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Abstract. This paper investigates the essential connections among sev-
eral categories with a weaker structure than that of L-fuzzifying topology,
namely category of L-fuzzifying approximation spaces based on reflexive
L-fuzzy relations, category of L-fuzzifying pretopological spaces and cat-
egory of L-fuzzifying interior (closure) spaces. The interrelations among
these structures are established in categorical setup.
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1 Introduction

Since the introduction of the rough set by Pawlak [11], this powerful theory
drawn the attention of many researchers due to its importance in the study of
intelligent systems with insufficient and incomplete information. Several gener-
alizations of rough sets have been made by replacing the equivalence relation by
an arbitrary relation. Dubois and Prade [3] generalized this theory and intro-
duced the concept of fuzzy rough set. Various types of fuzzy rough approxima-
tion operators have been introduced and studied (c.f. [9,17-21]) in the context
of fuzzy rough set theory. The most well known introduced fuzzy rough set is
obtained by replacing the crisp relations with fuzzy relations and the crisp subset
of the universe by fuzzy sets. Further, a rough fuzzy set was introduced in [23]
by considering the fuzzy approximated subsets and crisp relations. In [25] Yao,
introduced another kind of fuzzy rough set which is based on fuzzy relations
and crisp approximated subsets, and is further studied by Pang [10] through
the constructive and axiomatic approach. Several interesting studies have been
carried on relating the theory of fuzzy rough sets with fuzzy topologies (cf.,
[2,6,13,16,19,22]). Further, Ying [26] introduced a logical approach to study
the fuzzy topology and proposed the notion of fuzzifying topology. In brief, a
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fuzzifying topology on a set X assigns to every crisp subset of X a certain degree
of being open. A number of articles were published based on this new approach
(cf., [4,5,8,24,29,30]). Fang [4,5] showed the one to one correspondence between
fuzzifying topologies and fuzzy preorders and Shi [24] discussed the relationship
of fuzzifying topology and specialization preorder in the sense of Lai and Zhang
[7]. In 1999, Zhang [28] studied the fuzzy pretopology through the categori-
cal point of view and Perfilieva et al. in [12,14] discussed its relationship with
F-transform. Further following the approach of Ying [26], Lowen and Xu [§],
Zhang [30] discussed the categorical study of fuzzifying pretopology.

Recently, Pang [10] followed the approach of Ying [26] and studied
L-fuzzifying approximation operators through the constructive and axiomatic
approaches. So far, the relationship among L-fuzzifying pretopological spaces,
Cech L-fuzzifying interior (closure) spaces and L-fuzzifying approximation
spaces has not been studied yet. In this paper, we will discuss such relation-
ship in more details. It is worth to mention that our motivation is different
from Qiao and Hu [15], in which such connection is established in the sense of
Zhang [28] rather than L-fuzzifying pretopological setting. Specifically, we estab-
lished the Galois connection between L-fuzzifying reflexive approximation space
and L-fuzzifying pretopological spaces. Finally, we investigate the categorical
relationship between Cech L-fuzzifying interior spaces and L-fuzzy relational
structure.

2 Preliminaries

Throughout this paper, L denotes a De Morgan algebra (L,V,A,’,0,1), where
(L,V, A,0,1) is a complete lattice with the least element 0 and greatest element
1 and an order reversing involution “’ ”. For any a C L, \/ a and /\ a are respec-
tively the least upper bound and the greatest lower bound of a. In particular,
we have \/ ¢ =0 and A\ ¢ = 1.

Let X be a nonempty set. The set of all subsets of X will be denoted by
Z(X) and called powerset of X. For A € &(X), \° is the complement of A and
characteristic function of A is 1. Let X, Y be two nonempty sets and f: X — Y
be a mapping, then it can be extended to the powerset operator f— : Z(X) —
P2(Y) and f~ : 2(Y) - P(X) such that for each C € Z(X), f~(C) =
{f(x) :x € C} and for each D € 2(Y), f~(D) = f~Y(D) = {z: f(z) € D}.

