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Abstract. This paper is devoted to an optimal trajectory planning prob-
lem with uncertainty in location conditions considered as a problem of con-
strained optimal control for dynamical systems. Fuzzy numbers are used to
incorporate uncertainty of constraints into the classical setting of the prob-
lemunder consideration.The proposed approach applied to dynamical sys-
tems associated with the second order linear differential equations allows
to find an optimal control law at each α-level using spline-based methods
developed in the framework of the theory of splines in convex sets. The
solution technique is illustrated by numerical examples.
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1 Introduction

Optimal control is the process of determining control and state trajectories for
a dynamical system over a period of time to minimize an objective function. In
this paper we analyse the special case of the following control theory problem:

x′(t) = Mx(t) + βu(t), y(t) = γ�x(t), t ∈ [a, b], (1)

considered with the initial condition

x(a) = c. (2)

Here x is a vector-valued absolutely continuous function defined on [a, b], M is a
given quadratic constant matrix and β, γ are given constant vectors of compatible
dimensions. We consider system (1) as the curve z = y(t) generator. The goal is
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to find a control law u ∈ L2[a, b] which drives the scalar output trajectory close
to a sequence of set points at fixed times

{(ti, zi) : i = 1, 2, . . . , n}, where a < t1 < t2 < . . . < tn ≤ b, (3)

by minimization of the objective functional
b∫

a

(u(t))2dt. (4)

In some applications of such type of control problems, for example, doing
trajectory planning in traffic control, we need to be able to generate curves that
pass through predefined states at given times since we need to be able to specify
the position in which the system will be in at a sequence of times (see, e.g., [1]).
In this case we refer to the classical setting of the problem under consideration:

∫ b

a

(u(t))2dt → min
u∈L2[a,b]: x(a)=c, y(ti)=zi, i=1,...,n

, (5)

where x and y depend on u by means of (1). It is shown in [1] and the references
therein that a number of interpolation and path planning problems can be incor-
porated into control problem and studied using control theory and optimization
techniques on Hilbert spaces with efficient numerical spline-based schemes. Con-
trol splines give a richer class of smoothing curves relative to polynomial curves.
They have been proved to be useful for trajectory planning in [2], mobile robots
in [3], contour modelling of images in [4], probability distribution estimation in
[5] and so on.

However, in many situations, it is not really crucial that we pass a trajectory
through these points exactly, but rather that we go reasonably close to them,
while minimizing the objective functional. Such approach is closely related to the
idea of smoothing under fuzzy interpolation conditions. We propose to use fuzzy
numbers Zi, i = 1, . . . , n, in (5) instead of crisp zi, i = 1, . . . , n, to incorporate
uncertainty of location conditions (3) into the model. According to this idea, we
rewrite optimisation problem (5) in the following way:

∫ b

a

(u(t))2dt → min
u∈L2[a,b]: x(a)=c, y(ti)is Zi, i=1,...,n

, (6)

where x and y depend on u by means of (1).
In this paper, the main attention is paid to the special case of problem (1):

M =
(

0 1
−q −p

)
, x =

(
x1

x2

)
, β =

(
0
1

)
, γ =

(
γ1
γ2

)
, c =

(
c1
c2

)
.

For this case problem (6) can be rewritten as

b∫

a

(g′′(t) + pg′(t) + qg(t))2dt −→ min
g∈L2

2[a,b]: g(a)=c1, g′(a)=c2,

y(ti)is Zi, i=1,...,n

, (7)
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where
y(t) = γ1g(t) + γ2g

′(t),

u(t) = g′′(t) + pg′(t) + qg(t),

and g is used to denote x1.

2 Control Problem at α-Levels

In this paper we suggest a method for construction of solutions of (7) and finding
corresponding control laws at each α-level with respect to fuzzy numbers used
in the model by applying results from the theory of splines in convex sets.

To rewrite (7) for α-levels we introduce notations to deal with fuzzy numbers
Zi, i = 1, . . . , n. Fuzzy real number Zi is a normal fuzzy subset of IR that satisfies
the condition: all α-cuts of Zi are closed bounded intervals.

Fig. 1. Triangular fuzzy number

The α-cut (α ∈ (0, 1]) of fuzzy number Zi is the crisp set (Zi)α defined as

(Zi)α = {τ ∈ IR | Zi(τ) ≥ α}.

If α = 0, then α-cut (Zi)0 can be defined as the support of function Zi. The
constraints “y(ti) is Zi, i = 1, . . . , n,” can be written at α-levels using α-cuts:

y(ti) ∈ (Zi)α, i = 1, . . . , n.

