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Abstract. In this contribution we apply fuzzy neighborhood semantics
to multiple agents’ reasoning about each other’s subjective probabili-
ties, especially in game-theoretic situations. The semantic model enables
representing various game-theoretic notions such as payoff matrices or
Nash equilibria, as well as higher-order probabilistic beliefs of the play-
ers about each other’s choice of strategy. In the proposed framework,
belief-dependent concepts such as the strategy with the best expected
value are formally derivable in higher-order fuzzy logic for any finite
matrix game with rational payoffs.

Keywords: Probabilistic reasoning · Fuzzy logic · Modal logic ·
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1 Introduction

In this paper, we propose a semantics for multi-agent reasoning about uncertain
beliefs. Using a suitable fuzzy logic for its representation makes it possible to
formalize doxastic reasoning under uncertainty in a rather parsimonious way,
which is of particular importance, e.g., in software modeling of rational agents.

As a prominent measure of uncertainty, we apply a fuzzy probability mea-
sure to fuzzy doxastic propositions. Fuzzy-logical modeling of probability started
with [13]. Common approaches include two-layered expansions of suitable fuzzy
logics by a fuzzy modality probably, states of MV-algebras, and probabilistic
fuzzy description logics [10,15,16]. Here we generalize the fuzzy modal approach
of [13], overcoming some of its limitations given by its two-layered syntax. Gen-
erally, though, we do not want to restrict the framework to perfectly rational
agents. Therefore, we introduce a more general semantics that admits also prob-
abilistically incoherent assignments of certainty degrees. This paves the way not
only for accommodating the reasoning of probabilistically irrational agents, but
also for modeling the agents’ reasoning about the other agent’s (ir)rationality
and its potential exploitability.
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As an illustration of the semantic framework, we apply it to probabilistic
reasoning in game-theoretic situations. This application belongs to the broader
research area of logic in games [4], which aims at a formal reconstruction of
game-theoretical concepts by means of formal logic. As an interface between
fuzzy logic and game theory, we employ the representation of (a broad class of)
strategic games in fuzzy logic laid out in [2]. In the game-theoretic setting, the
framework enables formalizing the player’s beliefs about each other’s choice of
strategy, including higher-order beliefs (i.e., beliefs about the beliefs of others). In
the game-theoretic setting, probabilistic beliefs are particularly important, due
to the players’ uncertainty about each others’ choice of strategy, the possibility
of using mixed (i.e., probabilistic) strategies, and is especially pronounced in
games with incomplete information (such as most card games).

The paper is organized as follows. In Sect. 2, we gather prerequisites for
developing fuzzy doxastic and probabilistic logic, including the logic �LΠ and the
notion of fuzzy probability measure. Fuzzy doxastic and probabilistic models for
multi-agent reasoning are presented in Sect. 3. Next, in Sect. 4, we define fuzzy
doxastic and probabilistic logic and discuss its relationships to various known
logics. Section 5 provides an overview of game-theoretical notions formalized in
fuzzy probabilistic or doxastic logic; subsequently, we apply these notions to
represent probabilistic reasoning in a simple two-player game. Finally, the fea-
tures of the introduced formalism and topics for future work are summarized in
Sect. 6.

2 Preliminaries

For the formalization of probabilistic and doxastic reasoning in games, we will
employ the expressively rich fuzzy logic �LΠ. This choice is made for the sake
of uniformity, even though many constructions described below can as well be
carried out in some of its less expressive fragments such as �L� or P�L′

�. For
details on the logic �LΠ see [7,9]; here we just briefly recount the definition.

A salient feature of the logic �LΠ is that it contains the connectives of many
well-known fuzzy logics, including the three prominent t-norm based fuzzy logics
(Gödel, �Lukasiewicz, and product).

We use the symbols ∧,∨,¬,⊗,⊕,∼,⇒,�,	, respectively, for the Gödel,
�Lukasiewicz, and product connectives &G,∨G,¬G,&�L,∨�L, ¬�L, ⇒�L, &Π, ⇒Π of
�LΠ. Of these, ⇒, 	, �, and the truth constant 0 can be taken as the only
primitives; the others are definable.

