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Abstract. Computer simulations have been carried out to investigate the per-
formance of two measures for abductive inference, Maximum Likelihood (ML),
and Product Coherence Measure (PCM), by comparing them with a third
approach, Most Probable Explanation (MPE). These have been realized through
experiments that compare outcomes from a specified model (the correct model)
with those from incorrect models which assume that the hypotheses are mutually
exclusive or independent. The results show that PCM tracks the results of MPE
more closely than ML when the degree of competition is greater than 0 and
hence is able to infer explanations that are more likely to be true under such a
condition. Experiments on the robustness of the measures with respect to
incorrect model assumptions show that ML is more robust in general, but that
MPE and PCM are more robust when the degree of competition is positive. The
results also show that in general it is more reasonable to assume the hypotheses
in question are independent than to assume they are mutually exclusive.

Keywords: Inference to the Best Explanation (IBE) � Explanatory reasoning �
Hypotheses competition � Abduction

1 Introduction

In modern literature, abduction refers to the study of explanatory reasoning in justifying
hypotheses, or Inference to the Best Explanation (IBE) that considers a number of
plausible candidate hypotheses in a given evidential context and then compares these
hypotheses in order to make an inference to the one that best explains the relevant
evidence [1–11].

In conventional studies involving IBE, significant attention has been paid to dealing
with the hypotheses being mutually exclusive [12–15], and the measure for identifying
the most plausible hypothesis was typically chosen as the maximized posterior prob-
ability [16, 17] termed Most Probable Explanation (MPE). However, modern studies
have highlighted situations where hypotheses can be in competition even though they
are not mutually exclusive and can compete to varying degrees [18, 19]. Meanwhile,
alternative measures to MPE have been considered and applied [12, 19–29], such as
Maximum Likelihood (ML) and Product Coherence Measure (PCM) [11]. The reality
that hypotheses often have various degrees of competition gives rise to the necessity of
examining the characteristics of abductive inference in such a context, along with the
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characteristics of the functioning and performance of the explanatory measures used to
make inferences in these contexts. This then motivates a study to compare the per-
formance of several measures when conducting abductive inference under the
assumption that they may be competing to some extent, with an objective of identifying
the most suitable measure(s) as the criteria/criterion for the inference to the best
explanation, thus benefiting abductive inference research. Therefore, in this study,
comparison of the performance and functionality among the measures MPE, ML, and
PCM in identifying the best explanation has been carried out. We consider a number of
different probability model settings, as an extension of the study of abductive inference
under various degrees of competition between candidate hypotheses [19].

2 Competing Hypotheses and Degree of Competition

We start by giving an example to illustrate the competition concept. Suppose a
detective has two main suspects in a murder inquiry, Smith and Jones. The detective
tries to determine which hypothesis best explains all the relevant evidence by treating
the suspects as two competing hypotheses and reasoning abductively. The hypotheses
can be represented as:

HS: Smith committed the murder
HJ: Jones committed the murder

In general, the hypotheses need not be assumed to be mutually exclusive, since
both Smith and Jones could have colluded in committing the murder and hence it
would be improper to assume that P(HS&HJ) = 0. Clearly, if the two hypotheses are
known to be mutually exclusive (if Smith and Jones could not have colluded), then they
are competing hypotheses. In reality, it might be difficult to establish mutual exclusion,
but in many cases, it would still be reasonable to treat them as competing hypotheses.
Perhaps, for example, in light of the evidence it is very unlikely but not impossible that
Smith and Jones colluded.

Glass [19] proposed a definition for competing hypotheses: Let each of H1 and H2

be hypotheses and E evidence under consideration and suppose that P(H1&E) and P
(H2&E) are greater than zero. Hypotheses H1 and H2 are said to be competing
hypotheses with respect to evidence E if and only if P (H1| H2&E) < P(H1|E). Because
the competition is a symmetric concept, the formula can also be expressed as P (H2|
H1&E) < P(H2|E).

