

Definition 8 (Local fuzzy quantifier). Let M be a universe of discourse. A
local fuzzy quantifier Qas of type (1™,1) over M is a function Qpr : F(M)™ x
F(M) — L that to any fuzzy sets Ay, ..., A, and B from F(M) assigns a truth
value Qpr(Ax, ..., An, B) from L.

Definition 9 (Global fuzzy quantifier). A global fuzzy quantifier @ of type
(1™, 1) is a functional that to any universe M assigns a local fuzzy quantifier
Q: F(M)" x F(M) — L of type (1™,1). The set of all global fuzzy quantifiers
of type (1", 1) will be denoted by QUANT 1. 1.

Among the important examples of global fuzzy quantifiers of type (1) are,
again, V and 3. They are standardly defined as

Vu(B):= [\ B(m) (14)
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and

Iu(B) = \/ B(m). (15)

meM

Important examples of global fuzzy quantifiers of type (1,1) are all and some,
defined as

ally(4,B) = N\ (A— B)(m) (16)
meM
and
someyr(4,B) := \/ (AN B)(m). (17)
meM

As we have mentioned in Sect. 1, there is a principal problem to introduce the
relativization of a fuzzy quantifier, because one argument of a fuzzy quantifier
becomes a universe and a fuzzy set as the universe is not permitted. Therefore, in
[8], the relativization of a global fuzzy quantifier @ of type (1) has been proposed:

1}5[1(*’4’ B) = QSupp(A)(AmB)7 (18)

where Supp(A) is used as the universe of the fuzzy quantifier Q instead of A,
which is the fuzzy set in the first argument of fuzzy quantifier Q%5 . Unfortunately,
this solution is generally not satisfactory. For example, one can simply derive that

v Hu(A4,B) == N (AnB)(m) #ally (A, B),

meSupp(A)

which is counter-intuitive. Hence, the definition of relativization does not seem
to be well established. Another concept called weak relativization was also pro-
vided in [8], but again it generally fails. In [5], it was proved that there is no
satisfactory definition of relativization of fuzzy quantifiers of type (1). However,
an introduction of fuzzy sets as universes for fuzzy quantifiers is not motivated
only by relativization of fuzzy quantifiers. The second example can be the con-
cept of restriction of a fuzzy quantifier to a fuzzy set (see Definition 5). Thus,
the absence of fuzzy sets as universes for fuzzy quantifiers brings significant lim-
itations in the development of the fuzzy quantifier theory that should possibly
cover a wide part of topics studied in the field of generalized quantifiers.

4.2 Fuzzy Universes
Let A be a fuzzy set on IV, and let M be a set. Define Ay; : M — L as

A(m), ifmeMNN,

. (19)
0, otherwise.

AM(m) = {

The fuzzy set Ajs represents A (or its part) on the universe M. Obviously, if
A € F(M), then Ay = A. It is easy to see that Supp(An) = Supp(4) N M.
Moreover, if A, B are fuzzy sets on N and M is a set, then we have (AN B)y =
AM ﬂB]\/[ and (AUB)M = AM UBM
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A pair (M, A), where M is a set and A is a fuzzy set on M, is called a fuzzy
universe. Obviously, if M = () in (M, A), then A = () is the empty function. A
fuzzy universe (M, A) is said to be crisp if A is crisp and A = 1. Let (M, A) and
(N, B) be fuzzy universes. The basic (fuzzy) set operations for fuzzy universes
are defined as follows:

e (M,A)N(N,B) = (K, Ax N Bg), where K = M N N;
e (M,A)U(N,B) = (K,Ax UBg), where K = M U N;
o (M,A)\ (N,B) = (M, An \ Bu).

For the sake of simplicity, we write simply (M, A) N (N,B) = (M NN,AN B)
and assume that A N B is well introduced on the universe M N N according to
the definition above. A similar notation can be also used for the union and the
difference of fuzzy universes.

A non-empty class U of fuzzy universes is said to be well defined if

Cl1) (M, A) € U implies (M, B) € U for any B € F(M);
C2) U is closed under the intersection, union and difference.

In what follows, we assume that each class of fuzzy universes is well defined.