A map f: X — Y can be extended to the powerset operators f— : LX — LY
and f~: LY — L¥ such that \€¢ LX , pe LY,y €Y,

PO =\ M), fo(w)=pof
z,f(z)=y

For a nonempty set X, LX denotes the collection of all L-fuzzy subsets of X, i.e.
a mapping A : X — L. Also, for all a € L, a(x) = a is a constant L-fuzzy set on
X. The greatest and least element of LX is denoted by 1x and Ox respectively.
For the sake of terminological economy, we will use the notation A for both crisp
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set and L-fuzzy set. Further, an L-fuzzy set 1, € L is called a singleton, if it
has the following form
1, ifz=y,
1,(x) =
o(@) {0, otherwise.

Let X be a nonempty set. Then for A\, u € L, we can define new L-fuzzy sets
as follows:

A= = M) = () A< = A) < ),
AAp) (@) = AMz) A p(), AV p)(r) = Nz) V u),
A (z) = (M=), Vx € X

Let I be a set of indices, A\; € L, i € I. The meet and join of elements from
{Ai | i € I} are defined as follows:

(/\ )‘l) /\ /\ ’ 161 )(.13) = \/ieI )‘l('r)

i€l el

Throughout this paper, all the considered categories are concrete. A concrete
category (or construct) [1] is defined over Set. Specifically, it is a pair (C,U),
with C as a category and U : C — Set is a faithful (forgetful) functor. We say
U(X) the underlying set for each C-object X. We write simply C for the pair
(C,U), since U is clear from the context.

A concrete functor between concrete categories (C,U) and (D, V) is a functor
F:C — D withU = VoF. It means, F only changes structures on the underlying
sets. For more on category we refer to [1].

Now we recall the following definition of L-fuzzy relation from [27].

Definition 1 [27]. Let X be a nonempty set. An L-fuzzy relation 6 on X is an
L-fuzzy subset of X x X. An L-fuzzy relation 0 is called reflexive if 0(x,x) = 1,
VzrelX.

A set X equipped with an L-fuzzy relation 6 is denoted by (X, 6) and is called
a L-fuzzy relational structure.
Below we define the category FRS of L-fuzzy relational structures.

1. The pairs (X, 0) with reflexive L-fuzzy relation 6§ on X are the objects, and
2. for the pairs (X,0) and (Y,p) a morphism f : (X,0) — (Y,p) is a map
[:X =Y such that ¥ 2,y € X, 0(z,1) < p(f(z), [ ().

3 L-Fuzzifying Approximation Operators

In this section, we recall the notion of L-fuzzifying approximation operators
and its properties presented in [10]. We also define the category of L-fuzzifying
approximation space and show that this category is isomorphic to the category
of fuzzy relational structures.
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Definition 2 [10]. Let 6 be an L-fuzzy relation on X. Then upper (lower)
L-fuzzifying approximation of \ is a map 0,0 : 2(X) — LX defined by;

(VA€ 2(X), z € X), 0N (z)=\/ 0(z,y),

YEA
(VAe 2(X), zeX), 0N ()= 0(x,y)"
yEX

We call 8, 0 the lower L-fuzzifying approzimation operator and the upper
L-fuzzifying approzimation operator respectively. Further, the pair (0,0) is called
L-fuzzifying rough set and (X, 0) is called an L-fuzzifying approximation space
based on L-fuzzy relation 6.

(i) It is important to note that, if A = {y} € Z(X) for some y € X, then
we have the upper L-fuzzifying approximation 0({y})(x) = 0(z,y) for each
reX. It N=X—{y} € #(X) for some y € X, then we have the lower
L-fuzzifying approximation 8(X — {y})(x) = 6(z,y)’ for each z € X.

(ii) Let X be a nonempty set and 6 be reflexive L-fuzzy relation on X. We call
the pair (X, ), an L-fuzzifying reflexive approzimation space.

Now, we give some useful properties of L-fuzzifying upper (lower) approximation
operators from [10]. These properties will be used in the further text.

Proposition 1 [10]. Let (X,60) be an L-fuzzifying reflexive approximation
space. Then for A € P(X) and {\; | i € I} C P(X), the following holds.