The standard semantics of �LΠ, or the standard �LΠ-algebra [0, 1]�LΠ, interprets
the connectives by the following truth functions on [0, 1]:

x ∧ y = min(x, y) x ⊗ y = max(0, x + y − 1)
x ∨ y = max(x, y) x ⇒ y = min(1, 1 − x + y)
x ⊕ y = min(1, x + y) x � y = x · y

x 
 y = max(0, x − y) x 	 y = y/x if x > y, otherwise 1
∼x = 1 − x ¬x = 1 − sign x

x ⇔ y = 1 − |x − y| �x = 1 − sign(1 − x)
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An axiomatic system for �LΠ consists of the axioms of �Lukasiewicz and
product logic respectively for �Lukasiewicz and product connectives, the axioms
�(ϕ ⇒ ψ) ⇒ (ϕ 	 ψ), �(ϕ 	 ψ) ⇒ (ϕ ⇒ ψ), ϕ � (ψ 
 χ) ⇔ (ϕ � ψ) 
 (ϕ � χ),
and the rules of modus ponens and �-necessitation (from ϕ infer �ϕ). The logic
�LΠ enjoys finite strong completeness of this axiomatic system w.r.t. its standard
semantics on [0, 1].

The general (linear) algebraic semantics of �LΠ is given by the class of (linear)
�LΠ-algebras L = (L, ⊕, ∼, 	, �, 0, 1), where:

– (L, ⊕, ∼, 0) is an MV-algebra,
– (L, ∨, ∧, 	, �, 0, 1) is a Π-algebra, and
– x � (y 
 z) = (x � y) 
 (x � z) holds.

Like other fuzzy logics, �LΠ also enjoys completeness w.r.t. the classes of linear
and all �LΠ-algebras. Except for the two-element �LΠ-algebra {0, 1}, all non-trivial
linear �LΠ-algebras are isomorphic to the unit interval algebras of linearly ordered
fields.

The first-order logic �LΠ, denoted by �LΠ∀, is defined as usual in fuzzy logic:
in a first-order model M = (M,L, I) over an �LΠ-algebra L, n-ary predicate
symbols P are interpreted by L-valued functions I(P ) : Mn → L and the quan-
tifiers ∀,∃ are evaluated as the infimum and supremum in L. Safe �LΠ∀-models
(i.e., such that all required suprema and infima exist in L) are axiomatized by
the propositional axioms and rules of �LΠ, generalization (from ϕ derive (∀x)ϕ),
and the axioms:

– (∀x)ϕ ⇒ ϕ(t), where t is free for x in ϕ, and
– (∀x)(χ ⇒ ϕ) ⇒ (χ ⇒ (∀x)ϕ), where x is not free in χ.

First-order �LΠ can be extended by the axioms for crisp identity, x = x and
x = y ⇒ �(ϕ(x) ⇔ ϕ(y)), function symbols, and sorts of variables in a standard
manner; see, e.g., [1].

The present paper will also make use of the logic �LΠ of a higher order.
Higher-order logic �LΠ has been introduced in [1] and its Church-style notational
variant in [20]. For the full description of higher-order �LΠ we refer the reader to
[1] or [3, Sect. A.3]; here we only highlight some of its features relevant to our
purposes.

Of the full language of higher-order �LΠ, in this paper we will only need
its monadic fragment. Its syntax contains variables and constants for individu-
als (x, y, . . . ), first-order monadic predicates (P,Q, . . . ), second-order monadic
predicates (P,Q, . . . ), etc. In a model over an �LΠ-algebra L, individual vari-
ables and constants are interpreted as elements of the model’s domain X; first-
order monadic predicates as fuzzy sets on X, i.e., elements of LX ; second-order
monadic predicates as fuzzy sets of fuzzy sets on X, i.e., elements of LLX

; etc.
Besides the connectives of �LΠ and the quantifiers of �LΠ∀ (applicable to vari-

ables of any order), the language of monadic higher-order �LΠ also contains com-
prehension terms {x(n) | ϕ}, for all variables x(n) of any order n and all well-
typed formulae ϕ. In L-valued models, {x | ϕ(x)} denotes the fuzzy set A ∈ LX
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which assigns to each value of x the truth value of ϕ(x). Analogously, {P | ϕ(P )}
denotes the second-order fuzzy set A ∈ LLX

which assigns to each value of P
the truth value of ϕ(P ), etc.

We will denote the higher-order logic �LΠ by �LΠω. Its Henkin-style axiom-
atization in multi-sorted �LΠ∀, consisting of the axioms of extensionality and
comprehension for each type and complete w.r.t. Henkin models, can be found
in [1,3].

