®

Check for
updates

Predicting S&P500 Monthly Direction
with Informed Machine Learning

(=) and Philippe Langlais’

David Romain Djoumbissie!-2
! Department Computer Science and Operational Research, University of Montreal,
Montreal, Canada
david.romain.djoumbissie@umontreal.ca, felipe@IR0.UMontreal.CA
2 Canada Mortgage and Housing Corporation, Montreal, Canada

Abstract. We propose a systematic framework based on a dynamic func-
tional causal graph in order to capture complexity and uncertainty on
the financial markets, and then to predict the monthly direction of the
S&P500 index. Our results highlight the relevance of (i) using the hierar-
chical causal graph model instead of modelling directly the S&P500 with
its causal drivers (ii) taking into account different types of contexts (short
and medium term) through latent variables (iii) using unstructured for-
ward looking data from the Beige Book. The small size of our training data
is compensated by the a priori knowledge on financial market. We obtain
accuracy and F1-score of 70.9% and 67% compared to 64.1% and 50% for
the industry benchmark on a period of over 25 years. By introducing a hier-
archical interaction between drivers through a latent context variable, we
improve performance of two recent works on same inputs.

Keywords: Financial knowledge representation - Functional causal
graph - Prediction & informed machine learning

1 Introduction

Analyzing and predicting the dynamics of financial markets for investment
decision-making over a monthly/quarterly horizon is an old challenge both in
academy and in the asset management industry. The environment is complex,
uncertain and modeling must take into account many factors, including incom-
plete, noisy and heterogeneous information with almost 80% in unstructured
form [1,2].

The crucial parameter in this type of study is the prediction horizon. Indeed,
it is strongly linked to the investment objectives/horizon; the paradigm used for
modelling and the size of the training data. For the short-term (month/quarter)
prediction, the losses recorded during the financial crisis (2008), in addition to
all the previous ones have led many people to question the dominant paradigm.
The latter is based essentially on a rational assumption and a direct relationship
between S&P500 and a few causal drivers. In the literature, the solution for the
short-term prediction might be classified into three groups.
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The first group of studies are those from [3-7]. The foundations of their app-
roach is based on pure rational argument and passive decision process without
prediction. They assume that markets are efficient and it is difficult to predict
the S&P500 index or to do better than a random walk. This solution serves as
a benchmark in dynamic or active management segments of the industry.

The second group [8-14] proposes a solution based on a direct relationship
(supervised algorithm) between S&P500 and a set of features from causal anal-
ysis or data mining. In [10,11], the authors found a direct relationship between
S&P500 and four causal variables. The features obtained serve as input for a
SVM model with innovation on the Kernel function in order to predict the
monthly direction of S&P500 over 2006 to 2014. The main weaknesses from this
group are: i) The weak predictions in an unstable environment; (ii) an adhoc
approach to select the causal variables, the omission of the context and hierar-
chical interaction between drivers; (iii) The mismatch between the drivers and
the prediction horizon.

The third group [13-17] is the most active at the moment and proposes: (i) to
use all potential numerical/textual drivers; (ii) a deep architecture for learning
representations directly on data. iii) and a prediction through deep supervised
algorithms. In [15,16], the authors use NLP and deep learning on daily financial
news to predict monthly direction of S&P500 without a priori knowledge. They
learn features and predict directly from the data. The findings of this group are
encouraging. However, a review we conducted on nearly 60 recent papers, the
prediction horizon was less or equal to one day and more than 80% were tested
on a very short period (less than 2 years). This prediction horizon (minutes,
hours,..) has the advantage of providing a large training sample! but resolves
a specific type of problem (high frequency transactions on financial markets),
which are totally different from the problematic of monthly prediction.

The difference in terms of objectives, investment horizons, as well as the lack
of validated studies over longer periods which will reflect the multiple changes in
market regimes, make the notion of the state of art somewhat confused. Although
there are a few names in the industry known for their ability to do better than the
benchmark, recent studies and statistics [18,19] show it is difficult to conclude
that one approach dominates the others.