For each α-level the α-cut of Zi is the closed interval

(Zi)α = [ZL
i (α), ZU

i (α)].

Therefore problem (7) at α-level can be written in the following form:

b∫

a

(g′′(t) + pg′(t) + qg(t))2dt −→ min
g∈L2

2[a,b]: g(a)=c1, g′(a)=c2,

ZL
i (α)≤y(ti)≤ZU

i (α),i=1,...,n

, (8)
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where
y(t) = γ1g(t) + γ2g

′(t), u(t) = g′′(t) + pg′(t) + qg(t).

We apply triangular fuzzy numbers Zi (see Fig. 1) given by triples
(zL

i , zM
i , zU

i ):

Zi(τ) =

⎧⎨
⎩

(τ − zL
i )(zM

i − zL
i )−1 if τ ∈ [zL

i , zM
i ],

(zU
i − τ)(zU

i − zM
i )−1 if τ ∈ (zM

i , zU
i ],

0, otherwise.

Then

ZL
i (α) = zL

i + α(zM
i − zL

i ), ZU
i (α) = zU

i − α(zU
i − zM

i ) for all α ∈ [0, 1].

3 Spline-Based Approach

We consider problem (8) as the special case of the following more general con-
ditional minimization problem:

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

ZL
i (α)≤(Ag)i≤ZU

i (α), i=1,...,n

, (9)

where linear operators T : Lr
2[a, b] → L2[a, b], and A : Lr

2[a, b] → IRn+2 are
continuous (here Lr

2[a, b] is the Sobolev space), vector c ∈ IR2 is given and
ZL

i (α), ZU
i (α), i = 1, . . . , n, are known. We assume that A(Lr

2[a, b]) = IRn+2. In
the case under consideration r = 2 and

Tg = g′′ + pg′ + qg = u, (Ag)i = γ1g(ti) + γ2g
′(ti), i = 1, ..., n,

(Ag)0 = g(a), (Ag)n+1 = g′(a). (10)

The solution of problem (9) will be considered for different α-levels. Value α = 1
corresponds to the case when we pass the output trajectory through points (3)
exactly (the case zi = zM

i ). In this case problem (9) turns into the interpolating
problem. For α < 1 problem (9) will be considered applying smoothing splines.

3.1 Interpolating Splines

Problem (9) in the case α = 1 corresponds to the following interpolating problem:

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

(Ag)i=zM
i , i=1,...,n

. (11)

The conditions of existence and uniqueness of solution of (11) and its charac-
terization follow from the well known theorems (see, e.g., Theorems 4.4.2. and
4.5.9. in [6]).
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Proposition 1. Under the assumption, that kerT ∩ ker(A) = {0} and kerT
is finite-dimensional, the unique solution of problem (11) exists. An element
s ∈ Lr

2[a, b], such as (As)0 = c1, (As)i = zM
i , i = 1, . . . , n, and (As)n+1 = c2,

is a solution of (11) if and only if there exists vector λ ∈ IRn+2 such that

T ∗Ts = A∗λ. (12)

This result implies that a solution of problem (11) is a spline from the space

S(T,A) = {s ∈ Lr
2[a, b] | ∀x ∈ kerA 〈Ts, Tx〉 = 0}.

Here and in the sequel the corresponding inner product is denoted by 〈·, ·〉, and
kerA is the kernel of operator A.

The view of splines from the space S(T,A) in depending on parameters p
and q for the considered case of operators (10) is obtained in [7] using the
general theorem (see Theorem 1 in [8]) and applying functional analysis tools. For
example, if p = q = 0 then elements of S(T,A) are polynomial cubic splines from
C1[a, b], i.e., they are cubic polynomials on each interval [ti−1, ti], i = 1, . . . , n+1,
where t0 = a and tn+1 = b.

3.2 Splines in Convex Sets

Problem (9) in the case α < 1 corresponds to the following smoothing problem
(problem on splines in a convex set):

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

ZL
i (α)≤(Ag)i≤ZU

i (α), i=1,...,n

(13)

considered under assumption ZL
i (α) < ZU

i (α).
The conditions of existence and uniqueness of solution of (13) follow from

the known theorem (see Theorem 7 in [8]).