Schupbach and Glass [18] recently defined a measure of the degree of competition
between two hypotheses, H1 and H2, with respect to evidence E, as the average degree
to which H1 and H2 disconfirm each other given E:

Comp(H1;H2jEÞ ¼ 1
2
� ½ClðH1;:H2jEÞþClðH2;:H1jEÞ� ð1Þ
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where Cl is the likelihood ratio measure of confirmation conditioned on E, that is,

Cl H1; H2 jEð Þ = log
P ðH1 jH2&EÞ
P ðH1 j :H2&EÞ ð2Þ

By the definition, Comp has increasingly positive values to the extent that H1 and
H2 disconfirm one another given E, and increasingly negative values to the extent that
H1 and H2 confirm one another given E, and zero when H1 and H2 are probabilistically
independent given E. Note that if H1 and H2 are assumed to be mutually exclusive, then
P(H1| H2&E) = 0 and hence this would be a case with the highest possible degree of
competition. H1 and H2 can be said to compete with respect to E if Comp > 0. It can
then be shown that H1 and H2 compete with respect to E if the condition in the
definition is met. Since the measure of competition lies in the range [− ∞, ∞], their
alternative measure, which lies in the range [− 1, 1], has been used for convenience in
this study. It is given by [18]

dcomp ¼ 1
2
� ½CkðH1;:H2 jEÞþCkðH2;:H1 jEÞ� ð3Þ

where Ck is the confirmation measure proposed by Kemeny and Oppenheim [30] when
conditioned on E,

CkðH1; H2 jEÞ ¼ P ðH1 jH2&EÞ�PðH1 j :H2&EÞ
P (H1 jH2&EÞþPðH1 j :H2&EÞ ð4Þ

3 Probability Model and Experiment Design

Computer simulations were carried out to investigate the performance and functionality
of the different measures when incorrectly assuming hypotheses to be mutually
exclusive or independent, on making inferences. Each of the experiments concerned
generating a probability model involving evidence E and hypotheses H1, H2 and a
catchall hypothesis, Hc = ¬H1&¬H2, with a specified degree of competition between
H1 and H2 given E [19]. This model was stipulated to be the correct model, Prob0, and
three different incorrect probability models, modified from that of Prob0, in which H1

and H2 were treated as mutually exclusive for two experiments (named MEx1 and
MEx2 respectively), and treated as independent for a third experiment (named IND),
were used for the inference.

These are intended to represent simplifying assumptions that might be made in
practice when the true probability model is unknown. The goal is then to evaluate
several versions of abductive inference under these assumptions. Each of the experi-
ments were repeated a large number of times (N = 106) to sample the distribution over
the variables and obtain a meaningful average, and a Degree of Agreement (DA) is
defined as follows:
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Let N_identified be the number of times the hypothesis identified by the incorrect
model agrees with the correct model, N_total be the total number of observations,
under a given degree of competition dcomp, then

DA %ð Þ ¼ 100� N identified
N total

ð5Þ

Note that the DA is a parameter closely linked to the degree of competition, or the
DA is a function of dcomp, because N_identified is a function of dcomp.

We also use DA Index (DAI) to represent the average Degree of Agreement over the
interval [−1, 1] containing successively (with a certain step) n points of dcomp:

DAI ¼
Pn

k¼1 DAð Þk
n

ð6Þ

The simulations are an extension of a study in which the measure MPE was used as
the standard for hypothesis identification [19] since here ML and PCM are also used.
Details of how the correct probability model and the incorrect models were constructed
can be found in [19]. Design of the extended experiments can be sketched as follows
[11, 19]:

Firstly, for a specified value of the degree of competition, dcomp (Eq. (3)), a
probability model was defined and stipulated as the correct model Prob0, involving
hypotheses H1, H2, a catchall Hc, and evidence E, where H1 and H2 are not assumed to
be mutually exclusive; the initial parameters in the model are randomly generated from
a uniform distribution.