) 0(6) =0x, 8(X) =1x,
(it) O(A) = 6(A%)', () = (A%,

Q()‘) > 1)\7 Q(A) S})\?

OUjer Ai) = Vier 0N), 0(Mier Ai) = Nier 0(N)-

Below we give the notion of morphism between two L-fuzzifying reflexive approx-
imation spaces.

Definition 3. The morphism f : (X,0) — (Y,p) between two L-fuzzifying
reflexive approzimation spaces (X,0) and (Y, p) is given by

7 (p(N) <8(F~ (V) VA e Z2(Y).

It is easy to verify that all L-fuzzifying reflexive approximation spaces as objects
and morphism defined above form a category. We denote this category by
L-FYAPP.

Theorem 1. The category L-FYAPP is isomorphic to the category FRS.

Proof. The proof is divided into two parts. On one hand we can see that both
the categories have the identical objects. It only remains to show that both the
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categories have the identical morphisms. Let f : (X,0) — (Y, p) be a morphism
in the category FRS, then for any A € Z(Y) and = € X we have

/=@ = A by = N\ p(f@),fy)

yEf—(N) Fy)Ex
> N\ p(f(@).t) = £~ (pV)(@).
tgA

On the other hand, let f be a morphism in the category L-FYAPP. Then for
all z,y € X we have

pf@), fw) = N\ @), =pY = {Fy)N(f(2))
tE (Y —{f(®)})

=Y ={fW))(@) <o(f~ ¥ —{fy)}H))(z)
= /\ 9(1‘,:1/)/

vEf= (Y —{fW)})
=0(X —{y})(x) = 0(x,y)".

Hence we get p(f(x), f(y)) < 6(z,y)’. Since “17” is order reversing, hence
O(z,y) < p(f(z), f(y)) holds and f is a morphism in the category FRS. We
denote this isomorphism by N.

4 L-Fuzzifying Approximation Space and L-Fuzzifying
Pretopological Space

This section is towards the categorical relationship among L-fuzzifying pretopo-
logical space, Cech (L-fuzzifying) interior space and L-fuzzifying approximation
space. We discuss how to generate an L-fuzzifying pretopology by an reflexive
L-fuzzy relation and our approach is based on the L-fuzzifying approximation
operator studied in L-fuzzifying rough set theory.

Below, we present the definition of L-fuzzifying pretopological space which
is similar (but not identical) to that in [8].

Definition 4. A set of functions 7x = {py : P(X) — L |z € X} is called an
L-fuzzifying pretopology on X if for each \,u € P(X), and x € X, it satisfies,

(i) pa(X) =1,
(i) pa(A) < 1x(2),
(ZZZ) Dz ()‘ N /1') = Pz ()‘) A Dy (:U’)

For an L-fuzzifying pretopology Tx, the pair (X,7x) is called an L-fuzzifying
pretopological space.
An L-fuzzifying pretopological space (X, Tx) is called Alexandroff, if

(iv) px(ﬂie] i) = /\ie[px()‘i)'
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With every L-fuzzifying pretopological space 7x = {p, : (X)) — L | z € X}
and each A € #(X), we can associate another L-fuzzy set ¢, € LX such that
for all z € X, ¢x(z) = p.(N). Obviously, ¢ : A — ¢, is an operator on X.

A mapping f : (X,7x) — (Y, 7y) between two L-fuzzifying pretopological
spaces is called continuous if for all z € X and for each A € Z(Y), g5 (N) <
Pe(fT(N)), where 7x = {p, : Z(X) = L |x € X}, 7v = {qa): Z(Y) — L |
f(z) e Y} and f<(A) = {z: f(x) € A\}. It can be verified that all L-fuzzifying
pretopological spaces as objects and their continuous maps as morphisms form
a category, denoted by L-FYPT.

Now, we define the concepts of Cech L-fuzzifying interior (closure) operators
by considering the domain as crisp power set (X)) rather than L-fuzzy set LX.

Definition 5. A mapping i : 2(X) — LX is called a Cech (L-fuzzifying) inte-
rior operator on X if for each A\, € P(X), and x € X, it satisfies

(i) i(X) = 1x.
(i) i <1y,
(iii) 3NN ) = i(A\) A ().

