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Abstract. We use the Steinhaus transform of metric distances to deal
with inconsistency in linguistic classification. We focus on data due to
G. Longobardi’s school: languages are represented through yes-no strings
of length 53, each string position corresponding to a syntactic feature
which can be present or absent. However, due to a complex network of
logical implications which constrain features, some positions might be
undefined (logically inconsistent). To take into account linguistic incon-
sistency, the distances we use are Steinhaus metric distances generalizing
the normalized Hamming distance. To validate the robustness of classifi-
cations based on Longobardi’s data we resort to randomized transforms.
Experimental results are provided and commented upon.
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1 Introduction

The linguist G. Longobardi and his school have an ambitious project on language
classification which is based on syntactic rules rather than lexical or phonetic data
[1,11-13]: the idea is that syntactic rules have a definitely slower time-drift and
so, by being able to reach back deeper into the past, one might obtain precious
information on linguistic macrofamilies which have been proposed, but whose ade-
quacy is still a moot point. In a way, one should like to mimic what evolutionary
bioinformatics has been able to achieve in the genetic domain of quaternary DNA
strings; it is no surprise that tools of bioinformatics, e.g. those used in character-
based and distance-based classifications, have been exported into linguistics, cf.
e.g.[1,12], a fact we shall comment upon below. Longobardi’s approach is defended
in [1,11-13], to which the linguistic-minded reader is referred. In linguistics, binary
strings are obtained by specifying n linguistic features which can be present =1
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or absent =0 in a given language L. Since the length n is the same for all strings
describing the languages L, 4, ... one intends to classify, a distance like Hamming
distance, which counts the number of distinct features, appears to be adequate to
gauge the dissimilarity between two languages L and A (between the correspond-
ing strings), were it not that Longobardi’s features are constrained by a complex
network of logical implications. This has lead Longobardi’s school to the use of
a string distance which modifies the Hamming definition so as to get rid of posi-
tions corresponding to undefined (and undefinable) positions; the drawback is that
the generalized distance they resort to is not metric, as instead often required by
clustering techniques used to obtain the corresponding classification trees. Due to
reasons discussed in next section, also a non-metric generalization the Jaccard dis-
tance has been used by Longobardi’s school: the Jaccard distance “ignores” posi-
tions corresponding to features which are absent in both languages L. and A, and so
are linguistically “irrelevant”, cf. next section. Now, the original 0-1 Jaccard dis-
tance (no inconsistency) can be obtained from the standard Hamming distance by
means of a powerful mathematical tool called the Steinhaus transform: this trans-
form needs the specification of a pivot, which in the Jaccard case is precisely the
all-zero string; we stress that the Steinhaus transform of a metric distance is itself
metric. In [8] one has already used Steinhaus transforms to deal with old fuzzy lin-
guistic data due to Z. Muljacié¢, where logical values can be intermediate between
0 and 1: this gave us the idea to represent logical inconsistency by the “ambigu-
ous” value % which is equidistant from both crisp logical values 0 and 1, cf. Sects. 3
and 4, and to use as pivot the “totally ambiguous” string, i.e. the all—% string. The
results which we obtain with this Steinhaus transform are surprisingly good, as
commented upon in Sects. 3 and 4. The fact that moving from the original Lon-
gobardi’s non-metric distance to our Steinhaus metric distance leaves the classi-
fication tree largely unchanged may be interpreted as a proof of the robustness of
Longobardi’s data: this is in puzzling contrast with results obtained by bootstrap-
ping techniques described and used in [1,11,12] and suggested by bioinformatics,
which seemed to show that Longobardi’s original classification is not that robust.
Below, in Sects. 3 and 4, we argue that this seeming non-robustness might be due to
the inadequacy of tools exported from bioinformatics to linguistics. Rather than by
bootstrapping, we prefer to validate the robustness of data by randomly perturbing
our Steinhaus distance, or rather by randomly perturbing the pivot which is used:
results are shown and commented upon in Sects. 3 and 4.

