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Abstract. This work presents an application of interactive fuzzy frac-
tional differential equation, with Caputo derivative, to an HIV model for
seropositive individuals under antiretroviral treatment. The initial con-
dition of the model is given by a fuzzy number and the differentiability
is given by a fuzzy interactive derivative. A discussion about the model
considering these notions are presented. Finally, a numerical solution to
the problem is provided, in order to illustrate the results.
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1 Introduction

Fractional Differential Equations (FDE) can be seen as a generalization of Ordi-
nary Differential Equations (ODE) to arbitrary non-integer order [14]. The con-
cept of Fuzzy Fractional Differential Equation (FFDE) was introduced by Agar-
wal et al. in [1]. There are several papers that solve FFDEs, for example [26,35].

Here we consider the Fuzzy Fractional Differential Equations (FFDE) under
the interactive derivative of Caputo, that is, the differentiability is given by
an interactive derivative, as proposed by Santo Pedro et al. [26]. We use the
fractional interactive derivative to describe a viral dynamics in seropositive indi-
viduals under antiretroviral treatment (ART). An HIV population dynamics has
already been considered as a process with memory. In this case, it was described
by a system of delay-differential equations associated mainly to pharmacolog-
ical delay, defined as the time interval required to absortion, distribution and
penetration of the drug in the target cells of the virus [16].
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The dynamics of biological systems usually evolve with some uncertainty,
which may be inherent in the phenomenon or result from environmental varia-
tion. It seems pertinent modeling a biological system as a process with memory,
so it cannot depend on instant time alone. For these reasons, the fractional
differential equation is used [2,3].

Our goal in this work is to provide new insight into well-known models of
HIV. For this, we will use fractional differential equations, which are used to
treat processes with memories [2,3], and the interactive derivative, which con-
siders both correlated processes and variability at the initial condition [5,27].
Current studies consider interactivity in the modeling of biological processes, in
particular, in the dynamics of HIV, when assuming the existence of a memory
coefficient [15].

This work is structured as follows. Section 2 presents preliminary concepts
about fuzzy set theory, as well as the fuzzy derivative for autocorrelated
processes. Section 3 presents fuzzy interactive fractional derivatives. Section 4
presents the fuzzy interactive fractional differential equation under the Caputo
derivative. Section 5 presents HIV dynamics under Caputo derivative and Sect. 6
presents the final comments.

2 Preliminary

A fuzzy subset A of R
n is described by its membership function μ

A
: Rn −→

[0, 1], where μA(u) means the degree in which u belongs to A. The r-levels of
the fuzzy subset A are classical subsets defined as:

[A]r = {u ∈ R
n : μ

A
(u) ≥ r} for 0 < r ≤ 1 and

[A]0 = {u ∈ Rn : μ
A
(u) > 0}.

The fuzzy subset A of R is a fuzzy number if its r-levels are closed and
nonempty intervals of R and the support of A, supp(A) = {u ∈ R : μ

A
(u) > 0},

is limited [4]. The family of the fuzzy subsets of Rn with nonempty compact and
convex r-levels is denoted by R

n
F , while the family of fuzzy numbers is denoted

by RF .
The Pompeiu-Hausdorff distance d∞ : Rn

F × R
n
F → R+ ∪ {0}, is defined by

d∞(A,B) = sup
0≤r≤1

dH([A]r, [B]r), (1)

where dH is the Pompeiu-Hausdorff distance for compact subsets of R
n. If A

and B are fuzzy numbers, that is, A,B ∈ RF , then (1) becomes

d∞(A,B) = sup
0≤r≤1

max{|a−
r − b−

r |, |a+
r − b+r |}.

From now on, the continuity of a fuzzy function is associated with the metric
d∞. The symbols + and − stands for the traditional (Minkowski) sum and dif-
ference between fuzzy numbers, which can be also defined via Zadeh’s extension
principle [19].
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Let A,B ∈ RF and J ∈ FJ(R2). The fuzzy relation J is a joint possibility
distribution of A and B if, [8]

max
v

μJ (u, v) = μ
A
(u) and max

u
μJ(u, v) = μ

B
(v), ∀ u, v ∈ R.