Proposition 2. Under the assumption that kerT is finite-dimensional a solu-
tion of problem (13) exists. An element s ∈ Lr

2[a, b], such as (As)0 = c1,
(As)n+1 = c2, ZL

i (α) ≤ (As)i ≤ ZU
i (α), i = 1, . . . , n, is a solution of (13)

if and only if there exists vector λ ∈ IRn+2 such that

T ∗Ts = A∗λ (14)

and components λi, i = 1, . . . , n, satisfy the conditions

λi = 0, if ZL
i (α) < (As)i < ZU

i (α),
λi ≥ 0, if (As)i = ZL

i (α),
λi ≤ 0, if (As)i = ZU

i (α).
(15)

Under the additional assumption kerT ∩ ker(A) = {0} this solution is unique.
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This result implies that a solution of problem (13) belongs to the space
S(T,A). To find it we can use the method of adding-removing interpolation
knots which is considered in details, for example, in [9] or [10]. It is an iterative
method. On the k-th step of it we need to solve the following interpolation
problem: to construct a spline sk ∈ S(T,A) such that the initial conditions
(Ask)0 = c1, (Ask)n+1 = c2, and the interpolation conditions written in the
form (Ask)i = dk

i , i ∈ Ik, are satisfied. The set of indices Ik ⊂ {1, . . . , n}
and numbers dk

i are specified during the iterations. The knots ti for i ∈ Ik are
considered as interpolation knots on the k-th step. We start with a solution s1
obtained using only the initial conditions, i.e., I1 = ∅. The iterative step from Ik

to Ik+1 is done by adding to Ik all indices i ∈ {1, . . . , n} such that the restriction
ZL

i ≤ (Ask)i ≤ ZU
i is not satisfied. For the added index i we take dk+1

i = ZL
i (α)

if ZL
i (α) > (Ask)i, and we take dk+1

i = ZU
i (α) if (Ask)i > ZU

i (α). On the other
hand, we remove from Ik all indices i ∈ Ik such that the rule (15) is not satisfied
for the corresponding coefficient of sk. To finish the k-th step we also denote
dk+1

i = dk
i for i ∈ Ik+1 ∩ Ik. If Ik+1 = Ik then the algorithm ends and the

obtained sk is a solution of (13).

4 Numerical Solutions

In this paper we consider problem (8) as (9) with operator T and A defined
by (10). According to Proposition 1 and Proposition 2 in this case solutions of
(8) at each α-level belong to the space S(T,A). The view of splines from the
corresponding S(T,A) (i.e., the view of solutions of problem (8)) is obtained
in [7]. This view in [7] is given depending on the roots r1, r2 of the equation
r2 + pr + q = 0:

• Class 1 (exponential splines with polynomial coefficients): r1 = r2 ∈ IR \ {0}.
• Class 2 (exponential splines): r1, r2 ∈ IR, r1 �= r2.
• Class 3 (polynomial-exponential splines): r1, r2 ∈ IR, r1 �= r2, r1 �= 0, r2 = 0.
• Class 4 (polynomial splines): r1 = r2 = 0.
• Class 5 (trigonometric splines with polynomial coefficients): r1,2 = ±iη �= 0.
• Class 6 (trigonometric splines with exponential-polynomial coefficients):

r1,2 = ζ ± iη with η �= 0 and ζ �= 0.

The simplest case with p = q = 0, i.e., Tg = g′′, corresponds to the classical
smoothing problem in the theory of splines according to which a solution of (8)
without the initial conditions is a cubic spline. Taking into account the initial
conditions we get the following form for solution s of problem (8) for this case:

s(t) = c1 + c2(t − a) +
λ0

6
(t − a)3+ − λn+1

2
(t − a)2+ +

n∑

i=1

λi(
γ1

6
(t − ti)

3
+ − γ2

2
(t − ti)

2
+)

with the following conditions on coefficients
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λ0 +
n∑

i=1

λi(γ1 + γ2) = 0, λ0a + λn+1 +
n∑

i=1

λi(γ1ti + γ2) = 0.

Here and in the sequel the truncated power function is defined as

(t − tj)k
+ =

{
(t − tj)k, t ≥ tj ,

0, t < tj .

The corresponding control function u could be obtained as u = s′′.
Two numerical examples corresponding to more complicated cases are con-

sidered below for illustration of the proposed technique. Numerical results are
obtained by using Maple.

4.1 Example 1: Exponential Splines

We consider the numerical example for the case p = −3 and q = 2, γ1 = 1 and
γ2 = 0, interval [a, b] = [0, 0.5], the initial conditions are with c1 = 1, c2 = 1. At
equally spaced points of interval [0.1, 0.5] with step size 0.1 we take the following
fuzzy numbers Zi, i = 1, . . . , 5: (4, 5, 6), (1, 2, 3), (5, 6, 7), (2, 3, 4), (6, 7, 8). This
case corresponds to the case of two nonzero roots of characteristic equation
r1 = 1, r2 = 2, i.e., to the case when solutions belong to the class of exponential
splines.