In this paper, we propose a solution for a dynamic decision-making process
based on the monthly prediction of the S&P500 index. The investor has an
investment horizon of less than one year and uses a dynamic framework which is
updated on a monthly basis. This frequency is also that of the publication and
update of economic and financial information.

In order to reach our objectives, our contributions are threefold.

— Firstly, we combine our expertise with those of many studies in order to create
the structure of a functional causal graph with four levels of the dynamics of
the S&P500. Thus, we avoid learning this structure on small size and unstable
data. Instead, we learn the distributional representation of latent variables

! data collected every second or minute.
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(short/medium term context) from an unsupervised method (auto-encoder,
similarity, rules). Level 1 includes observable causal variables, then a priori
causal functional relationships allow the link with other 3 levels. The latent
variables at the last level serve as features for a classifier.

— Secondly, we use unstructured forward looking data (1970-2019) in order to
characterize the state of the business cycle. [15,16,20] confirmed the relevance
of using unstructured daily data or events on companies published in 8-k
form?. But the tests are conducted over short periods (24 months) and the
alm was not to propose an effective decision-making process.

— Lastly, we perform a systematic validation and comparison with industry’s
benchmark over 25 years, as well as four sub-periods known as unstable and
difficult to predict. We also make some comparison with other studies in the
literature, which we formulated as special cases of our solution.

The remainder can be seen into four points: the description of the functional
causal graph, the methodology for learning the representation of latent variables,
the experiments with empirical results, finally the conclusion and future work.

2 Stock Market Dynamic via a Causal Functional Graph

Predicting S&P500 direction on the monthly horizon is formulated as a binary
supervised classification task:

yEET = F(V) M
where yffﬁp 500 s the monthly price direction to be predicted (Up/Down), V; the
vector of features characterising the period t, derived from a functional causal
graph (Fig. 1 and 2) of the dynamics of the S&P500 and f represents a classifier.

We describe the causal process of the dynamics of S&P500 through a causal
functional graph with two essential goals: i) representing causal interactions (direct
or hierarchic, linear or non-linear, static or dynamic,..) between short, medium
and long term drivers, ii) learning dynamic embedding from temporal interactions
between drivers. The a priori graph structure lies on two main source of knowl-
edge. More than 50 years of literature on the financial markets (financial economic
theory, behavioral finance, fundamental analysis, market microstructure, techni-
cal analysis), and our 15 years of experience in the conception/implementation of
solutions for dynamic and tactical asset allocation.

Figure 1 describes different theories and the hierarchical top down interaction
between long, medium, short term drivers and the stock market index. Figure 2
is a specific case based on three important medium/short term context (Busi-
ness cycle, Market regime, Risk aversion). This choice is supported essentially
by various works of two nobel prices in economic (Eugene Fama on empirical

2 broad form used to notify investors in United States public companies of specified
events that may be important to shareholders or the United States Securities and
Exchange Commission.
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1) and one of

analysis of asset prices®, Daniel Kahneman on behavioral finance
the best portfolio manager of the century, Ray Dalio®.

At time t, our biggest challenge is to characterize the current market envi-
ronment (between t—Xk ...t) with a set of feature derived from Fig. 2 and use it to
predict the S&P500 direction for time t+1. We use X; to denote the realization
of variable X at t and X;.; to denote the history of X between the period 1
to t. At time t, we are able to identify where was the market regime between
1..t—k, but we can only estimate the current market regime and we use the k
most recent realisations to do. We will sometimes use Xq.;_r and X;_x.¢.

The functional graph of Fig. 2, describe the dynamics of the S&P500. They
have four levels and three main component: i) A set of 130 observable causal
variables (ex: daily price index of 10 economics sectors); ii) A set of 6 latent
context variables (ex: Risk aversion regime of Investors); and iii) 8 functions or
algorithms that reflect a direct causal link between the variables (observable or
latent). We suggest [21,22] for more details on functional causal graph in finance.

2.1 Graph Level 1: Observable Variables

The level 1 of the graph represents basic inputs organised around 4 groups of
observable causal numerical variables and one group of textual information.