In this case, A and B are called marginal possibility distributions of J .
The fuzzy numbers A and B are said to be non-interactive if, and only if, its

joint possibility distribution J is given by μ
J
(u, v) = min{μ

A
(u), μ

B
(v)} for all

u, v ∈ R. Otherwise, the fuzzy numbers are said to be interactive [8,10].
Let A and B be fuzzy numbers with joint possibility distribution J and

f : R2 → R. The extension of f with respect to J , applied to the pair (A,B), is
the fuzzy subset f

J
(A,B) with membership function defined by [7]

μ
f

J
(A,B)(u) =

{
sup

(w,v)∈f−1(u)

μJ(w, v) if f−1(u) �= ∅
0 if f−1(u) = ∅

, (2)

where f−1(u) = {(w, v) : f(w, v) = u}.
If J is given by the minimum t-norm, then fJ(A,B) is the Zadeh’s extension

principle of f at A and B [7].

Theorem 1 [7,12]. Let A,B ∈ RF , J be a joint possibility distribution whose
marginal possibility distributions are A and B, and f : R2 −→ R a continuous
function. In this case, fJ : RF × RF −→ RF is well-defined and

[fJ (A,B)]r = f([J ]r) for all r ∈ [0, 1]. (3)

Let A ∈ RF . The length of the r-level set of A is defined by

len([A]r) = a+
r − a−

r , for all r ∈ [0, 1].

If r = 0, then len([A]0) = diam(A).
A strongly measurable and limited integrable fuzzy function is called inte-

grable. The fuzzy integral of Aumann of x : [a, b] → RF , with [x(t)]r =
[x−

r (t), x+
r (t)] is defined by [13]

[ ∫ b

a

x(t)dt

]
r

=
∫ b

a

[x(t)]rdt =
∫ b

a

[x−
r (t), x+

r (t)]dt

=
{ ∫ b

a

y(t)dt|y : [a, b] → R is a measurable selection for [x(·)]r
}

,

(4)
for all r ∈ [0, 1], provided (4) define a fuzzy number.

Let us focus on the special relationship called interactivity. There are several
types of joint possibility distributions that generate different interactivities. This
manuscript studies the interactivity called linear correlation, which is obtained
as follows.
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Let A,B ∈ RF \ R and a function F : R → R. The fuzzy numbers A and B
are called F -correlated if its joint possibility distribution is given by [8]

μJ(x, y) = χ{(u,v=F (u))}(x, y)μA(x) = χ{u,v=F (u)}(x, y)μB(y) (5)

Note that the fuzzy number B coincides with the Zadeh’s extension principle
of the function F evaluated at the fuzzy number A. If F is invertible, then
A = F−1(B) and, in this case,

[J ]r = {(u, F (u)) ∈ R
2|u ∈ [A]r} = {(F−1(v), v) ∈ R

2|v ∈ [B]r}. (6)

Also, if F is a continuous function, then the r-levels of B are given by [4]

[B]r = F ([A]r).

The fuzzy numbers are called linearly correlated (or linearly interactive), if
the function F is given by F (u) = qu + r. Let A and B be F -correlated fuzzy
numbers. The operation B ⊗F A is defined by [7],

μB⊗
F

A(w) =

⎧⎨
⎩

sup
u∈Φ−1

⊗ (w)

μA(u) if Φ−1
⊗ (w) �= ∅

0 if Φ−1
⊗ (w) = ∅

, (7)

where Φ−1
⊗ (w) = {u|w = u ⊗ v, v = F (u)}, and ⊗ ∈ {+,−,×,÷}.

From Theorem 1, the four arithmetic operations of F -correlated fuzzy num-
bers, for all r ∈ [0, 1], are given by

[B +F A]r = {F (w) + w ∈ R|w ∈ [A]r}; (8)
[B −F A]r = {F (w) − w ∈ R|w ∈ [A]r}; (9)
[B ·F A]r = {wF (w) ∈ R|w ∈ [A]r}; (10)
[B ÷F A]r = {F (w) ÷ w ∈ R|w ∈ [A]r}, 0 /∈ [A]0. (11)

Moreover, the scalar multiplication of λB, with B = F (A), is given by
[λB]r = {λF (w) ∈ R|w ∈ [A]r}.