For MEx1, a mutually exclusive probability model Prob1 is obtained from the
original model, Prob0, by replacing H1 with H1&¬H2 and H2 with H2&¬H1, setting:

Prob1 H1ð Þ = Prob0 H1&:H2ð Þ ð7Þ

Prob1 H2ð Þ = Prob0 H2&:H1ð Þ ð8Þ

Prob1 H1&H2ð Þ¼ 0 ð9Þ

Prob1 Hcð Þ¼ 1� Prob1 H1ð Þ � Prob1 H2ð Þ ð10Þ

Prob1 E j H1ð Þ = Prob0 E j H1&:H2ð Þ ð11Þ

Prob1 E j H2ð Þ = Prob0 E jH2&:H1ð Þ ð12Þ

Prob1 E j Hcð Þ = Prob0 E j Hcð Þ ð13Þ
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In the second experiment MEx2, another mutually exclusive probability model,
Prob2, is obtained from the original model Prob0,

Prob2 H1ð Þ ¼ Prob0 H1ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð14Þ

Prob2 H2ð Þ ¼ Prob0 H2ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð15Þ

The probabilities for the likelihood terms are set in the same way as for Prob1, and
the probability for the catchall hypothesis, Hc, is similarly set to

Prob2 Hcð Þ = 1 � Prob2 H1ð Þ � Prob2 H2ð Þ ð16Þ

since H1 and H2 are assumed to be mutually exclusive [19]; and we have:

Prob2 H1&H2ð Þ¼ 0 ð17Þ

Prob2 E j H1ð Þ = Prob0 E j H1&:H2ð Þ ð18Þ

Prob2 E j H2ð Þ = Prob0 E j H2&:H1ð Þ ð19Þ

In contrast to the models Prob1 and Prob2, the third experiment IND treats H1 and
H2 as independent:

Prob3 H1ð Þ ¼ Prob0 H1ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð20Þ

Prob3 H2ð Þ ¼ Prob0 H2ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð21Þ

Prob3 H1&H2ð Þ¼ Prob3 H1ð Þ � Prob3 H2ð Þ ð22Þ

Prob3 Hcð Þ¼ 1� Prob3ðH1 _ H2Þ ð23Þ

Prob3 EjH1ð Þ¼
Prob0 EjH1&H2ð Þ � Prob3 H2ð Þþ Prob0 EjH1&:H2ð Þ � Prob3 :H2ð Þ ð24Þ

Prob3 EjH2ð Þ¼
Prob0 EjH2&H1ð Þ � Prob3 H1ð Þþ Prob0 EjH2&:H1ð Þ � Prob3 :H1ð Þ ð25Þ
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This is because Prob3 provides a compromise between incorrectly treating hypotheses
as mutually exclusive and fully taking into account the dependence between them; we
need to consider that in some cases hypotheses aremodelled as being independent aswell.

Secondly, abductive inference was carried out under a given degree of competition
dcomp, for the correct models to find the hypothesis which maximizes the selected
measure (MPE, ML, PCM) for evidence E. If an inference made by the incorrect model
(mutually exclusive or independent) in identifying the hypothesis agreed with the
inference made using the correct model, this inference is then counted as a success.

Thirdly, the above process was repeated N = 106 times and the number of total
successful inferences S was obtained. The accuracy, or the degree of agreement
between the inference of the incorrect model (mutually exclusive or independent) and
the correct model, was defined as S/N (percentage success). The accuracy values reflect
how often an incorrect model identifies the same hypothesis as the correct model.

Finally, the process was repeated for a range of values of the degree of competition
between −0.9 and 0.9, with a step of 0.1.

There are a number of different measures proposed in the literature, to quantify how
well a hypothesis H explains evidence E. For example, the Measure of Explanatory
Power proposed by Schupbach and Sprenger [22]; the measure proposed by Crupi and
Tentori [24]; the measure by Good [25] and McGrew [26]; the Likelihood Ratio
measure [19]; the Overlap Coherence Measure used to rank explanations by Glass [27–
29]; and the Product Coherence Measure by Glass [11, 12]. In this study, the following
measures have been used for the inference in the computer simulation:

(1) MPE: Most Probable Explanation; selects the hypothesis with the maximum
posterior probability, of the hypotheses in light of the evidence,