Observable Causal Numerical Variables: The variables in light blue (rect-
angular shape) designate observable numerical variables. All are available on the
St. Louis Federal Reserve and Kenneth R. French websites.

S&P500;.; ;: A numerical daily variable on the main U.S. equity market. At
time t, the history from 1 to t-k (k represents the recent observations for which
the regime is not known) serves as an input for ex-post identification algorithm
of market regime (fo, described in Sect. 3). The output of f5 is an intermediate
latent variable that characterizes the regime (bear/bull/range bound) in which
the market was in the past (Market_Regime;.;_x).

32_Risk_Factors;.;: A set of 32 daily numerical variables denoting financial
indexes. At time t, the history from 1 to t serves as an input for an unsupervised
learning algorithm (f3). The output is a set of intermediate latent variables
characterizing the risk aversion of investors (Risk_Aversion;).

80_Risk_Factors;.;: A set of 80 numerical variables designating indices covering
all asset classes and sectors of the economy. At time t, the history from 1 to t
combined with Num_Repr_Beige_Book;.; (distributional representation of each
Beige Book from 1..t) serves as an input for an unsupervised learning algorithm
(f1). The output of this algorithm is a set of intermediate latent variables that
characterize the phase of the business cycle (Economic_Cycle;).

3 https://www.nobelprize.org/prizes/economic-sciences /2013 /fama/facts /.

* https://www.nobelprize.org/prizes/economic\discretionary{- }{ }{ }sciences/2002/
kahneman /biographical/.

5 https://en.wikipedia.org/wiki/Ray_Dalio.
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Step 1: Identify Iong term drivers and causals links (parametric/non-parametric)

Theory on potential GDP growth, Demography and Labor force, Productivity and long term debt

Transition to medium term drivers

Step 2 : Identify medium term drivers and causals links

Theory on Economic Cycle & Behavioral Finance : Business Cycle, Risk Premium/Aversion, Valorisation Cycle

Transition to short term drivers ’
Step 3 : Identify short term drivers and causals links

Theory of Behavioral Finance : Market regime/Risk Aversion; Investor Preference & Portfolio Construction

Transition to Market dynamic and short term noise

Step 4 : Economic surprises; Geopolitic; Very Short Term Sentiments and causals links

Theory of adaptative anticipations, Revealed preference and microstructure of financial market

{ " Index to predict

Fig. 1. Main component of the Causal hierachical top down dynamic of any stock index

S&P500_and_Rate;.;: A set of the 3 numerical variables designating three of
the most relevant indexes on US financial market. At time t, the history covering
period 1 to t serves as an input with (Risk_Aversion;.;, Economic_Cycley.;) for
obtaining features via functions/algorithms or links (fs, f7) in the graph.

Observable Textual Causal Variables: It is shown in grey (rectangular shape
with rounded side) on the graph (Textual Datay.;). It represent set of textual
documents called the Beige Book, published 8 times a year by the U.S. Federal
Reserve (/22000 words for each edition of national summary) on highlights of
economic activity, employment and prices. At time t, we use a function/algorithm
(f1, Doc2vec) to transform the most recent document into a set of p embedding
denoting their distributional representation (Num_Repr_Beige Book,).

2.2 Graph Level 2: Latent Medium Term Context

Level 2 consists of three groups of light orange (lozenge shape) intermediate
latent variables designating medium term context.

Market_Regime;.;_;: it is a set of homogeneous cluster on historical price
index S&P500;.;_k. It summarizes ex-post the state or regime of the financial
market for period 1..t-k via the function/algorithm or link f5 in the graph.