Proposition 1 [27]. Let A and B be F -correlated fuzzy numbers, i.e., [B]r =
F ([A]r), with F monotone differentiable, [A]r = [a−

r , a+
r ] and [B]r = [b−

r , b+r ],
thus, for all r ∈ [0, 1],

1) [B −F A]r = {F (w) − w|w ∈ [A]r} =⎧⎨
⎩

i. [b−
r − a−

r , b+r − a+
r ] if F ′(z) > 1, ∀z ∈ [A]r

ii. [b+r − a+
r , b−

r − a−
r ] if 0 < F ′(z) ≤ 1, ∀z ∈ [A]r

iii. [b−
r − a+

r , b+r − a−
r ] if F ′(z) ≤ 0, ∀z ∈ [A]r

; (12)

2) [B +F A]r = {F (w) + w|w ∈ [A]r} =⎧⎨
⎩

i. [b−
r + a−

r , b+r + a+
r ] if F ′(z) > 0, ∀z ∈ [A]r

ii. [b+r + a−
r , b−

r + a+
r ] if −1 < F ′(z) ≤ 0, ∀z ∈ [A]r

iii. [b−
r + a+

r , b+r + a−
r ] if F ′(z) ≤ −1, ∀z ∈ [A]r

. (13)
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In the first case (12)-i., we have len([A]r) < len([B]r), and −F coincides with
Hukuhara difference [13], while in (12)-ii., we have len([A]r) > len([B]r) and,
−F coincides with generalized Hukuhara difference [6,34]. In fact, the generalized
Hukuhara and Hukuhara differences are particular cases of an interactive differ-
ence [34]. Additionally, −F coincides with standard difference when F ′(z) ≤ −1,
and +F coincides with standard sum when F ′(z) > 0.

Assuming A and B linearly correlated fuzzy numbers, that is F (u) = qu+ r,
and [B]r = q[A]r + r, with [A]r = [a−

r , a+
r ] and [B]r = [b−

r , b+r ], (12) and (13)
becomes

[B −L A]r =

⎧⎨
⎩

i. [b−
r − a−

r , b+r − a+
r ] if q ≥ 1

ii. [b+r − a+
r , b−

r − a−
r ] if 0 < q < 1

iii. [b−
r − a+

r , b+r − a−
r ] if q < 0

(14)

and

[B +L A]r =

⎧⎨
⎩

i. [b−
r + a−

r , b+r + a+
r ] if q > 0

ii. [b+r + a−
r , b−

r + a+
r ] if − 1 ≤ q < 0

iii. [b−
r + a+

r , b+r + a−
r ] if q < −1

. (15)

It is worth to notice that +L coincides with standard sum when q is positive,
and −L coincides with standard difference when q is negative [11]. Moreover, −L

coincides with generalized Hukuhara difference [6] when q is positive and when
q > 1 it coincides with Hukuhara difference [13]. It is interesting to mention that
the authors of [25] used linearly interactive fuzzy numbers to fit an HIV dataset.

2.1 Autocorrelated Fuzzy Processes

Autocorrelated fuzzy processes are similar to autocorrelated statistical processes
[5,11,27,28]. These types of fuzzy processes have been carried out in areas such
as, epidemiology [30,33] and population dynamics [27,29].

Let L([a, b],RF ) be the set of all Lebesgue integrate functions from the
bounded interval [a, b] into RF , and AC([a, b],RF ) be the set of all absolutely
continuous functions from [a, b] into RF . A fuzzy process x is defined by a fuzzy-
number-valued function x : [a, b] −→ RF . Considering [x(t)]r = [x−

r (t), x+
r (t)],

for all r ∈ [0, 1], the process x is δ-locally F -autoregressive at t ∈ (a, b) (F -
autoregressive for short) if there exists a family of real functions Ft,h such that,
for all 0 < |h| < δ [27],

[x(t + h)]r = Ft,h([x(t)]r), ∀r ∈ [0, 1]. (16)

If x : [a, b] → RF is a F -autoregressive fuzzy process, then the function x is
F -correlated differentiable (F -differentiable for short) at t0 ∈ [a, b] if there exists
a fuzzy number x

′
F (t0) such that [27]

x
′
F (t0) = lim

h→0

x(t0 + h) −F x(t0)
h

, (17)

where the above limit exists and it is equal to x
′
F (t0) (using the metric d∞). If

x′
F exists, for all t ∈ [a, b], then we say that x is F -differentiable.