Fundamental binary relations for fuzzy universes in a class U can be intro-
duced as follows. We say that (M, A) is equal to (N, B), and denote it by
(M,A) = (N,B), ift M = N and A = B. Moreover, we say that (M, A) is
equal to (N, B) up to negligible elements, and denote it by (M, A) ~ (N, B), if
Supp(A) = Supp(B) and Agupp(a) = Bsupp(a). Obviously, (M, A) ~ (N, B) if
and only if (Supp(A), Asupp(a)) = (Supp(B), Bsupp(s))-* Note that if Supp(A4) =
() = Supp(B), then A =0 on M and B = on N. It is easy to see that for any
(M, A) and a set N 2O M, there exists exactly one fuzzy set A’ on N such that
(M, A) ~ (N, A"). This fuzzy set A’ is called the extension of A from M to N.
We say that (M, A) is a subset of (N, B), and denote it by (M, A) C (N, B), if
(M,A)N(N,B) ~ (M, A) (or, equivalently, (M, A)U (N, B) ~ (N, B)).

The following two statements show properties of the equality relation up to
negligible elements.

Lemma 3. If (M, A) ~ (M', A"), then (N, An) = (N, AY\) for any set N such
that (N, An) € U.

Theorem 1. The binary relation ~ on U is a congruence with respect to the
intersection, union and difference of fuzzy universes.

SIf K=MnNN =0, then Ax N Bk is the empty mapping.

4 Note that (Supp(A), Agupp(4)) € U in general, but it is not a problem to extend the
class U by such fuzzy universes. Then we can use this equality for the verification
that (M, A) ~ (N, B).



182 A. Dvotrdk and M. Hol¢apek

4.3 Fuzzy Quantifiers over Fuzzy Universes

In Sect. 4.1, we demonstrated the limitations of the definition of fuzzy quantifiers
over set universes. In this subsection we introduce the concept of fuzzy quantifiers
defined over fuzzy universes (see Sect.4.2) in such a way that it overcomes these
limitations.

Definition 10 (Local fuzzy quantifier over a fuzzy universe). Let (M, C)
be a fuzzy universe. A local fuzzy quantifier Qar,cy of type (17,1) on (M, C) is
a function Qr,cy : F(M)" x F(M) — L that to any fuzzy sets Ay, ..., A, and
B from F(M) assigns a truth value Qar,cy(A1, ..., An, B) from L and

Qur.c) (A1, An, B) = Qure) (A1, .., A7, BY) (20)

holds for any Ai,..., An,B,AY,..., Al ,B’ € F(M) such that A,NC =A;NC
foranyi=1,...,nand BNC =B NC.

One can see that the local fuzzy quantifier Qs ), which is defined over
a fuzzy universe (M, C), is, in fact, a fuzzy quantifier defined on M that lives
on a fuzzy set C' (cf. Definition 14). Hence, an analysis of properties of fuzzy
quantifiers over fuzzy universes can be practically restricted to fuzzy subsets of
the fuzzy set C as it was proposed in [5].

Definition 11 (Global fuzzy quantifier over fuzzy universes). Let U be a
class of fuzzy universes. A global fuzzy quantifier Q of type (1",1) is a functional
assigning to any fuzzy universe (M,C) € U a local fuzzy quantifier Qo) of
type (1™,1) such that for any (M,C),(M’',C") € U with (M,C) ~ (M',C"), it
holds that

Qo) (A1, ..., Ap,B) = Qv ey (AL, ..., A}, BY) (21)

forany Ay,...,A,,B€ F(M) and A},..., A, B’ € F(M') such that (M, A;) ~
(M’ AL) foranyi=1,...,n and (M,B) ~ (M',B’).

We should note that condition (21) ensures that if two fuzzy universes are
equal up to negligible elements, then the fuzzy quantifiers defined over them are
practically identical. More precisely, their evaluations coincide for fuzzy sets that
together with their universes are equal up to negligible elements.

Before we provide an example of fuzzy quantifiers defined over fuzzy uni-
verses, let us define a binary fuzzy relation of fuzzy equivalence for fuzzy
sets on a fuzzy universe. Let (M,C) € U be a fuzzy universe. A mapping
Zm,0): F(M) x F(M) — L defined as

(A=,0) B)(m) =\ (ANC)(m) = (BNC)(m)) (22)

meM

is called a fuzzy equivalence on (M, C).
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Example 2. Let U be a family of fuzzy universes. A global fuzzy quantifier over
fuzzy universes V of type (1) assigns to any (M,C) € U a local fuzzy quantifier
over fuzzy universes V(ys,c): F(M) — L defined for any B € F(M) as