2 A Detour: From Muljaci¢ to Steinhaus

In the past, the authors have been working on old and new linguistic data [6-10];
the starting point is the same: languages L, A, ... are described by n linguistic
features f;, 1 <14 < n, which in each language can be either present (1 =true) or
absent (0 = false). The usual (crisp) Hamming distance, which counts the number
of positions ¢ where the corresponding bits are different, would be to the point,
but both in the old Muljac¢i¢ data and in the new ones due to Longobardi there
is a stumbling block, since “ambiguous” situations are possible. Even if in both
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cases the symbols we will be using! are 0, %, 1, the symbol %, i.e. neither true
nor false, neither present nor absent, has a distinct meaning.

In the case of Muljaci¢ [14], % can be interpreted as a logical value inter-
mediate between 0 and 1 in a multivalued logic as is fuzzy logic, for which cf.
e.g. [5]. In ampler generality one may consider strings x = z1xs ..., where
each component z; may belong to the whole interval [0,1] allowing for all possi-
ble “shadings” of logical values. To define an adequate distance between fuzzy
strings, suitably generalizing the usual Hamming distance between crisp strings,
the relevant question to be posed is: if z and y are the logical values of feature
f in the two languages L and A represented by the two strings z and y, is f
{present in L and absent in A} or {absent in L and present in A\}? Let L and
T be the disjunction or and the conjunction and in the multi-valued logic we
choose to use; as for the negation, denoted by an overline, we will always use the
1-complement: T = 1 — z (the symbols T and L which we are using for abstract
conjunctions and disjunctions remind one of A and V, and are common when
dealing with T-norms, cf. e.g. [5]). Assuming additivity w.r. to the n features,
one gets for the distance d(z,y) between two strings z and y, and so for the
corresponding distance d(L, A) between languages L and A:

dlz,y)= Y (2:T%) L (T Ty) (1)

1<i<n

In the case of standard fuzzy logic, conjunction and and disjunction or are com-
puted through minima A and mazima V, respectively, z Ty = z Ay = min[z, y],
zly = x Vy = max|z,y]. The distance one obtains from (1) is a fuzzy gen-
eralization of the usual crisp Hamming distance; rather than fuzzy Hamming
distance as in [15], or even Sgarro distance as in [3], we found it proper to call
it Muljaci¢ distance. We stress that use of the latter distance has proved to be
quite successful in the case of Muljaci¢ data, which, unlike Longobardi’s, are
genuinely fuzzy. The curious reader is referred to [6,7].

Already in [7] we tried several other logical operators of multi-valued logics,
for example Lukasiewicz operators z Ly = (z+y)Al = min[z+y,1], 2Ty = (x+
y—1)V0 = max[x+y—1,0]. The results were in general uninteresting, since the
distances one obtains were metrically unacceptable, cf. [7]; instead, Lukasiewicz
case was surprising: as a straightforward computation shows one re-obtains the
very well-known Manhattan distance or taxicab distance or Minkowski distance

dr(z,y) = Z |zi — yil

1<i<n

which in this context might even be called Lukasiewicz distance. It is precisely
this distance that we shall use below, rather than Muljaci¢; for a more extensive
discussion cf. [7,9].

' Longobardi instead of 0 1 1 uses — 0 +.
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Before moving to Longobardi’s data, we tackle Steinhaus transforms. The
starting point was Longobardi’s observation that positions ¢ where both lan-
guages have a zero are linguistically irrelevant, and so should be ignored: math-
ematically, one has to move from Hamming distances to Jaccard distances?.
What if the strings are not crisp? How should one go from Hamming distances
or Muljaci¢ distances to their Jaccard-like counterparts? The answer is precisely

the Steinhaus transform, cf. e.g. [3]:

26(x,y)
z,y) +d(z,2) +6(y, 2)

6St(xay) = 5( (3)

where 0(x,y) is any metric distance between objects which are not necessarily
strings, and where z is a chosen fixed object called the pivot of the transforma-
tion. As it can be proved, the Steinhaus transform is itself a metric distance;
it is normalized to 1, and is equal to 1 when z, z, y form an aligned triple
0(x,z)+0(z,y) = §(x,y) for the original distance to be transformed. Now, going
back to our strings z,y, ..., the Jaccard case corresponds to taking an all-zero
pivot string z = 00...0, in which case the distance from the pivot is nothing
else but the fuzzy weight w(z) = d(z,z) = Y, x; both with Muljaci¢ and the
taxicab distance.

The reason why we mentioned here irrelevance is simply that it paves the
way to the use of Steinhaus transforms, even if with a different pivot, as we are
going to do in the next section.