Risk_Aversion;.;: it summarizes other medium-term context. The risk aversion
of investors on the markets for each period from 1 to t. It is obtained via the
function/algorithm or link f3 on the inputs 32_Risk_Factors.;.
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Num. Repr.
Beige_Book, ,

Medium
Term Context

{7 Similarity
Measure

f6: Similarity
Measure

Short Risk_Concentration,, J ST Comp Market Regime, ., JM Cyclical Comp Market Regime, .,

Term Context

Legend of Fig. 2
Nodes : Observable and Latent Variables
- Numerical Observable Variables

- Textual Observable Variables
- Numerical Representation of Textual Variables

- Intermediate Latent Context Variables

- Features or Latent Variables for Prediction

10000

- Variable to Predict

Causal links : non parametric functions or algorithms

f1, 2, f3, f4, 15, fé, 7, f

Fig. 2. Specific case of functional causal graph of the S&P500 dynamic
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Economic_Cycle; ;: it summarizes the last medium-term context, the phases
of the economic cycle for each period 1 to t. It is obtained via the func-
tion/algorithm or link f; on the inputs (80_Risk_Factors;,; Num. Repr.
Beige_Book; ).

2.3 Graph Level 3: Latent Short Term Drivers

Level 3 of the graph includes three other groups of latent variables, dark orange
(Oval shape) used as features for a classifier on the S&P500.

ST_Comp_Market_Regime; ;.;: A set of 8 latent variables designating the
short-term component of the current market regime. For each of the recent peri-
ods between t-k to t, we obtain a statistical summary (median and asymmetry
coefficient) of k measures of similarity with a function or link (fs) in the graph.
We measure the similarity between the recent k observations (t-k to t) and the
historical observations (1 to t-k) of (Risk_Aversion;.;, S&P500_and_Rate;.;) of
each of the homogeneous group obtained with Market_Regime;.;_.

MT _Comp_Market_Regime;_;.;: A set of 8 latent variables designating the
medium-term component of the current market regime. It is obtained in the
same way, replacing the variable (Risk_Aversion;.;) with (Economic_Cycle;.;).

Risk_Concentration;.;: A set of 4 latent variables denoting the concentration
of sources of uncertainty in the markets. For each period from 1 to t, the per-
centage of the explained variance of the first 4 factors is obtained via a singular
value decomposition (f5) on the input 32_Risk_Factors.;.

3 Functions/Algorithms for the Latent Variables

We use a priori knowledge to going through the graph, learn separately the
representation of each node and extract 20 business features (level 3) as inputs
for a classifier. We validate this process on the reduced graph of Fig.2 and the
task of monthly prediction on S&P500. The generalization with a global graph
in a unified embedding learning framework will be for the next step.

3.1 Algorithm f5 for Intermediate Latent Variables Market_Regime

Market regime is identifiable ex-post. fo is a set of rules to separate the history
of S&P500 into regimes (3 homogeneous groups). If SP500;,...SP500;, is the
sequence observed between tg, ...t,, we define 3 market regimes :

Bull Market: Ex-post, the market was in a bullish mode between period ¢, ...tp
if starting to tg, the S&P500 rises gradually to cross a certain threshold without
returning below the initial price at ty. Meaning the set of points

{to--,ti, --tn; 0 <i < handSP500;, > SP500., & SP500;, > (1 + X)SP500,}

A : Hyper-parameter based on empirical studies on risk premium.

Bear Market: Opposite of Bull Market (decrease trend)

Range Bound Market: Neither Bull, neither Bear



560 D. R. Djoumbissie and P. Langlais

3.2 Algorithms f3, f4 for 2 Others Intermediate Latent Variables

fsand f4 are two auto-encoders to learn the distributional representations of
2 others intermediate latent variables. At time t, a simple/variational auto-
encoder (Fig.3.) takes (32_Risk Factorsi;) as inputs and produces a rep-
resentation of dimension ¢ (Risk_Aversion;), then takes (80_Risk Factorsy.;
Num. Repr. Beige Book;.;) as inputs for other representation of dimension ¢
(Economic_Cycley ).

3.3 Algorithms f5, fe, fr and Features

We consider 3 others categories of latent variables to describe the current state
of market and use distributional representations as features for a classifier.

8 Statistics Summarizing the Short-Term Component of the Current
Market Regime. The current market regime is characterized by the similarity
between the recent realisations of (Risk_Aversion.;; S&P500.and_Rate;.;) and
the historical observations organised in homogeneous groups.