In what follows we will need the following first-order fuzzy set operations
(definable in �LΠω):

Definition 1. Let X be a crisp set and L an �LΠ-algebra. The fuzzy set opera-
tions �, �, �, and 0 are defined by setting for all x ∈ X and A,B ∈ LX:

(A � B)(x) = A(x) ⊗ B(x)
(A � B)(x) = A(x) ⊕ B(x)

(�A)(x) = ∼A(x)
0(x) = 0

The following sections also refer to fuzzy probability measures, which have
been extensively studied in the literature; for an overview see [10]. Fuzzy proba-
bility measures are usually defined as valued in the real unit interval [0, 1]; here
we use the definition generalized to any �LΠ-algebra L.

Definition 2. Let L be an �LΠ-algebra. A finitely additive L-valued fuzzy proba-
bility measure on W is a function ρ : LW → L such that the following conditions
hold for all A,B ∈ LW :

– ρ(0) = 0
– ρ(�A) = ∼ρ(A)
– If ρ(A � B) = 0 then ρ(A � B) = ρ(A) ⊕ ρ(B).

Finally, let us briefly recall (multi-agent) standard doxastic logic, since fuzzy
probabilistic and doxastic logics introduced below adapt its models to make them
suitable for uncertain doxastic reasoning. For details on standard doxastic logic
see, e.g., [18]. Standard multi-agent doxastic logic expands classical propositional
logic by (freely nestable) unary modalities Ba for each agent a, where Baϕ is
interpreted as “agent a believes that ϕ”. Models for standard doxastic logic are
given by Kripke-style (relational) semantics:

Definition 3. A multi-agent standard doxastic frame is a tuple F =(
W,A, {Ra}a∈A

)
, where:

– W �= ∅ is a set of possible worlds.
– A �= ∅ is a set of agents.
– Ra ⊆ W 2 is the accessibility relation for each agent a. In standard doxastic

logic it is assumed that all Ra are serial, transitive, and Euclidean.
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A multi-agent standard doxastic model over the frame F is a pair M =(
F , e

)
, where e : Var × W → {0, 1} is an evaluation of (countably many) propo-

sitional variables pi ∈ Var in each world w ∈ W . The truth value, or the exten-
sion ‖ϕ‖w of a formula ϕ in a world w of the model M is defined by the recursive
Tarski conditions:

‖p‖w = 1 iff e(p,w) = 1
‖¬ϕ‖w = 1 iff ‖ϕ‖w = 0

‖ϕ ⇒ ψ‖w = 1 iff ‖ϕ‖w = 0 or ‖ψ‖w = 1
‖Baϕ‖w = 1 iff Raww′ implies ‖ϕ‖w′ = 1 for all w′ ∈ W

The set ‖ϕ‖ = {w ∈ W : ‖ϕ‖w = 1} is called the intension of ϕ in M . A formula
is valid in M if ‖ϕ‖ = W . A formula is a doxastic tautology if it is valid in all
doxastic models.

Standard doxastic logic is axiomatized by adding the following axioms and
rules to classical propositional logic, for all agents a:

(K) Baϕ ∧ Ba(ϕ ⇒ ψ) ⇒ Baψ (logical rationality)
(D) Baϕ ⇒ ¬Ba¬ϕ (consistency of beliefs)
(4) Baϕ ⇒ BaBaϕ (positive introspection)
(5) ¬Baϕ ⇒ Ba¬Baϕ (negative introspection)
(Nec) from ϕ derive Baϕ (necessitation)

In standard doxastic frames, the intended role of accessibility relations Ra is
such that the successor sets wRa = {w′ | Raww′} comprise those worlds which
the agent a in the world w does not rule out as being the actual world. The
proposition “a believes that ϕ” is then considered true in w if ϕ is true in all
worlds that a does not exclude in w, i.e., in all w′ ∈ wRa. The truth of Baϕ in w
can thus be regarded as given by a (maxitive) two-valued measure βa,w on W :

βa,w(A) =

{
1 if wRa ⊆ A

0 otherwise,
(1)

for all A ⊆ W . Then the Tarski condition for Ba can be written as ‖Baϕ‖w =
βa,w(‖ϕ‖). In the next section, the maxitive two-valued measure βa,w implicit
in standard doxastic frames will be generalized to a finitely additive fuzzy prob-
ability measure suitable for doxastic reasoning under uncertainty.

3 Fuzzy Doxastic Models

For the modeling of doxastic or probabilistic reasoning of agents, we will employ
a suitable fuzzy variant of possible-world (intensional) semantics (cf. [3,6,8,21]).
The multi-agent fuzzy doxastic frames introduced in the following definition are
a variant of similar structures that have already been employed for the semantics
of probabilistic reasoning in the literature [5,11,12,22]. They also generalize (an
equivalent reformulation of) the Kripke frames of standard doxastic logic [18].