Y,0)(B) == B =0 C,

where 2y ¢y is the fuzzy equivalence (22) on (M, C).”
Due to the definition of the fuzzy equivalence on (M, C'), we can write

Varo)(B) =B =are) C= [\ (BNC)(m) < (CNC)(m)) =

A (BNC)(m) = C(m)) = A ((B(m) A C(m)) < C(m)) =
N (C(m) = B(m)) = /\ (C— B)(m), (23)

where we used the equality (a Ab) <> b = b — a holding for any a,b € L in every
residuated lattice L. If (M, C) is crisp, then

Vore)(B) = /\ (C(m) = B(m))= A\ (1— B(m))= J\ B(m),
meM meM meM

that is, it coincides with the standard definition of the fuzzy quantifier Vj,
provided in (14).

Finally, we define relativization for fuzzy quantifiers defined over fuzzy uni-
verses as follows (cf. Definition 3).

Definition 12 (Relativization of fuzzy quantifiers over fuzzy uni-
verses). Let Q) be a global fuzzy quantifier of type (17, 1) over fuzzy universes.
The relativization of Q is a global fuzzy quantifier Q™' of type (1"*1,1) over
fuzzy universes defined as

(@ N0y (A Ay, Ap, B) == Qucnay(ANAr,..., AN A,,ANB) (24)

for all AjAy,..., A, B € F(M). For the most common case of relativization
from type (1) to type (1,1),

(Qrel)(M,C)(Aa B) = Qu,cna (AN B). (25)

4.4 Restriction

As we mentioned in Subsect. 4.1, we are unable to extend the concept of restric-
tion for fuzzy quantifiers defined over crisp universes. In this part, we show that if
we employ fuzzy universes for fuzzy quantification, we can introduce this concept

5 Note the structural similarity of this definition with the definition of the generalized
quantifier Vs (B) := B = M given below Definition 2.
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in an elegant way following the standard definition. In the rest of the paper, by
a fuzzy quantifier we mean a fuzzy quantifier over fuzzy universes unless stated
otherwise.

The concept of fuzzy quantifiers of type (17, 1) restricted to a fuzzy set can
be introduced as follows.

Definition 13. Let Q be a type (1™,1) global fuzzy quantifier, and let A be a
fuzzy set on N. The fuzzy quantifier @ is restricted to A if for any (M,C) e U
and Ay, ..., An, B € F(M) we have

Q(M,C)(Alv ce 'aA’an) =

Q(N,A)(Aﬂ(CﬂAl)N,...,Aﬂ(CﬂAn)N,Aﬁ (CQB)N) (26)

The set of all type (1™, 1) global fuzzy quantifiers restricted to a fuzzy set A on
a universe N is denoted by FRSTn 1y(N, A).

Similarly to the classical case of the restriction to a set, a global fuzzy quanti-
fier, which is restricted to a fuzzy set A on a universe IV, is determined from the
local fuzzy quantifier Q(n,4). One can simply verify that the previous definition
of the restriction to a fuzzy set is correct in the sense of Definition 11. Note that
such verification is useless for the global generalized quantifiers, because their
definition has no requirement on the functionals defining them. Obviously, an
equivalent definition could be as follow. A fuzzy quantifier @ is restricted to a
fuzzy set A on a universe N if for any (M,C) € U and A,,...,A,, B € F(M)

we have

Qo) (A1, An, B) = Qv anon) (AN A1 N, ..., AN A, N, AN By).  (27)

The following lemma is a generalization of Lemma 1 for fuzzy quantifiers
defined over fuzzy universes.

Lemma 4. IfQ is a type (17, 1) global generalized quantifier restricted to a fuzzy
set A on N, then Q is restricted to any fuzzy set A’ on an arbitrary universe N'
such that (N, A) g (N/, Al)7 7;.6., FRST<1n11> (]\77 A) g FRST<17L71> (N/, A/)

Let us show that the global fuzzy quantifiers restricted to fuzzy sets can be
used to introduce the relativization of global fuzzy quantifiers. Let @ be a type
(1™, 1) fuzzy quantifier. Then, for each fuzzy set A on a universe N, we can
introduce the type (1,1) global fuzzy quantifier Q[(V>4)] as

(Q[(N7A)])(]\/LC)(A17' . .,An7B) =
Q. A(AN(C O AN, .., AN(C N Ay)n, AN(C N B)y)

for any (M,C) € U and A;,...,A,,B € F(M). It is easy to see that
QINAI ¢ FRST1n,1y(NN, A). It should be noted that @ and Q[(N’A)] are dif-
ferent quantifiers. They become identical if @) is already restricted to the fuzzy
set A on the universe N. Now, if we define the global fuzzy quantifier Q' of type
(1"*+1 1) as

Q2M7C)(A5A17 s aA’rHB) = (Q[(MyA)])(]W,C)(AI; .. 'aAnaB) (28)
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for all (M,C) €4 and A4, ..., A,, B € F(M), then using (27) it is easy to show
that Q' = Q*', where Q™! has been defined in Definition 12.