Ex: Consider F}, the similarity measure (Mahalanobis distance) in date t
between recent (last month) observations (V%) and Average/Variance of histor-
ical observations in the bullish regime (uff, S/). We define F; by :

F;: R" x R* x RV"—R*
Vi g = JOVR =il x g x (V= )

Therefore, on a monthly horizon (20 days), we obtain a vector of 20 similarity
measures that we aggregate by calculating a statistic like the median.

8 Statistics Summarizing the Cyclical Component of the Current Mar-
ket Regime. They are also obtained by similarity measures as previously but
replacing Risk_Aversion;.; by Economic_Cycley.;.

4 Factors Designating the Percentage of Explained Variance, obtained
by singular values decomposition (f5) and explaining more than 90% of the
variance of key market risk factors (32_Risk_Factors;.).

These 20 features characterize the current market regime and constitute the
main input for a classifier to predict the direction of the S&P500 index.

Encoder

32_Risk_Factor,
(RNN)

Daa
N Decoder o l
T 4 < 2_Risk_Factor,
‘ Tran Test ]
A-) Loss Auto-Encoder = ||32_Risk_factor — 32 Risk Jactor|”
Train Test
' N
'

woy
4 . Tran Te
32_Risk_Factor, RURNEHCOUCEN IS o Decoder B35 Risk Factor,

(RNN) g (R\N)

B-) Loss Variational Auto-Encoder = |32 Risk.factor — 32.RiS%actor]” - KL (N(Risk Aversion32_fisk Factor)IN(01))

Fig. 3. Simple & Variational Auto-encodeur Fig. 4. Walk Forward Validation
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4 Experiments and Empirical Results

4.1 Training, Validation and Testing Protocol

Time series have a certain dependence and the chronological order is a crucial
element in the training and validation process. Walk Forward Validation (Fig. 4),
based on an out-of-time dynamic validation that respects the chronological order,
is widely used in finance and [27, 28] provides additional details. The first 21 years
(19 for training and 2 for validation) are used for initial training and to fix all
hyper-parameters. Afterwards, at each date t, we obtain the features and predict
the direction ¢;11 for the month t+1 on training sample (y7¢/°%° V; ;). At t+1,
we compare the prediction with realized yff‘lp 500 and update two models. i) We
update the parameters of the auto-encoder every ten years, which is enough to
cover various market cycles and, ii) We update the parameters of the classifier
every month with all training data until t+1 (yf_%‘ﬁ_g’fo, Vi..t+1)- We then iterate
on the sample from 1992 to 2018 (Fig.4).

We use three metrics detailed in [13] and adapted for Classification problems.
The first is the accuracy (ACC) which is the total percentage of good predic-
tions up and down. The second is the Fl-score® and the last is the Matthews
Correlation Coefficient” (MCC). The last two metrics allow a relevant analysis
of the cost of errors. Indeed, the cost of bad decisions is high in the markets and
the challenge is to have models with good accuracy, but especially an ability to
limit false positives and false negatives. We make a comparison with the industry
benchmark over the entire period, then in sub-periods known to be very unstable
and difficult to predict. Our experiments are articulated into four points:

— We compare with the industry benchmark over the test period (1992 to 2018),
then four unstable sub-periods (2000-02, 2007-08, 2011-12, 2015-16). This last
comparison is typically not conducted in recent works.

— We Analyze the impact of features and latent variables by comparing 3 models

of increasing complexity:
i) Model 1: the link is direct between S&P500 and only the observable
numerical variables of level 1 (no features, no latent variables). ii) Model 2:
we consider the features, but they are obtained without two main medium-
term context (Risk_Aversion and Cycle_Economic). iii) Model 3: we use all
component of the graph (Fig. 2) and compare simple/variational auto-encoder
to get the latent intermediate variables.

— The model with the textual data is compared to the model obtained only
on numerical variables. The textual data from the Beige Book is replaced by
traditional numerical Business cycle (Inflation, Industrial production).