3 Dealing with Inconsistency

We move to Longobardi’s ternary strings®, where a complex network of logical
implications involves features, of the type: if fo is false and f; is true, then fg
does not make sense, it is logically inconsistent. In the case of inconsistency we
use once more the symbol %: in the example just given fo = 0 and f; = 1 implies
fo=1

The distance used by Longobardi’s school is simply a normalized Hamming
distance, where the positions where one or both languages have a % are ignored:
in practice, one deals with shorter strings, possibly much shorter. Since Lon-
gobardi’s distance is mot metric, we took a bold step to preserve metricity. In
Muljaci¢ case, the numeric value % represents suitably total logical ambiguity,
but certainly not logical inconsistency, as however we shall now do. In the case
of irrelevance an all-O string did the job and got us rid of positions which are

2 Actually, in as yet unpublished Longobardi’s research this point of view has been
relinquished and only inconsistency is taken care of, as we are doing below.

3 Data we shall work on refer to 38 world languages described by means of 53 syn-
tactic features, cf. [13] and Sect. 4, but Longobardi’s group are constantly updating,
improving and extending their database.
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irrelevant. Forgetting about irrelevance, but of course not about inconsistency,
here we shall take a totally ambiguous or rather totally inconsistent pivot string,
which is the all—% string z = %%%, this gets us rid of positions where there is
inconsistency in both languages L and A, but not, as instead Longobardi’s own
distance does, of positions where only one of the two is inconsistent: actually,
this turns out to be a possible source of weakness in Longobardi’s choice, since
few positions might survive if far-off languages are compared.

Now, rather than weights, cf. Sect.2, one has consistencies, i.e. distances
d(z, %%%) from the new pivot*: Lukasiewicz consistency turns out to be, as is
proper, 3. |z; — 3| =, (3 — f(x;)), where f(z;) =2 A (1 —z) is often seen as
the fuzziness of the logical value x, since it is the Euclidean distance from the
totally ambiguous fuzzy value 3.

Let us move to Longobardi’s data, so as to illustrate our methodology. The
tree we obtain, fig. (b), is definitely and surprisingly® good, as it is virtually
undistinguishable from the original Longobardi’s tree (a) [13] based on a non-
metric distance, and is linguistically equally sound. The fact that two distinct
distances perform so similarly appears to be an indication that data are quite
robust. Instead, use of statistical bootstrap techniques as done by Longobardi’s
school seemed to show that data are not that robust, cf. [1,11-13]. Actually,
bootstrapping works quite well with the strings of bioinformatics, whose length
is by magnitudes larger than ours, hundreds of thousands vs 53 (also in the case
of DNA strings the assumptions of independence between positions, particularly
if nearby, is untenable, but this weak point is smoothed out by the huge length
of the strings involved). In our case strings are comparatively short and the
structure of dependences is pervasive and strong, so the poor performance of
bootstrapping might be simply an indication that the network of logical rather
than statistical dependences makes the use of bootstrapping inadequate.

Instead, we propose an alternative to check robustness: let us perturb the dis-
tance, and see what happens. We shall take at random the pivot string Z (totally
at random with uniform distribution on [0, 1)), and check which sort of trees we
obtain, taking also into account the taxicab distance between the observed ran-
dom pivot and the “correct” all—% pivot (capital letters denote random variables
or random n-tuples).

Since the n terms in the random distance dr(z,2) = Y, .,<,, |xi — Z;| are
independent, not only the expectation, but also the variance is additive, and so

4 Muljaci¢ consistency, based on mazima and minima, is unusable, being always 2

independent of z; cf. [7,9]. ’

5 Farsi (modern Persian) appears to be poorly classified, which is true also with Lon-
gobardi’s original tree. Also Bulgarian is poorly classified, but Longobardi uses only
features relative to the syntax of nouns, and the Bulgarian noun, due to substratum
influences, is well-known to be an outsider among Slavic languages. Be as it may,
the aim of this paper is simply to check mathematical tools and robustness of data,
rather than outperforming current classifications; cf. instead [4].
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(a) Longobardi’s tree

it will be enough to assume n = 1. Straightforward computations show that,
for given z € [0, 1]:

Eldr(z,Z)] =z(z— 1) + % , var[dp(z, Z)] = —2*(x — 1)% + é

or x = 1, the taxicab expectation is 5 and the taxicab variance is %

Rather, we are interested in the case when x has the “correct” pivot value
%: then expectation and variance are equal to }—1 and 4—18, respectively, and so, for
n > 1 the standard deviation ¢ = o[dr(z, Z)] is approximately 0.144/n ~ 1.05
with n = 53. Since the random distance dr(3 ... 3, Z) is the sum of n = 57 i.i.d.
terms, the central limit theorem allows one to resort to a normal approximation,
and so the three intervals of semi-width io, i = 1,2, 3 centered in the expected
distance have probability ~ 0.68, 0.95, 0.997, respectively. Correspondingly, the
trees will be called of type « (observed distance inside the first and most probable

interval), § (outside the first interval but inside the second), v (outside the

For X Z uniform on [0, 1]? one has ELdT(X, Z)] = %, while for z crisp, i.e. 2 =0
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second interval but inside the third), else d. So, trees of type «, § and v have
approximately probability 0.68,0.27 and 0.04, respectively.

4 Experimental Results

We reproduce ten trees for Longobardi’s data, the first (b) with the correct
pivot all-, the others, (c) to (k), with a random pivot string; a and (-trees
are virtually identical with the unperturbed tree, and in particular preserve the
Indoeuropean standard groups; the v-tree is weaker, e.g. it creates a single large
family for Semitic and Celtic languages. For more random trees obtained in
successive trials cf. [16].

The languages are 38, namely Sic = Sicilian, Cal = Calabrese as spoken in
South Italy, It=Italian, Sal=Salentine as spoken in Salento, South Italy,
Sp =Spanish, Fr=French, Ptg=Portuguese, Rm =Romanian, Lat=Latin,
CIG = Classical Attic Greek, NTG = New Testament Greek, BoG = Bova Greek
as spoken in the village of Bova, Italy, Gri= Grico, a variant of Greek spo-
ken in South Italy, Grk = Greek, Got = Gothic, OE = Old English, E = English,
D = German, Da=Danish, Ice=Icelandic, Nor = Norwegian, Blg= Bulgarian,
SC = Serbo(Croatian), Slo = Slovenian, Po=Polish, Rus = Russian, Ir = Gaelic
Irish, Wel=Welsh, Far=Farsi, Ma=Marathi, Hi=Hindi, Ar= Arabic,
Heb=Hebrew or ’ivrit, Hu=Hungarian, Finn=Finnish, StB=standard
Basque, wB = Western Basque, Wo = Wolof as spoken mainly in Senegal.

Cf. the supplementary material [16] for more information, inclusive of the
38 x 53 ternary matrix with the strings of length n = 53 associated to the 38
languages.

Final remarks. Unsurprisingly, the trees exhibited perform all very well when
compared to ours and the original Longobardi’s tree, cf. [1,11-13]; cf. also foot-
note 5. A finer statistical analysis to gauge tree similarity might require suitable
distances between trees like tree edit distances, as we are currently doing in [4];
here we have been more easy-going, since observed similarities are quite obvious
to the eye of the linguist. Note that phylogenetic tree distances as we would need,
cf. [3], are known to raise nasty computational problems. Unsurprisingly, think-
ing of Gray’s classification tree [2], largely recognized by the linguistic community
as a sort of reference benchmark, use of tree distances shows that Longobardi’s
tree and our own tree have virtually the same distance from Gray’s tree, even if
the distances used are quite distinct, one of the two not even metric, cf. [4]; once
more, this appears to be an indication that Longobardi’s data are quite robust.
The statistical technique of random perturbation might be readily extended to
the generalized Steinhaus distance used in [9], where one copes jointly with
irrelevance and inconsistency; cf. however footnote 2.

The idea we are trying to defend in this paper is that, rather than mimicking
bioinformatics, evolutionary linguistic should try to create its own new tools.
This need has become more and more evident in Longobardi’s research, where
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strings are dramatically shorter than those of bioinformatics and where the dis-
tances used, including our own metric distances, are quite different from those
used in bioinformatics for distance-based classifications.

Our current work takes into account the new larger data tables provided by
Longobardi’s school; these data include many non-Indoeuropean languages, so as
to get rid of an unwanted prominence of “usual” languages. This much enhances
the linguistic significance of the results obtained.
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