4.5 Fuzzy Quantifiers Living on a Fuzzy Set

A concept related to that of a global fuzzy quantifier restricted to a fuzzy set is
the concept of a local fuzzy quantifier living on a fuzzy set.

Definition 14. Let (M,C) € U and A be a fuzzy set on a universe N. The local
Juzzy quantifier Qo) of type (17,1) lives on A if, for any Ay,...,A,, B €
F(M), we have

Qur,cy(A1, ...y An, B) = Qur,oy(Av N Ay, ..., Ay N Ay, Ay 0 B). (29)

If the distributivity of A over \/ is satisfied in a residuated lattice L (e.g., L
is an MV-algebra), the conservativity of global fuzzy quantifiers of type (1", 1)
can be expressed in terms of the live-on property.® Indeed, let @ be a global
fuzzy quantifier of type (1™,1) for n > 1. For any fuzzy universe (M, C) and
Ai,..., Ay € F(M), define local quantifier (Q[A1, ..., Ayn]) ey of type (1) as

QA1 -+ An) 1.0 (B) = Qo) (Ar, -+, An, B). (30)

One can show that @ is conservative if and only if each local generalized quan-
tifier (Q[A1,...,An])a lives on A = [J;-_; A;. Note that the distributivity of A
over \/ ensures the crucial equality ((J;_, 4;) N B = |J]_,(4; N B) important in
the proof of a characterization of the conservativity of type (1™, 1) global fuzzy
quantifiers.

The following lemma specifies basic facts about fuzzy quantifiers living on
fuzzy sets (cf. Lemma 2).

Lemma 5. Let Q be a type (1™, 1) global fuzzy quantifier, let (M, C) be a fuzzy
universe from U, and let C1 € F(N) and Cy € F(N') be fuzzy sets. Then

(i) Qm,cy lives on C.
(i) Qm,cy lives on O if and only if Q(ar,cy is trivial (Qar,c) (A1, ..., An,B) = a
for any Ay,..., A,, B € F(M) witha € L).
(iii) If Q.0 lives on Cy and Cy, then it lives on C1 nan' N C2 NAN'-
(iv) (QUNMN) 5/ oy lives on A.

5 Conclusion

In this article, we proposed a novel framework for fuzzy quantifiers which are
defined over fuzzy universes. We introduced the concept of a fuzzy universe and
define a class of fuzzy universes closed under the operations of intersection, union

6 A global fuzzy quantifier Q of type (1™, 1) over fuzzy universes is conservative, if for
any (M,C) €U and Ay,...,A,, B,B’ € F(M) it holds that if A;N B = A; N B’ for
i=1,...,n, then Q(M,C)(Aly ooy Ap,B) = Q(M,C)(Aly e Ap, B/).
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and difference. Moreover, we established a binary relation called the equivalence
up to negligible elements, which is essential in the definition of global fuzzy quan-
tifiers over fuzzy universes. Further, we generalized the fuzzy quantifiers defined
over crisp universes to fuzzy quantifiers defined over fuzzy universes. The novel
conception of fuzzy quantifiers naturally allows us to introduce, for example,
the notion of relativization of fuzzy quantifiers, which principally could not be
defined in the case of fuzzy quantifiers if only crisp universes are permitted. For
an illustration, we investigated the important semantic notions of restriction to
a fuzzy set and living on a fuzzy set in our novel framework for fuzzy quantifiers
defined over fuzzy universes. It should be noted that the notion of restriction to
a fuzzy set also could not be introduced for fuzzy quantifiers defined over crisp
universes. Although the presented work is only an initial study, it shows that the
fuzzy quantifiers over fuzzy universes enable us to develop the fuzzy quantifier
theory in the same fashion as in the theory of generalized quantifiers. In our
future research, we will concentrate on investigation of further semantic proper-
ties of fuzzy quantifiers over fuzzy universes, e.g., the property of extension and
isomorphism invariance.
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