As it is obtained in [7], the class of exponential splines for problem (8) consists
of splines

s(t) = μ1e
r1(t−a) + μ2e

r2(t−a) +
1

2(r21 − r22)
(
(λ0 − λn+1r1)er1(t−a)

r1

− (λ0 − λn+1r2)er2(t−a)

r2
+

n∑
i=1

λi(
γ1
r1

er1|t−ti| + γ2(er1(ti−t)+ − er1(t−ti)+)

− γ1
r2

er2|t−ti| − γ2(er2(ti−t)+ − er2(t−ti)+))). (16)

For the solution of (8) the coefficients are expressed by using the following sys-
tem:

(γ1 + γ2r1)
n∑

i=1

λie
r1ti + (λ0 + λn+1r1)er1a = 0,

(γ1 + γ2r2)
n∑

i=1

λie
r2ti + (λ0 + λn+1r2)er2a = 0, (17)

and the system of interpolating conditions for g(ti) = zM
i , i = 1, . . . , n, in case

α = 1. For α < 1 the interpolating conditions are precised by iterations of the
method of adding-removing knots.
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The corresponding control function u is given by

u(t) =
n∑

i=1

λi(ti − t)0+
r1 − r2

(γ1(er1(ti−t) − er2(ti−t)) + γ2(r1er1(ti−t) − r2e
r2(ti−t))).

(18)
For the considered case the conditions of the uniqueness of solution are satis-

fied. This solution is constructed for four α-levels: α1 = 0, α2 = 0.25, α3 = 0.5
and α4 = 1. The solution of problem (8) in this case is the exponential spline (16)
with coefficients from Table 1. The control law u is obtained by (18). The corre-
sponding graphs are considered in Fig. 2 and Fig. 3. The values of the objective
functional for these α-levels are compared (see Table 2).

Table 1. Coefficients of the solution at α-level for Example 1

α1 = 0 α2 = 0.25 α3 = 0.5 Interpolation (α4 = 1)

μ1 −5.3984 × 101 −4.0037 × 101 −4.4686 × 101 −5.3984 × 101

μ2 5.4984 × 101 4.1037 × 101 4.5686 × 101 5.4984 × 101

λ0 −1.9715 × 104 −1.3245 × 104 −1.5402 × 104 −1.9715 × 104

λ1 5.5236 × 104 3.5234 × 104 4.1902 × 104 5.5236 × 104

λ2 −7.4174 × 104 −4.4561 × 104 −5.4432 × 104 −7.4174 × 104

λ3 7.2526 × 104 4.2014 × 104 5.2185 × 104 7.2526 × 104

λ4 −4.6963 × 104 −2.6943 × 104 −3.3617 × 104 −4.6963 × 104

λ5 1.3092 × 104 7.4793 × 103 9.3504 × 103 1.3092 × 104

λ6 −1.5895 × 102 −1.1711 × 102 −1.3105 × 102 −1.5895 × 102

By comparison of the objective functional at these α-levels from Table 2
we see that the minimum of this functional is obtained for α1 = 0 and the
interpolating spline gives the biggest value.

Table 2. Comparison of the values of the objective functional for Example 1

α α1 = 0 α2 = 0.25 α3 = 0.5 Interpolation (α4 = 1)

‖u‖ 2.8622 × 102 3.7282 × 102 4.5988 × 102 6.34657 × 102

4.2 Example 2: Trigonometric Splines with Polynomial Coefficients

We consider the second numerical example for the case p = 0 and q = 1,
γ1 = 1 and γ2 = 0, interval [a, b] = [0, 0.5], the initial conditions are given
with c1 = 1 and c2 = 1. At equally spaced points in interval [0.1, 0.5] with
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Fig. 2. State trajectories for Example 1 (solid line for α = 1, dash line for α = 0.25,
dash dot line for α = 0.5, long dash line for α = 0)

step size 0.1 we take the following values of fuzzy numbers Zi, i = 1, . . . , 5:
(2, 3, 4), (0, 1, 2), (4, 5, 6), (1, 2, 3), (3, 4, 5). This case corresponds to the case of
complex roots of characteristic equation r1,2 = ± i (for this case η = 1), i.e.,
to the case when solutions belongs to the class of trigonometric splines with
polynomial coefficients.