Fuzzy Neighborhood Semantics for Probabilistic and Doxastic Reasoning 685

Definition 4. A multi-agent fuzzy doxastic frame is a tuple F =
(
W,L, A, ν

)
,

where:

– W �= ∅ is a crisp set of possible worlds (or world states, situations).
– L is an �LΠ-algebra of degrees.
– A �= ∅ is a set of agents.
– ν = {νa,w}a∈A,w∈W , where νa,w : LW → L for each a ∈ A and w ∈ W .

Fuzzy subsets of the set W of possible worlds are called (fuzzy) propositions
or, synonymously, (fuzzy) events. In a multi-agent fuzzy doxastic frame F , the
functions νa,w : LW → L thus assign degrees to events. The value νa,w(E) is
understood as the degree of the agent a’s certainty in the world w about the
event E. Each νa,w can also be regarded as a fuzzy set of events, νa,w ∈ LLW

.
The system ν = {νa,w}a∈A,w∈W can equivalently be viewed as assigning to

each agent a ∈ A a fuzzy neighborhood function νa : W × LW → L. These are
known from the fuzzy neighborhood semantics of fuzzy modal logics [8,21], which
is a fuzzy generalization of the well known Scott–Montague neighborhood seman-
tics of modal logics [19,23]. The applicability of fuzzy neighborhood semantics
to probabilistic and doxastic reasoning has been made explicit in [22].

A fuzzy neighborhood function νa assigns to each world w a fuzzy set of fuzzy
“neighborhoods”. The fuzzy neighborhoods of w will be understood as events
that the agent a in the world w considers probable (to the degree assigned by
νa,w). We will interpret νa,w as measuring the subjective probability of events,
as assessed by agent a in world w. In the general setting of multi-agent fuzzy
doxastic frames we impose no restriction on νa,w. In the following definition we
specify additional conditions suitable for the probabilistic interpretation of νa,w.

Definition 5. Let F =
(
W,L, A, ν

)
be a multi-agent fuzzy doxastic frame. We

say that F is a (multi-agent) fuzzy probabilistic frame if each νa,w is a finitely
additive fuzzy probability measure.

Thus, in fuzzy probabilistic frames, the subjective probability measures νa,w

of all agents a and in all world states w are supposed to satisfy the axioms
of fuzzy probability from Definition 2. This corresponds to the assumption of
probabilistic rationality of all agents. In fuzzy doxastic frames, this condition is
relaxed, which makes it possible to model agents with incomplete or incoherent
assignments of probabilities.

In the probabilistic setting, the most common choice of L will be that of the
standard �LΠ-algebra, L = [0, 1]�LΠ; nevertheless, the definition also admits other
�LΠ-algebras of certainty degrees that may be suitable for probabilistic or doxastic
reasoning, including the two-valued, rational-valued, or hyperreal-valued ones.

We will use fuzzy doxastic and probabilistic frames in the standard manner
to define models for probabilistic and doxastic fuzzy modal logic. First we need
to specify the modal language:

Definition 6. Let Var be a countably infinite set of propositional variables and
A a nonempty set of agents. By SA we denote the propositional signature of the
logic �LΠ expanded by the unary modalities Pa for all a ∈ A.
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Thus, e.g., (p & Pa�q) ⇒ �PaPb(p & q) is a well-formed formula of S{a,b}.

Definition 7. A (multi-agent) fuzzy doxastic model is a pair M = (F , e),
where F = (W,L, A, ν) is a multi-agent fuzzy probabilistic frame and e : Var ×
W → L is an L-evaluation of propositional variables in each world.

If F is a fuzzy probabilistic frame, we speak of a fuzzy probabilistic model.