— A comparison over the same test period and the same inputs deriving the
work from [15] and [10,11] as specific cases of our solution. We identified
five recent studies on monthly prediction of the direction of S&P50, then we
selected the 2 best recent with available input. We transform the input to
introduce a hierarchical interaction via a short term latent context.

5 Harmonic average Precision and Recall.
" correlation coefficient between the observed and predicted binary classification.
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4.2 API and Hyper-parameters Selection

We used the gensim implementation of Doc2vec to represent the Beige Book doc-
uments into vector of dimension k(hyper-parameter) and TensorFlow/Keras for
training auto-encoders. For training the classifier, we used scikit-learn on python
3.6 (SVM, RandomForestClassifier and Ensemble.GradientBoostingClassifier).
We have two categories of Hyper-parameter: i) the first category (number
of phases in the business cycle, number of market regimes, dimension of latent
variables) are choosing based on our experience and some relative consensus on
empirical studies on financial market [23-26]. ii) The second category for auto-
encoder and classifier (dimension vector for Beige Book, learning rate, number
of estimates, maximum depth of the trees, size of the sub-samples) are chosen to
maximize output over the training (1970-89) and validation (1990-1991) period.

4.3 Performance and Comparison with the Industry Benchmark

The Table 1 shows our model consistently outperforms the benchmark over the
test period (1992 to 2018) on all metrics. It highlights the limits of accuracy
in predicting stock market. Indeed, the ACC of the long-term benchmark is
around 64 and more when the markets are stable, but the cost of errors are
better represented in the Fl-score and MCC. We observe the absolute gain on
all metrics with our model. The ACC, F1-Score and MCC are respectively 70.9%,
67%, 0.3 compare to 64.1%, 50% and 0 for the industry benchmark.

During the most unstable periods (2000-02, 2007-08), our model has an ACC
of 72.2% and 70% versus 38.8% and 41.6% for the benchmark. The spread is
more higher on fl-score (72% and 70% versus 22% and 25%) and MCC (0.52
and 0.54 vs 0 and 0). On the other relative unstable period, our model still
outperforms the benchmark in (2011-12) but performs similarly in (2015-2016).

Globally, the benchmark has a good ACC on the long term, but masks the
cost of error with poor fl-score and MCC and poor output during the unstable
sub-periods.

4.4 Analysis of the Impact of the Short/Medium-Term Latent
Context

We compared various auto-encoders, simple versus variational auto-encoder and
feed-forward versus recurrent. The recurrent VAE gave us the best output. It
was not possible to improve prediction with a convolutional auto-encoder. In
order of importance, the 3 main points that Table 2 brings are :

— Overall, using the graph (Model 3) with all observable variables and latent
context helps, and clearly outperforms model 1 in all test period and unstable
sub-periods.

— Reccurent variational auto-encoder seems overall preferable to AE

— For the unstable periods, we don’t have absolute conclusion and we need more
investigation.
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4.5 Impact of the Unstructured Data

The use of backward looking numerical data is considered as one limitation
when analysing the financial markets. We explore and confirm the potential of
the Beige Book to contain forward looking information for prediction.

The Table 3 shows the comparison with numerical data traditionally used to
analyse the business cycle. On the test period (1992-2018), the ACC, fl-score
and MCC of the final model are respectively 70.9%, 67%, 0.3 versus 68.5%,
64% and 0.25 for the model without unstructured data. This trend is the same
on two highly unstable sub-periods, (2000-02, 2007-08) and one of the relative
unstable sub-periods (2011-12). But it underperforms over the relative unsta-
ble sub-period of 2015-16 with statistic of (62.5%, 52%, 0.25) vs (54.1%, 46%,
—0.04).