The pair (X, i) is called a Cech (L-fuzzifying) interior space.
A Cech (L-fuzzifying) interior operator (X,1) is called Alexandroff, if

(iv) ’z(ﬂiel Ai) = /\ie[ %()‘z)

The map f : (X,7) — (Y,]) between two Cech L-fuzzifying interior spaces is
called continuous if for each x € X and A € 2(Y), j(\)(f(x)) < i(f~(\)(=).
It is trivial to verify that all Cech (L-fuzzifying) interior spaces as objects and
continuous maps as morphisms form a category. We denote this category by
L-FYIC. Moreover, we denote the subcategory (full) L-AFYIC of L-FYIC
with Cech Alexandroff L-fuzzifying interior operators as objects.

The notion of Cech (L-fuzzifying) closure operator can be defined using the
duality of L.

Definition 6. A mapping cx : P(X) — L~ is called a Cech (L-fuzzifying)
closure operator on X if for each A\, € P(X), and x € X, it satisfies

(1) ex(¢) = Ox,
(i) cx(A) = 1z,
(117) cx(AUp) =cx(A)Vex(p).

The pair (X, cx) is called a Cech L-fuzzifying closure space.
A Cech (L-fuzzifying) closure space (X, cx) is called Alexandroff, if

() ex(Uier M) = Vier ex (X))

A mapping f : (X,cx) — (Y, cy) between two Cech (L-fuzzifying) closure spaces
is called continuous if for all z € X and A € Z(X), f~(ex(A)) < ey (f~ (V).



232 A. P. Singh and I. Perfilieva

Remark 1. For a De Morgan algebra L, the L-fuzzifying pretopologies, Cech
L-fuzzifying interior operators and Cech L-fuzzifying closure operators are gen-
erally considered as equivalent and can be defined using the immanent duality
of L in the following manner.

ex(A) = (ix(X9))°, Vae Z(X)

From now on, we will only study the relationship between L-fuzzifying approxi-
mation spaces, L-fuzzifying pretopological spaces and Cech L-fuzzifying interior
spaces. Since the similar results can be obtained for Cech L-fuzzifying closure
spaces.

The following Proposition is an easy consequence of Definitions4 and 5.

Proposition 2. The set of functions 7x = {py : (X)) - L |z € X} is an
L-fuzzifying pretopology on X iff the map %TX : P(X) — LX such that for all
re X, .

Z.~rx ()‘) (1’) = px(A)v (1)

is a Cech L-fuzzifying interior operator. Moreover, if L-fuzzifying pretopology
Tx 18 Alexandroff, then the map i, is a Cech-Alexandroff L-fuzzifying interior
operator.

Theorem 2. The category L-FYPT and L-FYIS are isomorphic.

Proof. Let f: (X,7x) — (Y, 7y) is a morphism (continuous map) in L-FYPT.
We define the functor G as follows

L-FYPT — L-FYIS
G: ¢ (X,7x) »—>(X,%TX)
f — f,

and for all A € P(X), z € X, ire(N)(2) = ps(N). Since (X,ir,) is the
object of category L-FYIS, then f : (X,i-) — (Y,Jr,) is a continuous map,
e YA€ 2(Y), iy (N(@) = 45 (V) < polf () = by (F~(A)().

Conversely, let f : (X,ir,) — (Y,7r,) is a continuous map in the category
L-FYIS. We define the inverse functor G as follows

L-FYIS — L-FYPT
G (X,%TX) — (X, 7x)
/ — g,

and for all X € P(X), pp()\) = iry (A)(z). Then clearly G™! is an inverse functor
with the inverse G.

In the next proposition, we show that an L-fuzzifying pretopology on X can
be represented by an L-fuzzifying lower approximations of sets on X with respect
to a reflexive L-fuzzy relation.
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Proposition 3. Suppose that (X,0) be an L-fuzzifying reflexive approximation
space. Let for all A € P(X), v € X, we denote

PN = N 6,y (2)

YEX
Then 79 = {p% : P(X) — Ll|z € X}, is an L-fuzzifying pretopology on X.