As usual in intensional possible-world semantics, the semantic value of a
formula ϕ in a model M is identified with its intension ‖ϕ‖ : W → L. The value
of the intension ‖ϕ‖ in a given world w ∈ W , i.e., the degree ‖ϕ‖(w) ∈ L, is
called the extension of ϕ in w and denoted by ‖ϕ‖w. Note that in fuzzy doxastic
frames, intensions of formulae are events and extensions are the degrees of the
event’s occurrence in particular worlds. Their values in fuzzy doxastic models
are defined in a standard manner by recursive Tarski conditions (cf. [8,21]):

Definition 8. The intensions ‖ϕ‖ : W → L and extensions ‖ϕ‖w = ‖ϕ‖(w) of
SA-formulae ϕ in the fuzzy doxastic model M are defined inductively as follows:

‖p‖w = e(p,w)

‖c(ϕ1, . . . , ϕn)‖w = cL (‖ϕ1‖w , . . . , ‖ϕn‖w)
‖Paϕ‖w = νa,w(‖ϕ‖)

for all worlds w ∈ W , agents a ∈ A, propositional variables p ∈ Var, all SA-
formulae ϕ1, . . . , ϕn, ϕ, and each n-ary connective c of �LΠ, where cL is the truth
function of c in the �LΠ-algebra L.

It can be observed that standard doxastic frames (see Sect. 2) are special
cases of fuzzy doxastic frames over the two-element �LΠ-algebra {0, 1}, when
taking the maxitive two-valued measures βa,w of (1) for νa,w.

Although the language SA contains just a single graded probabilistic or
doxastic modality Pa for each agent a ∈ A, various ranges and comparisons
of probabilities (or certainty degrees) used in bivalent probabilistic logics are
expressible by means of the connectives of �LΠ. For instance, the qualitative
probabilistic conditional ϕ � ψ of [12], “ϕ is at least as probable as ψ”, is
expressed for any agent a as �(Paψ ⇒ Paϕ). Similarly, the bivalent statement
that “the probability assigned to ϕ by a is in the interval

[
1
3 , 1

2

]
” can be expressed

by the SA-formula �(Paϕ ⊕ Paϕ ⊕ Paϕ) ∧ ¬(Paϕ ⊗ Paϕ). In general, by
Proposition 1 below, any rational interval of a’s probabilities for ϕ is expressible
by an SA-formula. Note that this includes the threshold probabilistic modalities
P

≥r

a ϕ, “a believes that the probability of ϕ is at least r”, for r ∈ Q ∩ [0, 1], used,
e.g., in [11]. Since all infinite linear �LΠ-algebras embed Q∩[0, 1], we can formulate
the proposition more generally than just for standard models:

Proposition 1. Let L be a linear �LΠ-algebra, M = (W,L, A, ν, e) a fuzzy dox-
astic model, a ∈ A, w ∈ W , and r, s ∈ Q ∩ [0, 1].
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1. There exist �LΠ-formulae χr, χ≥r in one propositional variable such that:

χL
r (x) =

{
1 if x = r

0 otherwise
χL

≥r(x) =

{
1 if x ≥ r

0 otherwise,

where χL
r , χL

≥r are the truth functions of χr, χ≥r in L.

2. ‖�(Paψ ⇒ Paϕ)‖w =

{
1 if νa,w(‖ϕ‖) ≥ νa,w(‖ψ‖)
0 otherwise.

3.
∥
∥χ≥r(Paϕ) ∧ χ≥1−s(∼Paϕ)

∥
∥

w
=

{
1 if νa,w(‖ϕ‖) ∈ [r, s]
0 otherwise.

Proof. 1. If r = 0, take χr ≡df ¬p and χ≥r ≡df p ⇒ p. If r = 1, take χr, χ≥r ≡df

�p. If r = m
n ∈ (0, 1), m,n ∈ N, then let ϕ ≡df p∧∼p; ψ ≡df ϕ	 (ϕ⊕ϕ); ϑ ≡df

⊙�log2(max(m,n))�
i=1 ψ; η ≡df

(⊕m
i=1 ϑ

) 	 (
⊕n

i=1 ϑ
)
; χr ≡df �(η ⇔ p) ∧ ¬�p; and

χ≥r ≡df �(η ⇒ p) ∧ ¬¬p. If x ∈ {0, 1}, then it is easy to verify that ηL (x) = 1,
and thus χL

r (0) = χL
r (1) = χL

≥r(0) = 0 and χL
≥r(1) = 1 as desired. If x ∈ L �

{0, 1}, then ϕL (x) ≤ 1
2 , so ψL (x) = 1

2 , ϑL (x) = 2−�log2(max(m,n))� ≤ max
(

1
m , 1

n

)
,

thus ηL (x) = m
n , and then it is straightforward to verify that χL

r (x), χL
≥r(x) have

the desired values.
Claims 2 and 3 follow directly from Claim 1 by Definition 8 and the semantics

of propositional connectives in linear �LΠ-algebras. ��

4 Fuzzy Probabilistic and Doxastic Logic

The notions of truth, validity, tautologicity, and (local) entailment w.r.t. (classes
of) fuzzy doxastic models are defined as usual in (fuzzy) intensional semantics
(cf. [3,6,8]):

Definition 9. Let M = (W,L, A, ν, e) be a fuzzy doxastic model. We say that
an SA-formula ϕ is true in w ∈ W if ‖ϕ‖w = 1L . We say that ϕ is valid in M
if ‖ϕ‖w = 1L for all w ∈ W . We say that SA-formulae ϕ1, . . . , ϕn locally entail
an SA-formula ϕ in M if ϕ is true in all worlds where all ϕ1, . . . , ϕn are true.