Table 1. Monthly prediction of S&P500 on Table 2. Impact of latent context
different test periods

All test Period 1992-2018

All test Period 1992-2018 ACC |F1-S. ]MCC
ACC |F1-S. MCC Model 1 62 52 0
Bench. Industry [64.1 |50 0 Model 2 65.7 |60 0.16
This work 70.9 |67 0.3 Model 3 AE 68.8 65 0.26
Sub Period 2000-2002 Model 3 VAE 70.9 |67 0.3
Bench. Industry [38.8 |22 0 Sub Period 2000-2002
This work 72.2 |72 0.52 Model 1 47.2 |43 0.1
Sub Period 2007-2008 Model 2 55.6 |56 0.14
Bench. Industry [41.6 |25 0 Model 3 with AE|{69.4 |69 0.35
This work 70.8 |70 0.54 Model 3 with|72.2 |72 0.52
Sub Period 2011-2012 VAE
Bench. Industry [58.3 |43 0 Sub Period 2007-2008
This work 70.8 |70 0.39 Model 1 41.7 |25 0
Sub Period 2015-2016 Model 2_F 54.1 |54 0.07
Bench. Industry [58.3 |43 0 Model 3 with AE|54.1 54 0.13
This work 54.1 46 -0.04 Model 3 with|70.8 |70 0.54
VAE
Sub Period 2011-2012
Model 1 54.2 |41 -0.18
Model 2 58.3 |43 0
Model 3 with AE|75 74 0.48
Model 3 with|{70.8 |70 0.39
VAE
Sub Period 2015-2016
Model 1 54.2 |41 -0.18
Model 2 66.7 |59 0.36
Model 3 with AE|58.3 |49 0.05
Model 3 with|54.1 |46 -0.04
VAE
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Table 3. Impact of Textual Data Table 4. Comparison with related
work
All test Period 1992-2018
Ding Model : 2013
‘ ACC [F1-S. |]MCC ACG
Without Textual|68.5 64 0.25 Benchmark Industry 75
Data. Ding Model 55.9
With Textual Data. |70.9 |67 (0.3 This work 80
! extua ata. ° ° Pena Model : 2006-2014
Sub Period 2000-2002 ACC
Without Textual|66.7 |67 0.37 Benchmark Industry 63.1
Pena Model 69.4
Data. This work 72

With Textual Data. [72.2 |72 0.52
Sub Period 2007-2008
Without Textual|58.3 58 0.20
Data.
With Textual Data. [70.8 |70 0.54
Sub Period 2011-2012
Without Textual|66.7 65 0.29
Data.
With Textual Data. |70.8 |70 0.39
Sub Period 2015-2016
Without Textual|62.5 |52 0.25
Data.
With Textual Data. |54.1 46 -0.04

4.6 Comparison with Two Works on the Same Inputs and Test
Period

The metric available for comparison with two recent studies on monthly S&P500
prediction is the accuracy. We use the same inputs by formulating as specific
cases of our result. [15] use neural networks on textual data and get a 55.9%
accuracy over 12-month test period (Table4). Although the test period is very
short, the industry benchmark is 75% and the special case obtained from our
solution is 80%. [10,11] use prior knowledge to select causal variables and inno-
vate in the kernel function of an SVM algorithm. The accuracy is 69.4% for the
period 2006-2014 (Table4). We also obtain a specific case of our solution on
the same causal variables with an accuracy of 72%. We show the importance
of introducing a hierarchical interaction through a latent variable characterizing
the short-term context.

5 Conclusion and Future Work

In this work, we tested several intuitions which should serve as a basis for gen-
eralizing of an integrated process with a small training sample of predicting
financial markets on a monthly and quarterly basis. This is based on a frame-
work of informed machine learning with an a priori functional causal graph of
the S&P500 dynamics as the main input for predictive algorithms.
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By combining our market experience, domain literature, we propose an a
priori functional causal graph of the market dynamics. We learn separately the
representation of each node, and then treat two similar work as special cases of
our solution.

The proposed solution reconciles the theory, the selection of causal and con-
text variables with great predictive powers, the domain knowledge features for
monthly prediction on the small size of training data. The prediction are bet-
ter than those of 5 similar works (including 2 studied here) and dominate the
industry benchmark in all environments (stable and unstable).

The next step is to generalize using a global, dynamic functional causal graph
with multiple unstructured data sources as the main input, then to automatically
learn in a unified framework the embedding of all nodes and finally use it to
predict the direction of various financial index and horizons (month, quarter,...).
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