Next theorem provides a characterization of the F derivative by means of
r-levels.
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Theorem 2 [27]. Let x : [a, b] → RF be F -differentiable at t0 ∈ [a, b], with
[x(t)]r = [x−

r (t), x+
r (t)], where the corresponding family of functions Ft0,h : I →

R is monotone continuously differentiable for each h, for r ∈ [0, 1] and Ft,h,
∀t ∈ [a, b]. Then,

[x
′
F (t0)]r =

⎧⎪⎪⎨
⎪⎪⎩

[
(x−

r )
′
(t0), (x+

r )
′
(t0)

]
if F ′

t,h(w) > 1[
(x+

r )
′
(t0), (x−

r )
′
(t0)

]
if 0 < F ′

t,h(w) ≤ 1

{(x−
r )

′
(t0)} = {(x+

r )
′
(t0)} if F ′

t,h(w) ≤ 0

.

for each 0 < |h| < δ, δ > 0, and ∀w ∈ [x(t)]r.

The process x is called expansive if, the diameter of x(t) is a non-decreasing
function at t, and equivalently, x is called contractive if, the diameter of x(t) is
a non-increasing function at t.

Theorem 3 [26]. Let x ∈ AC([a, b],RF ) be F -differentiable, where [x(t)]r =
[x−

r (t), x+
r (t)].

I. Suppose x is expansive, that is, len([x(t)]r) is an increase function on [a, b].
If function x

′
F is Aumann integrable then (x−

r )
′
(t) and (x+

r )
′
(t) are integrable

on t ∈ [a, b], and[ ∫ t

a

x
′
F (s)ds

]
r

=
[ ∫ t

a

(x−
r )

′
(s)ds,

∫ t

a

(x+
r )

′
(s)ds

]
.

II. Suppose x is contractive, that is, len([x(t)]r) is a decrease function on [a, b].
If function x

′
F is Aumann integrable then (x−

r )
′
(t) and (x+

r )
′
(t) are integrable

on t ∈ [a, b], and[ ∫ t

a

x
′
F (s)ds

]
r

=
[ ∫ t

a

(x+
r )

′
(s)ds,

∫ t

a

(x−
r )

′
(s)ds

]
.

2.2 Fuzzy Fractional Integral and Fuzzy Fractional Derivative

The Riemann-Liouville fractional integral Iα
a+f of a function f ∈ (L[a, b],R), of

order α ∈ (0, 1] is defined by [31],

(Iα
a+f)(t) =

1
Γ (α)

∫ t

a

(t − s)α−1f(s)ds, for t > a (18)

where Γ (α) is the gamma function. If α = 1, we have (I1a+f)(t) =
∫ t

a
f(s)ds.

The Riemann-Liouville derivative of order α ∈ (0, 1], is defined by [31]

(Dαf)(t) =
d

dt
I1−αf(t) =

1
Γ (1 − α)

d

dt

∫ t

a

(t − s)−αf(s)ds, (19)

for t > a.
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Definition 1 [31]. The Riemann-Liouville derivative of order α ∈ (0, 1], is
defined by

(RLDα
a+f)(t) =

d

dt
I1−α
a+ f(t) =

1
Γ (1 − α)

d

dt

∫ t

a

(t − s)−αf(s)ds, for t > a.

(20)

Definition 2 [31]. Let f ∈ (L[a, b],R) and suppose there exists RLDα
a+f on

[a, b]. The Caputo fractional derivative CDα
a+f is defined by

(CDα
a+f)(t) =

(RL

Dα
a+ [f(·) − f(a)]

)
(t), for t ∈ (a, b]. (21)

Besides that, if f ∈ AC([a, b],R), then

(CDα
a+f)(t) =

1
Γ (1 − α)

∫ t

a

(t − s)−αf ′(s)ds, ∀t ∈ (a, b] (22)

and

(RLDα
a+f)(t) = (CDα

a+f)(t) +
(t − a)−α

Γ (1 − α)
f(a), ∀t ∈ (a, b]. (23)

The next section considers the fuzzy process x in the above definitions,
instead of the deterministic function f . The idea is to use the concepts of fuzzy
integral and fuzzy F -correlated derivative.