Proof. For all z € X and A € #(X), from Proposition 1, it can be easily verified
that 79 as defined in Eq. 2 satisfies the properties (i)—(iii) of lower L-fuzzifying
approximation operator.

Proposition 4. Let (X,7x) be an L-fuzzifying pretopological space. Then for
any x € X, we define

Ory (2,y) = pa(X — {y})/~

Then, O is a reflexive L-fuzzy relation and (X, O,y ) is an L-fuzzifying reflexive
approximation space.

Proof. For all x € X and from the Definition4 we have, O, (z,2) = p(X —
{z}) < 1x_gz3(x) = 0’ = 1. Which shows that ©,, is a reflexive L-fuzzy
relation and hence (X, 0., ) is an L-fuzzifying reflexive approximation space.

Proposition 5. If f : (X,0) — (Y, p) is a morphism between two L-fuzzifying
reflexive approximation spaces. Then f is continuous function between two
L-fuzzifying pretopological spaces (X, 19) and (Y, 7,).

Proof. The proof directly follows from Proposition 3.
Thus from the Propositions 3 and 5 we obtain a concrete functor 7 as follows:

L-FYAPP — L-FYPT
T4 (X,0) — (X, 79)

Next, we prove a result, which gives a concrete functor @ : FYPT — FYAPP.

Proposition 6. If f is a continuous function between two L-fuzzifying pretopo-
logical spaces (X,7x) and (Y, 7y). Then f: (X,0.,) — (Y,Or,) is a morphism
between two L-fuzzifying reflexive approximation spaces.
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Proof. Let A € 2(Y) and z € X, we have

F7 (O W)(@) = O, M(f(@) = A Ory (f(2), 1)

tEN

=N - = A 4o -{f®}
tgA fy)EA

< A p("={f®})
yEf—(\)

< /\ px(X —{y}) = /\ Ory (2,y)
yEf—(\) yEf—(N)

= O, (f~(N)().

Hence, we have f : (X,0,,) — (Y, 6., ) is a morphism between two L-fuzzifying
reflexive approximation spaces (X, 0., ) and (Y, O, ). In particular, we obtain
a concrete functor @ as follows:

L-FYPT — L-FYAPP
O:¢ (X, 7x) —(X,0.)
In the next theorem we prove the adjointness between the categories L-FYAPP
and L-FYPT. Now we have the following.

Theorem 3. Let (X,0) be an L-fuzzifying reflexive approximation space. Then
7 : L-FYAPP — L-FYPT is a left adjoint of © : L-FYPT — L-FYAPP.
Moreover © o 7(X,0) = (X, 0) i.e., © is a left inverse of T.
Proof: The proof is divided into two parts. At first, we show that for any L-
fuzzifying reflexive approximation space (X,0), Ix : (X,6) — (X,0,,) is a
morphism between L-fuzzifying reflexive approximation spaces.

For any A € Z(X) and x € X, we have

- /\ QTe(xﬂU)/

yEX

= /\ % (X —{y})") (from Proposition 4)
yEX

= /\ pfg (X —{y}) (by involution of “77)
yEA

_ /\ (X —{y}) = /\ 0(z,y)" = 0(N)(x).

yEX yEA

Hence, Ix : (X,0) — (X,0;,) is a morphism between L-fuzzifying reflexive
approximation spaces.
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On the other hand, for any A € Z(X), x € X, we have

P (V) = Or W)(@) = N Ory (2,3)

yEX
= N\ (X = {y})")
yEX
= /\ pz(X —{y}) (by involution of “/7)
yEA
> Pz m (X - {y}) = pm()‘)
yEX

Hence, we show that Ix : (X,7e, ) — (X, 7x) is continuous.
Therefore, 7 : L-FYAPP — L-FYPT is a left adjoint of © : L-FYPT —
L-FYAPP (Fig.1).

L-FYIS FRS
G-iso N-iso
T
L-FYPT L-FYAPP
S

Fig. 1. Commutative diagram of Theorems 1, 2 and 3.

5 L-Fuzzy Relational Structures and Cech L-Fuzzifying
Interior Space

In this section, we establish the categorical relationship between the category
FRS of L-fuzzy relational structures and the category L-FYIS of Cech L-
fuzzifying interior spaces. Now we have the following.