Let K be a class of fuzzy doxastic models for SA. We say that an SA-formula
ϕ is a K-tautology, written |=K ϕ, if ϕ is valid in all models M ∈ K. We
say that SA-formulae ϕ1, . . . , ϕn locally entail an SA-formula ϕ in K, written
ϕ1, . . . , ϕn |=K ϕ, if ϕ1, . . . , ϕn locally entail ϕ in every model M ∈ K.

If K is the class of all fuzzy doxastic models for SA, we denote K-tautologies
and entailment by |=FDLA

and speak of (multi-agent) fuzzy doxastic logic FDLA.
Similarly if K is the class of all fuzzy probabilistic models for SA, we use |=FPLA

and speak of (multi-agent) fuzzy probabilistic logic FPLA. (For a generic set A
of agents, we may drop the subscript and write just FDL or FPL).

A sound and complete axiomatization, or at least an axiomatic approximation
sufficiently strong for formalizing typical probabilistic or doxastic arguments, of
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FDL and FPL in their own modal language SA is a future work. Nevertheless,
there is a standard translation (cf. [6, Prop. 4.18]) into higher-order �LΠ, which
provides a syntactic verification method for laws valid in FDL and FPL:

Definition 10. The second-order predicate language L2
A corresponding to the

modal language SA of Definition 6 consists of countably many monadic predicate
symbols P1, P2, . . . , one for each p1, p2, . . . ∈ Var; individual variables x, y, z, . . . ;
and a second-order monadic predicate symbol Na for each a ∈ A.

Let x be an individual variable of L2
A. The standard translation of an SA-

formula ϕ of FDL or FPL into an L2
A-formula trx(ϕ) of �LΠω is defined recur-

sively as follows:

trx(pi) = Pi(x)

trx

(
c(ϕ1, . . . , ϕn)

)
= c

(
trx(ϕ1), . . . , trx(ϕn)

)

trx(Paϕ) = Na({x | trx(ϕ)})

for each pi ∈ Var, each n-ary connective c of �LΠ, and each a ∈ A.

It can be observed that every fuzzy doxastic model M = (F , e) over a fuzzy
doxastic frame F = (W,L, A, ν) can be regarded as an L-valued �LΠω-model
M ′ = (W,L, I) with the domain W and the interpretation I of L2

A such that
I(Pi) = e(pi) for each pi ∈ Var and I(Na)(w) = νa,w for each a ∈ A and
w ∈ W . Vice versa, every L-valued �LΠω-model M ′ = (W,L, I) for L2

A can be
regarded as a fuzzy doxastic model M = ((W,L, A, ν), e), where e(pi) = I(Pi)
and νa,w = I(Na)(w). The correspondence between the models is clearly one to
one and the translation preserves the truth values of formulae:

Lemma 1. Let M ,M ′ be as above. Then ‖ϕ‖Mw = ‖trx(ϕ)‖M ′

x	→w, where x �→ w
denotes any M ′-evaluation η such that η(x) = w.

Proof. Straightforward by definitions, analogously to [3, Th. 5.9].

Proposition 2. Let ϕ1, . . . , ϕn, ψ be SA-formulae and x an individual variable
of �LΠω. Then:

1. ϕ1, . . . , ϕn |=FDL ψ iff trx(ϕ1), . . . , trx(ϕn) |=�LΠω trx(ψ) iff

|=�LΠω

( n∧

i=1

�trx(ϕi)
)

⇒ trx(ψ).