3 Fuzzy Interactive Fractional Derivative

The fuzzy integral fractional Riemann-Liouville, of order α > 0, of x is defined by

[(Iα
a+x)(t)]r =

1
Γ (α)

[ ∫ t

a

(t − s)α−1x−
r (s)ds,

∫ t

a

(t − s)α−1x+
r (s)ds

]
, t > a.

(24)
For fuzzy fractional derivative consider x ∈ L([a, b],RF ) and the fuzzy process

x1−α(t) =
∫ t

a

(t − s)−α

Γ (1 − α)
x(s)ds, for all t ∈ (a, b], (25)

where x1−α(a) = limt→a+ x1−α(t) in the sense of Pompeiu-Hausdorff metric.
Recall that for all 0 < α ≤ 1, the fuzzy function x1−α : (a, b] → RF defines a
fuzzy number.

Definition 3 [26]. The fuzzy Riemann-Liouville fractional derivative of order
0 < α ≤ 1 of x with respect to F -derivative is defined by

(RLF Dα
a+x)(t) =

1
Γ (1 − α)

(∫ t

a

(t − s)−αx(s)ds

)′

F

= (x1−α(t))′
F , (26)

where
∫ t

a
(t − s)−αx(s)ds is a F -correlated fuzzy process, F -differentiable for all

t ∈ (a, b].
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It is important to highlight that,
∫ t

a
(t − s)−αx(s)ds can be an expansive or

contractive fuzzy process. However, it is expansive if x(·) is expansive [31]. So,
if x1−α(·) or x(·) is expansive, then

[RLFDα
a+x(t)]r =

1
Γ (1 − α)

[
d

dt

∫ t

a

(t − s)−αx−
r (s)ds,

d

dt

∫ t

a

(t − s)−αx+
r (s)ds

]
.

(27)
Thus,

[RLFDα
a+x(t)]r =

{
i. [Dα

a+x−
r (t),Dα

a+x+
r (t)] if x1−α(·) or x(·) is expansive)

ii. [Dα
a+x+

r (t),Dα
a+x−

r (t)] if x1−α(·) is contractive .

(28)

Definition 4. Let x be a F -correlated fuzzy process. The fuzzy Caputo fractional
derivative CF Dα

a+x with respect to F -derivative is defined by

(CF Dα
a+x)(t) =

(RLF

Dα
a+ [x(·) −F x(a)]

)
(t), for t ∈ (a, b]. (29)

Thus,

(CF Dα
a+x)(t) =

1
Γ (1 − α)

(∫ t

a

(t − s)−α(x(s) −F x(a))ds

)′

F

. (30)

From (26) if x1−α(·) is contractive, then

[(CF Dα
a+x)(t)]r =

{[
(CDα

a+x−
r )(t), (CDα

a+x+
r )(t)

]
if x(·) is expansive[

(CDα
a+x+

r )(t), (CDα
a+x−

r )(t)
]

if x(·) is contractive . (31)

Theorem 4 [26]. Let x ∈ AC([a, b],RF ) be a F -correlated fuzzy process, F -
differentiable with [x(t)]r = [x−

r (t), x+
r (t)], for r ∈ [0, 1], and 0 < α ≤ 1. In this

case, [(CF Dα
a+x)(t)]r =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ ∫ t

a
(t−s)−α

Γ (1−α) (x−
r )′(s)ds,

∫ t

a
(t−s)−α

Γ (1−α) (x+
r )′(s)ds

]
if x is expansive

[ ∫ t

a
(t−s)−α

Γ (1−α) (x+
r )′(s)ds,

∫ t

a
(t−s)−α

Γ (1−α) (x−
r )′(s)ds

]
if x is contractive

, (32)

for t ∈ [a, b].