Proposition 7. Let f : (X,0) — (Y,p) be a morphism in the category FRS,
then f: (X,i9) — (Y, J,) is a continuous function (morphism) in the category
L-AFYIS.

Proof: Given that f: (X,0) — (Y, p) be a morphism in the category FRS. We
define a functor F as follows;

FRS — L-AFYIS
F:q(X,0) }—>(X,’AL.9)
o — f
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and VA € 2(X),z € X, i9g(\)(z) = Nygf(z,y). As (X,ig) is the object of
category L-AFYIS, we need to show that f : (X,i9) — (Y, 5‘p) is a continuous
function (morphism) in the category L-AFYIS. For all A € Z(Y),z € X we
have

I NU@) = N\ pf(2),2) < N olf(), f»))

2\ Fy)gx
< /\ 0(z,y) =ia(f~(N)(2).
y&f—(N)

Hence F is a functor.

Proposition 8. Let f : (X,ig) — (Y,],) be a continuous function (morphism)
in the category L-FYIS, then f : (X,0) — (Y, p) is a morphism in the category
FRS.

Proof: Let f: (X,49) — (Y,],) is a continuous function. Define a functor K as
follows;

(Xa%9) L (X,@),
f — f
and 0(z,y) = :L'agX — {y})(z). Clearly 6 is reflexive. Since iy is anti-extensive,
hence 0(x,x) = 19(X — {z})'(z) < (X — {z})'(x) = 0’ = 1. It remains to show
that f : (X,0) — (Y,p) is a morphism in the category FRS, i.e., 0(z,y) <
p(f(z), f(y)), or

{ L-FYIS — FRS
K

i0(X = {y})'(@) < Jo(Y = {f )} (f(2)),
or, ip(X — {y})(z) = (Y = {f(y)N(f(2)). 3)

Since f : (X,ig) — (Y,j,) is a continuous function, we have j,(\)(f(z)) <
i9(f=(N)(z). Therefore for A = (Y — {f(y)}), we get

JoY = {f @)D (@) <ig(f~ (Y = {f()})(x)
<ig(X — {y})(x).
Hence (3) holds and f : (X,0) — (Y, p) is a morphism in the category FRS.

Proposition 9. Let (X, %g) be a Cech Alexzandroff L-fuzzifying interior space
and F : FRS — L-AFYIS, K: L-AFYIS — FRS be the concrete functors.
Then FK(X,19) = (X,19) (Fig. 2).

Proof: Let FK(X,ig) = (X, j,), where,

VAe 2(X), joN@) = N io(X - {y})@) = \ 0(z,y)

yEA yEX
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lpe-AFvis
L-AFYIS L-AFYIS
incl. F
L-FYIS FRS
K

Fig. 2. Commutative diagram of Proposition 9.

As we know that, any arbitrary set A € #(X) can be decomposed as
A= ()X —{y}).
yEA

Therefore for Cech Alexandroff L-fuzzifying interior operator ig, we have

(N (z) =i | (VX ~{yD(@) | = N is(X ~{y})(2)

yEA yEX

= /\ 0(x,y) = j,(\)(x).

yEA

Hence we have FK(X,79) = (X, 1g).

237

In the end, we give a graph to collect the relationships among the discussed

categories.

0
L-FYPT —— L-FYIS

FRS

T N-iso

L-FYAPP
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6 Conclusion

This paper contributes to the theory of L-fuzzifying topology, which originates
from [26]. We have considered various categories that are weaker than the cat-
egory of L-fuzzifying topology, e.g., category of L-fuzzifying reflexive approxi-
mation spaces, category of L-fuzzifying pretopological spaces and the category
of Cech L-fuzzifying interior (closure) spaces. At first, we have shown how an
L-fuzzifying pretopology can be generated by a reflexive L-fuzzy relation. Fur-
ther, we have shown interconnections among these categories and some of their
subcategories using the commutative diagram. Finally, we have established the
relationship between L-fuzzy relational structure and Cech L-fuzzifying interior
space by means of Galois connection.
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