MPE ¼ argmax
Hi;i2 1;2;Cf g

PðHijEÞ ð26Þ

(2) ML: selects the hypothesis with the Maximum Likelihood,

ML ¼ argmax
Hi;i2 1;2;Cf g

PðEjHiÞ ð27Þ

(3) PCM: selects the hypothesis with the maximum value of the Product Coherence
Measure [11]:

PCM ¼ argmax
Hi;i2 1;2;Cf g

P HijEð Þ � P (E jHi½ Þ� ð28Þ

Arguably, MPE is not a good measure of explanation [20–27]. In the example of the
murder suspects, the probability that both Smith and Jones are guilty, P(HS&HJ|E), will
obviously always be less than or equal to that of the individual hypotheses, P(HS|E) or P
(HJ|E). However, if MPE is used as a measure of explanation, this means that the joint
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explanation that Smith and Jones committed the murder can never provide a better
explanation than the individual explanations that Smith (or Jones) committed the murder.
More generally, this means that it only makes sense to use MPE for a fixed number of
explanatory variables, but arguably in various contexts, such as explanation in Bayesian
networks, it is desirable to compare different numbers of explanatory variables in order to
obtain explanations that are neither too simple nor too complex [21].

But MPE is still a useful measure to include for comparison since we are interested
in whether inferences made using explanatory measures such as ML and PCM have a
high probability of being correct.

As a further extension of [19], the performance of these three measures was
examined and compared in the computer simulation of abductive inference for iden-
tifying the most probably correct explanation. The computer simulations were carried
out with the procedures described earlier. In reality we typically do not know the true
model, so we are evaluating how well abductive inference works with different
incorrect assumptions, mutually exclusive or independent. Bearing this in mind, within
each of the experiments, two groups of comparisons were made:

Group 1: Here the assumption is that explanatory approaches (ML and PCM)
should be compared against MPE as the standard to see how good ML and PCM are at
inferring hypotheses that are probably true. Thus, with MPE as a standard in the
hypothesis identification in the correct model, this group is to find out the degree of
agreement of hypothesis identification made from the correct model against that from
an incorrect model, with MPE, ML, and PCM respectively as the criterion in the
hypothesis identification in the incorrect model. These experiments are repeated for
each of the incorrect models (MEx1, MEx2, IND). The inferences with the three
measures have been abbreviated as:

• MPE_F versus MPE_T: using MPE criterion in the incorrect (False or _F) model
against using MPE criterion in the correct (True or _T) model to infer a hypothesis;

• ML_F versus MPE_T: using Maximum Likelihood (ML) criterion in the incorrect
(_F) model against using MPE criterion in the correct (_T) model to infer a
hypothesis;

• PCM_F versus MPE_T: using Product Coherence Measure (PCM) criterion in the
incorrect (_F) model against using MPE criterion in the correct (_T) model to infer a
hypothesis;

Group 2: In abductive inference we do not necessarily need to consider MPE as the
only standard. Therefore, in this group, each of the three measures was applied in the
inference as the criterion for both incorrect model and the correct model, i.e., taking
each of the three measures as the standard, to find out the degree of agreement of
hypothesis identification made from the correct model against that from an incorrect
model. These experiments can be seen as evaluating the robustness of each of the
measures with respect to the incorrect model assumptions (mutually exclusive or
independent). Again, these experiments are repeated for each of the incorrect models
(MEx1, MEx2, IND). The inferences have been abbreviated as:

• MPE_F versus MPE_T: this is the same as in the Group1;
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• ML_F versus ML_T: using Maximum Likelihood (ML) criterion in the incorrect
(_F) model against using ML criterion in the correct (_T) to infer a hypothesis;

• PCM_F versus PCM_T: using Product Coherence Measure (PCM) criterion in the
incorrect (_F) model against using PCM criterion in the correct (_T) model to infer
a hypothesis;