In the fuzzy fractional calculus the derivative that the researchers usually
used is the generalized Hukuhara derivative (gH). Our results via F-correlated
derivative are similar to those obtained via gH. However, the domains of arith-
metic operations via F -correlated process and via gH are different as can be
seen in (8)–(11). Although the difference (9) coincides with the difference gH,
the multiplication and division operations F-correlated do not coincide with
standard arithmetic operations, which are used with gH. These facts imply that
the solutions of fuzzy differential equations via gH and via F can be different.
For example via numerical simulations [32].
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4 Fuzzy Interactive Fractional Differential Equations

Consider the following fuzzy fractional initial value problem given by the F -
correlated fractional Caputo derivative of order α ∈ (0, 1]

(CF Dα
a+x)(t) = f(t, x(t)),

x(a) = x0 ∈ RF ,
(33)

where f : (a, b] × RF → RF is fuzzy continuous function on Pompeiu-Hausdorff
metric. The F -correlated fuzzy process x : [a, b] → RF is said to be a solution
of (33) if x ∈ C([a, b],RF ), x(a) = x0 and (CF Dα

a+x)(t) = f(t, x(t)), for all
t ∈ (a, b].

For all r ∈ [0, 1], consider [x0]r = [x−
0r, x

+
0r] and

[f(t, x)]r = [f−
r (t, x−

r (t), x+
r (t)), f+

r (t, x−
r (t), x+

r (t))].

Thus, for all r ∈ [0, 1], the solutions x(·) of (33) satisfy [26]

– if x is expansive on [a, b]

(CF Dα
a+x−

r )(t) = f−
r (t, x−

r (t), x+
r (t)); x−

r (a) = x−
0r

(CF Dα
a+x+

r )(t) = f+
r (t, x−

r (t), x+
r (t)); x+

r (a) = x+
0r

(34)

– if x is contractive on [a, b]

(CF Dα
a+x+

r )(t) = f−
r (t, x−

r (t), x+
r (t))]; x−

r (a) = x−
0r

(CF Dα
a+x−

r )(t) = f+
r (t, x−

r (t), x+
r (t)); x+

r (a) = x+
0r

. (35)

The Fuzzy Fractional Initial Value Problems (FFIVPs) given by (34) and
(35) boil down to classical Fractional Initial Value Problems. Hence, numerical
solution for the FFIVP can be provided by the method proposed by [22], which
is based on the modified trapezoidal rule and the fractional Euler’s method, for
Caputo fractional derivative. The generalization of this method for FFIVPs can
be founded in [17].

Consider a fractional initial (classical) value problem given by
CDα

a+x(t) = f(t, x(t)), x(0) = x0.

Let [0, a] be an interval divided in k subintervals [ti, ti+1] with equal size h. Then
the solution x(tj), for each tj ∈ [0, a], is given by

x(tj) = x0 + M((j − 1)α+1 − (j − α − 1)jα)f(t0, x(t0)) (36)

+ M

j−1∑
i=1

((j − i + 1)α+1 − 2(j − i)α+1 + (j − i − 1)α+1)f(ti, x(ti))

+ M(f(tj , x(tj−1)) + Nf(tj−1, x(tj−1))),

where
M =

hα

Γ (α + 2)
and M =

hα

Γ (α + 1)
.

Next an application of this method is applied in a HIV model that describes
the viral dynamics of individuals, under antiretroviral treatment.
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5 Viral Dynamics for Seropositive Individuals Under
Antiretroviral Treatment (ART)

Data obtained in various studies [20,24] suggests that the virus concentration
decay in bloodstream is approximately exponential after the patient was placed
on a potent antiretroviral drug. One of the simplest models of viral dynamics
consider the effect of antiretroviral as Eq. (37)

dv

dt
= P − cv, (37)

where P is the rate of virus production, c is the clearance rate and v = v(t) is
the virus concentration. This model assumes that the treatment is initiated at
t = 0 and that the efficiency of the treatment is partial when P > 0, once the
drug could not instantly block all viral production [23].

Although Eq. (37) describes the viral dynamics considering the effect of the
drugs, the classical differential equation does not take some behaviours of this
dynamic into account. For instance, there is a time interval between the infection
of the cell and the release of new infectious viral particles, called virions. This
means that there exists an intracellular delay, which can be modeled by a system
of delay differential equation [9]. For this reason consider the gamma distribution.
According to Mittler et al. [18] the gamma distribution can be used to describe
the delay presented in the HIV dynamic, because the curves of the gamma
distribution are more realistic than the curves of normal distribution, since some
cells may take a long time to release virus.