As it is obtained in [7], the class of trigonometric splines with polynomial
coefficients for problem (8) in the considered case consists of splines

s(t) = c1cos (η(t−a))+
c2
η

sin (η(t−a))+
λ0

2η3
(η(t−a)cos (η(t−a))−sin (η(t−a)))

+
λn+1

2η
(t − a)sin (η(t − a)) +

1
2

n∑
i=1

λi(
γ1
η3

sin (η(t − ti)+)

− (t − ti)+
η2

(γ1cos (η(t − ti)) + γ2ηsin (η(t − ti))). (19)

The coefficients fulfil the following conditions

n∑
i=1

λi(γ1sin (ηti) + γ2ηcos (ηti)) + λ0sin (ηa) + λn+1ηcos (ηa) = 0,
n∑

i=1

λi(γ1cos (ηti) − γ2ηsin (ηti)) + λ0cos (ηa) − λn+1ηsin (ηa) = 0,
(20)

and the system of the interpolating conditions

γ1s(ti) + γ2s
′(ti) = zM

i , i = 1, . . . , n,

in case α = 1. For α < 1 the interpolating conditions are specified by iterations
of the method of adding-removing knots.



Optimal Control of Dynamical Systems Under Fuzzy Conditions 341

Fig. 3. Control law for Example 1 (solid line for α = 1, dash line for α = 0.25, dash
dot line for α = 0.5, long dash line for α = 0)

The corresponding control function u is given by

u(t) =
n∑

i=1

λi(
γ1
η

sin η(ti − t)+ + γ2(ti − t)0+cos η(ti − t)). (21)

For the considered case the conditions on the uniqueness of solution are satisfied.
This solution is constructed for four α-levels: α1 = 0, α2 = 0.5, α3 = 0.75 and
α4 = 1. The solution of problem (8) in this case is the trigonometric splines
with polynomial coefficients (19) with coefficients from Table 3. The control law
u could be obtained by (21). The corresponding graphs are considered in Fig. 4
and Fig. 5. The values of the objective functional for considered α-levels are
compared (see Table 4).

Table 3. Coefficients of the solutions at α-levels for Example 2

α1 = 0 α2 = 0.5 α3 = 0.75 Interpolation (α4 = 1)

λ0 9.0736 × 103 1.8084 × 104 2.2590 × 104 2.7095 × 104

λ1 2.0746 × 104 4.1800 × 104 5.2327 × 104 6.2854 × 104

λ2 −3.1238 × 104 −6.1490 × 104 −7.6616 × 104 −9.1742 × 104

λ3 5.6274 × 104 1.1130 × 105 1.3881 × 105 1.6633 × 105

λ4 −1.3993 × 105 −2.8177 × 105 −3.5268 × 105 −4.2360 × 105

λ5 8.6636 × 105 1.7523 × 105 2.1953 × 105 2.63837 × 105

λ6 4.6398 × 102 8.6472 × 102 1.0650 × 103 1.2654 × 103
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Table 4. The values of the objective functional for Example 2

α α1 = 0 α2 = 0.5 α3 = 0.75 Interpolation (α4 = 1)

‖u‖ 2.8012 × 103 5.6865 × 103 7.1292 × 103 8.5718 × 103

Fig. 4. State trajectories for Example 2 (solid line for α = 1, dash line for α = 0.5,
dash dot line for α = 0.75, long dash line for α = 0)

Fig. 5. Control law for Example 2 (solid line for α = 1, dash line for α = 0.5, dash dot
line for α = 0.75, long dash line for α = 0)

By comparison of the values of the objective functional from Table 4 we see
that the minimum of this functional is obtained for α1 = 0 and the interpolating
spline gives the biggest value.
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5 Conclusion

The proposed method can be effectively used for dynamical systems associated
with linear differential equations (the restriction on the order of equations is not
essential) when uncertainty in location conditions is described by fuzzy num-
bers Zi, i = 1, . . . , n (the restriction on the triangular type of fuzzy numbers
is not essential). It seems natural to incorporate into the model also uncer-
tainty of the sequence of times to be considered. For such purpose fuzzy numbers
Ti, i = 1, . . . , n, could be used instead of crisp ti, i = 1, . . . , n. In this case the
constraints

y(ti) is Zi, i = 1, . . . , n,

could be rewritten using IF-THEN rules as

IF t is Ti THEN y(t) is Zi, i = 1, . . . , n.

The future research could be devoted to development of the proposed approach
for the following problem

∫ b

a

(u(τ))2dτ → min
u ∈ L2[a, b] : x(a) = c,

IF t is Ti THEN y(t) is Zi, i = 1, . . . , n

considered in the context of (1)–(4).
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