2. ϕ1, . . . , ϕn |=FPL ψ iff π, trx(ϕ1), . . . , trx(ϕn) |=�LΠω trx(ψ) iff

|=�LΠω

(
π ∧

n∧

i=1

�trx(ϕi)
)

⇒ trx(ψ),

where π is the �LΠω-formalization of the fuzzy probability axioms of Defini-
tion 2,

π ≡df (∀A)(∀B)
∧

a∈A

�[¬Na(0) ∧ (Na(�A) ⇔ ∼Na(A)
) ∧

(¬Na(A � B) ⇒ (Na(A � B) ⇔ (Na(A) ⊕ Na(B))
))]

.
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Proof. By inspection and easy modification of the proofs of [3, Th. 5.10, Cor.
5.12] and [3, Rem. 5.14]. ��

5 Probabilistic and Doxastic Logic in Strategic Games

In this section we illustrate the apparatus of fuzzy probabilistic logic by applying
it to formalization of uncertain doxastic reasoning in matrix games. In order to do
so, we first need to have the game, determined by its payoff matrix, represented
by formulae of fuzzy logic.

Logical representation of matrix games with only two strategies of each player
and only two payoffs (Boolean games) was done in [14]. In [17], the representation
was extended to finite strategic games with payoff values in finite MV-chains
(�Lukasiewicz games). A representation of a fairly broad class of matrix games in
suitable fuzzy logics (including �LΠ) was obtained in [2]. The latter representation
covers all finite matrix games with rational payoffs, and also all n-player matrix
games with strategies that can be mapped into rationals or reals from [0, 1] and
with each payoff function �LΠ-representable. In this representation, the players’
strategies and utilities (payoff values) are all encoded as elements of the standard
�LΠ-algebra [0, 1]�LΠ and the payoff function of a player a is expressed by an �LΠ-
formula υa. It has been shown in [2] that for finite matrix games with rational
payoffs, such game-theoretic concepts as the Nash equilibria in pure or mixed
(i.e., probabilistic) strategies are expressible by �LΠ-formulas.

Let us consider a finite matrix game G with a set A = {a1, . . . , an} of players,
where each player ai is assigned a finite set of strategies Sai

and a payoff function
uai

:
∏

a∈A Sa → Q. By [2], the �LΠ-representation of G encodes the strategies
by elements of the standard �LΠ-algebra L = [0, 1]�LΠ; without loss of generality
we can assume that |Sai

| = mi > 1 and Sai
= { j−1

mi−1 | 1 ≤ j ≤ mi} for each
player ai ∈ A. As shown in [2], the payoff functions ua are affinely representable
by �LΠ-formulas: i.e., for each a ∈ A there is an �LΠ-formula υa in n variables
such that υL

a (x1, . . . , xn) = f(ua(x1, . . . , xn)) whenever xi ∈ Sai
for all i ≤ n,

where υL
a is the truth function of υa in the standard �LΠ-algebra L and f is an

affine function.
To model probabilistic beliefs of the players of G, we will use a fuzzy proba-

bilistic model M = (W,L, A, ν, e) over the standard �LΠ-algebra L. The events
of interest are the players’ chosen strategies; these will be represented by propo-
sitional variables ca1 , . . . , can ∈ Var . To ensure that e(cai , w) ∈ Sai

, we will char-
acterize the strategies of G by a finite propositional theory ΓG = {Γ 1

G, . . . , Γn
G}

in �LΠ. The language of ΓG consists of the variables cai and additional variables
sai

j , representing the j-th strategy of player ai (for all i ≤ n and j ≤ mi). The
formulas Γ i

G of ΓG fix the values of sai
j as the elements of Sai

and ensure that
cai are evaluated in Sai

:

Γ i
G ≡df

mi∧

j=1

χ j−1
mi−1

(sai
j ) ∧

mi∨

j=1

(cai ⇔ sai
j ),
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where χ j−1
mi−1

is the formula from Proposition 1. Since the values of sa
j are fixed

by ΓG as elements of Sa (i.e., the L-codes of a’s strategies), by a slight abuse
of language we will use sa

j to refer directly to the elements of Sa and write, e.g.,
sa

j ∈ Sa.
For every a ∈ A and j ≤ mi, let ca

j denote the formula �(ca ⇔ sa
j ). The

evaluation e(ca
j , w) ∈ {0, 1} ⊆ L indicates for each world w whether the player

a chose the strategy sa
j in w or not. The event

∥
∥ca

j

∥
∥ ⊆ W is thus the (crisp) set

of worlds where the player a chose to deploy the strategy sa
j ∈ Sa. Player b’s

subjective probabilities (in w) of these events (i.e., player b’s probabilistic beliefs
about player a’s choice of strategy) are the values

∥
∥Pacb

j

∥
∥

w
∈ L.