The gamma distribution is widely used to deal with fractional differential
equations. Due to the well-established fractional calculus theory, here we adopt
the Caputo derivative. To this end, consider the intracellular delay given by the
difference t − s, where 0 < s < t. The Caputo derivative of v of order α ∈ [0, 1]
is given by

Dα
Cv(t) =

1
Γ (1 − α)

∫ t

0

v′(s)(t − s)−α
ds, (38)

which can be rewritten as

Dα
Cv(t) =

∫ t

0

[f(t − s)et−s]v′(s)ds, (39)

where f(t − s) is the gamma distribution of t − s, that is, for 0 < s < t and
α ∈ [0, 1],

f(t − s) =
(t − s)−α

e−(t−s)

Γ (1 − α)
. (40)

Therefore, as a non local operator, the Caputo derivative provides the effect
of intracellular delay at the virus concentration. In this case, it is weighted by
the exponential function et−s, which assign more weight to a shorter delay, as
depicted in Fig. 1.
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Fig. 1. Representation of wheighted gamma distribution of intracellular delay.

Now, since the initial value of the virus concentration is usually uncertain, the
initial condition to this model is described by a fuzzy number, which gives raise
to the following Fuzzy Fractional Differential Equation with Caputo derivative{

(CF Dαv)(t) + cv(t) = P,

v(0) = V0 ∈ RF
(41)

where c, P ∈ R
+.

Here we consider two cases for this dynamic. The first one is when the fuzzy
process is expansive i.e, the diameter of the process is a non-decreasing function
at t, and the second one is when the fuzzy process is contractive, i.e, the diameter
of the process is a non-increasing function at t. So, the function f(ti, x(ti))) that
appears in the formula (36) must be adapted for each case, using the formulas
(34) and (35).

Figure 2 illustrates the numerical solution for the FFIVP considering different
fuzzy processes. In the case where one expects that uncertainty increases over
time, then we must take an expansive process into account, as Subfigure (a) of
Fig. 2 depicts. On the other hand, in the case where one expects that uncertainty
decreases over time, then we must take a contractive process into account, as
Subfigure (b) of Fig. 2 depicts.

Note that the numerical solution for the expansive process assumes nega-
tive values. Since we are dealing with the number of infected individuals, the
numerical solution obtained from the expansive process is not consistent. This
implies that only the contractive process is appropriated for this model. Now,
we can still interpret the expansive process for this case. Although it assumes
negative values, we verify that the evolution of the disease increases over time.
In addition, its width increases, illustrating a chaotic scenario with increasing
uncertainty.

Also observe that, in both cases, there is an oscillation in the beginning of
the solutions. This is a typical behavior of problems involving FDEs.
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(a) Numerical solution for an expansive
process

(b) Numerical solution for a contrac-
tive process

Fig. 2. Numerical solution to the HIV model given by (41). The gray lines represent
the r-levels of the fuzzy solutions, where their endpoints for r varying from 0 to 1
are represented respectively from the gray-scale lines varying from white to black. The
initial condition is given by v0 = (470; 670; 870), h = 0.125 and α = 0.3.

6 Final Comments

In this manuscript, we present an HIV viral dynamics model for individuals
under antiretroviral treatment. The modeling was done by considering Interac-
tive Fuzzy Fractional Differential Equations (IFFDE), that considers an under-
lying interactivity in the process and its use is justified by the fact that biological
processes have memories in their dynamics [2,3].

Viral load, as an autocorrelated process, considers that there is a memory coef-
ficient in its modeling, this means that the instant of time t is associated to the
previous instant time t − 1. Specifically, the Caputo fractional derivative allows
us to take the intracellular delay as a non fixed value into account, by means of
the gamma distribution. This distribution assigns more weight to a lower intra-
cellular delay and it carries biological informations, in contrast to the classical
derivatives. The FFIVP via Caputo derivative provides solutions related to the
value of α ∈ [0, 1], once the bigger the value of α, the faster the viral load decays.

The uncertainty in the number of viral particles produced by each infected
cell suggests that the viral load can be represented as a fuzzy number. Through
IFFDE, it was possible to describe the phenomenon from two points of view:
expansive process (the diameter of the solution is a non-decreasing function
in t) and contractive process (the diameter of the solution is a non-increasing
function in t), in contrast to other methods given in the literature.

Finally, we present a numerical solution to illustrate the obtained results. In
both cases, a decrease in plasma viremia in the bloodstream is obtained, which
corroborates the data presented in the literature [21].
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