The output of the two groups are expressed by Degree of Agreement, DA, and DAI,
formulated in (5) and (6). It should be noted that this metric should be interpreted in
one of two ways, depending on what comparison is being made. For Group 1, the DA
reflects the Accuracy of the corresponding measure, i.e., given that we presume that
MPE is a standard for identifying the true hypothesis, the degree of agreement with the
identification by MPE is then viewed as the accuracy of the relevant measure, and the
higher the DA is, the better the Accuracy the measure possesses. In Group 2, the same
measure is used in the incorrect model and the correct model, and in this case the output
of the three experiments will show how close the three series of output will be, i.e., the
degree of consistency of the same measure under different experiments. In this case we
say that the higher the degree of agreement the more robust the measure is. Therefore,
under the circumstance of Group 2, we say that the Degree of Agreement reflects the
Robustness of the measure. Accuracy and Robustness are then used in this work to
represent the relevant properties of the explanatory measures.

4 Results

Graphs were plotted to illustrate the results of MEx1, MEx2 and IND, for comparison
of the performance (Accuracy and Robustness) of the three explanatory measures, MPE
(Most Probable Explanation), ML (Maximum Likelihood), and PCM (Product
Coherence Measure).

Figure 1-1 shows that when the MPE is used as the standard, ML and the PCM
have lower degree of agreement with the identification using MPE, but PCM is much
closer to MPE than ML as found in [12]. When dcomp < 0, the curves drop to below
50%, suggesting that for negative degree of competition all three measures result in
poor agreement with the output of using the standard MPE and PCM performs slightly
better than MPE.

Figure 1-2 and 1-3 exhibit a similar trend as in Fig. 1-1 when dcomp > 0; but in the
range of dcomp < 0, the curves are better ordered from high to low without crossing.
As expected, the MPE curve is higher than those of ML and PCM, and noticeably the
MPE and PCM curves are all above 50% in the whole range [−0.9, 0.9]. The degree of
agreement for the measure ML appears lower, with the value less than 50% in the
majority of the interval for all three experiments.

In Fig. 1-3, all the curves for MPE and PCM are above 60% when dcomp > 0,
showing that the PCM performs very well compared to ML in identifying the most
probably correct explanation, with MPE as the standard. For dcomp < 0, the output of
MPE and PCM still have their accuracy greater than 50%. However, the ML curve
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output drops to below 30% when dcomp is in [−0.8,−0.6]. In all the three curves, PCM
performs much better than ML.

In Fig. 1-1 through 1-3, it appears that the curves of the MPE measure are higher
than PCM’s for dcomp > 0 but the PCM curve is higher than the MPE curve for MEx1
from −0.6 to 0. In the majority of the range [−0.9, 0.9], MPE curves are higher.
For MPE itself, it shows good degrees of agreement with the correct model in iden-
tifying the hypotheses when dcomp > 0; whilst in the case of dcomp < 0, it results in
poor agreement with the output of the correct model.

In general, the experiment results indicate that, with the MPE measure and correct
model used as the standard in hypothesis identification (a) for dcomp > 0 (or
dcomp > 0.1 for MEx1), the MPE curves are all above 90%; for dcomp < 0, the curves
are above 50% for MEx2 and IND. This is the same as one of the results in [19],
implying that to presume the hypotheses to be mutually exclusive or independent
appears reasonable especially for the situation in which the hypotheses compete to
some degree (dcomp > 0), in the context of the experiments; (b) the measure ML has
low degree of agreement with MPE in hypotheses identification; and (c) PCM results in
closer degrees of agreement with the output of the MPE measure.

However, the above features do not necessarily mean that the ML and PCM are
‘worse’ measures than the MPE measure. Although MPE is often referred to in the
artificial intelligence literature as the most probable explanation, arguably, this is an
inadequate definition of ‘best explanation’ [11, 12, 19] but it nevertheless provides a
standard against which to compare the various explanatory measures to determine how
good they are at identifying hypotheses that are probably true.

The curves merely reflect the degree of agreement of the identifications made by
ML or PCM with MPE. Therefore, a further comparison as illustrated in Fig. 2,
examines the performance and Robustness when using the measures of ML and PCM
with the correct model as the standard for the same measures with the incorrect models
(experiment Group 2). This shall reveal more significant information on the perfor-
mance of the measures.

It can be seen in Figs. 2-1 to 2-3, that in the range of dcomp > 0, MPE and PCM
show a better degree of agreement with the identification of the correct model in the
hypothesis identification (greater than 90%), whilst when dcomp < 0, ML performs
better than the other two, with the degree of agreement largely above 50%, and for IND
it goes up to 90% in (−0.6,−0.2). These features reflect that MPE does not always
perform better than the other measures. PCM has a high degree of agreement similar to
the MPE when dcomp > 0 (the difference is less than 5%) but ML performs better than
MPE and PCM in the majority of the range of dcomp < 0.

Among the three figures of Fig. 2-1 through 2-3, ML has its highest curve in Fig. 2-
3 (for the experiment IND), and PCM has its highest one in Fig. 2-3 as well. The
curves of PCM are only slightly lower than MPE in all three figures when dcomp > 0,
i.e. the PCM curve and the MPE curve are very close when dcomp > 0.
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Moreover, curves for PCM are above their MPE counterparts in the majority of the
range of dcomp < 0. For dcomp < 0, PCM perform better than MPE whilst when
dcomp > 0 the two measures perform similarly.

The PCM curve for IND in Fig. 2-3 is above 60% in the whole range −0.9 to 0.9. It
is obvious that, with PCM as the standard, presuming the hypotheses to be mutually
exclusive and independent are both reasonable when dcomp > 0; and presuming them
as being independent appears more reasonable when dcomp < 0, under the condition of
the experiments.

Further, for a quantitative understanding of the properties of the measures, Fig. 3
and 4 give the average values of the Degree of Agreement over the interval [−0.9, 0],

[0, 0.9] and the whole range of [−0.9, 0.9], with Fig. 3 reflecting the Accuracy of the
measures and Fig. 4 the Robustness of the measures. It can be seen that PCM has much
higher Accuracy than ML but ML has slightly higher Robustness.

5 Conclusions

Computer simulations have been carried out to investigate the performance, in terms of
Accuracy and Robustness, of two measures for abductive inference, Maximum Like-
lihood (ML), and Product Coherence Measure (PCM). This has been done by
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comparing them with a third approach, Most Probable Explanation (MPE), for the
identification of the best explanation. The results show that:

1. It appears appropriate to represent the functioning characteristics of the measures
separately according to the sign of the degree of competition (dcomp) of the
hypotheses, which can be calculated in practice using the Eqs. (1) through (4).

2. In terms of Accuracy, the results show that PCM tracks the results of MPE much
more closely than ML especially when the degree of competition is positive, hence
it is able to infer explanations that are much more likely to be true under such a
condition.

3. Experiments on the Robustness of the measures with respect to incorrect model
assumptions show that ML is in general more robust, although it is only slightly
more robust than PCM. It performs better than MPE and PCM when the hypotheses
are not competing (dcomp < 0) and in general. MPE and PCM are more robust and
similar to each other when the degree of competition is positive; in general, PCM is
more robust than MPE.

4. Presuming the hypotheses in question to be mutually exclusive appears reasonable
when the hypotheses are competing (dcomp > 0) but could result in a low degree of
agreement (accuracy) when they are not (dcomp < 0).

5. The experimental results also show that it is more reasonable to assume that the
hypotheses are independent than to assume that they are mutually exclusive, both in
the case of competing hypotheses and non-competing hypotheses.

Overall, the results show that PCM performs much better in terms of accuracy and
only slightly worse in terms of robustness than ML. Hence, PCM seems preferable to
ML as a measure for abductive inference. One limitation of the current work is that
MPE has been used as a standard for determining accuracy. Future work will include
simulations that designate hypotheses as true or false and then evaluate all three
measures (MPE, PCM and ML) on an equal footing. Also, in the current work the
different measures are used to infer the single best hypothesis, but since the hypotheses
are not assumed to be mutually exclusive more than one hypothesis could be true.
There is scope for comparing single hypotheses such as H1 or H2 with conjunctive
hypotheses involving two or more hypotheses such as H1&H2. Clearly, such a con-
junction cannot be more probable than one of its conjuncts, so PCM and ML might be
expected to have benefits over MPE in such contexts.
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