By the �LΠ-representation of G, the (affinely scaled) payoff of a player a ∈ A
is the value of the �LΠ-formula υa(ca1 , . . . , can). Given the choices cai

ji
(of the

strategies sai
ji

) by all players ai ∈ A, the latter payoff formula is equivalent to
υa(sa1

j1
, . . . , san

jn
). Thus, in each world w ∈ ⋂n

i=1 ‖cai
ji

‖, the player a’s payoff value
is ‖υa(sa1

j1
, . . . , san

jn
)‖w ∈ L.

For simplicity, in the rest of the section we assume A = {a, b}.

Definition 11. The expected value of a’s i-th strategy sa
i ∈ Sa according to a’s

beliefs in w is the sum of a’s payoffs weighted by a’s probabilities for b’s strategy
choices, expressed by the SA-formula

ηa(sa
i ) ≡df

|Sb|⊕

j=1

(
υa(sa

i , sb
j) � Pacb

j

)
. (2)

Observe that a player a’s best-value strategy is indicated by the formula:

σa(sa
m) ≡df �

((|Sa|∨

i=1

ηa(sa
i )

) ⇒ ηa(sa
m)

)
(3)

Thus, for the optimal play according to the player’s probabilistic beliefs about
the other player’s choice of strategy, the player a should choose the strategy sa

m

only in those worlds w where ‖σa(sa
m)‖w = 1.

As an illustrative case study generalizable to any finite matrix game, the
following example provides an analysis of strategy choices in the well known
game of Stag Hunt.

Example 1 (Stag Hunt). The Stag Hunt game with 2 players (SH2) is specified
as follows. To catch a stag, the two hunters {a, b} need to cooperate (i.e., deploy
the strategies sa

C and sb
C); a hunter can also go for less valuable hares instead,

i.e., defect (sa
D or sb

D). The payoffs are given by the following payoff matrices:

ua sb
C sb

D

sa
C 3 0

sa
D 2 1

ub sb
C sb

D

sa
C 3 2

sa
D 0 1
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The game has two pure Nash equilibria: either both players cooperate or both
defect. Of the two, mutual defection is risk dominant (i.e., less risky), while the
other is payoff dominant (i.e., yields better payoffs). Consequently, the more
uncertainty about the other player’s cooperation, the better to defect; however,
if the player considers the other player’s cooperation sufficiently probable to
make it worth the risk, cooperation has a better expected value.

By [2], SH2 can be encoded in the logic �LΠ as described above (e.g., with
the payoff values 0, 1

3 , 2
3 , 1). In fuzzy probabilistic logic FPL of Sect. 4 over �LΠ,

the expected values of a’s strategies s ∈ {sa
C, sa

D} and a’s best-value strategy are
expressed by the formulas ηa(s) and σa(s) as in (2) and (3).

The following examples of SA-formulae are valid in FPL with ΓSH2 . In each
world, they suggest the best-value strategy in SH2 under particular first- and
higher-order beliefs of the player:

�(
Pacb

D ⇒ (Pacb
C ⊗ Pacb

C)
) ⇒ σa(sa

C) (4)
(�Pa(�Pbc

a
D ⇒ cb

D) ⊗ �Pa�Pbc
a
D

) ⇒ σa(sa
D) (5)

The first formula says that a should cooperate (i.e., sa
C is optimal) in worlds

w where a believes that b will defect (cb
D) with probability at most 1

3 . Formula
(5) says that if a believes that b plays rationally and that b believes that a is
going to defect, then a’s best-value strategy is to defect. It is straightforward
to verify that the standard translations of both formulae by Definition 10 are
indeed derivable in �LΠω from the standard translation of ΓSH2 .

6 Conclusions

In this contribution, we proposed a logic for modeling probabilistic and doxas-
tic multi-agent reasoning (Definition 9). The main feature of our approach is a
parsimony of the presented formalism. We rendered propositions in the fuzzy
logic �LΠ, which is expressively rich enough to provide the basic apparatus for
formalizing game-theoretical notions therein.

In Sect. 3, we formulated a technical result related to a syntactic verification
method for probabilistic and doxastic laws (Proposition 2). An open question
remains the axiomatization of FDL and FPL in the modal language SA itself, or
at least an axiomatic approximation sufficiently strong for formalizing common
probabilistic or doxastic reasoning.

Further, we showed in Sect. 5 that in the proposed logic, various important
game-theoretic concepts (such as expected values and best strategy choices under
uncertainty) can be expressed by formulas and derived by logical deduction. Sim-
ilarly as the Stag Hunt game (Example 1), the framework can formalize uncer-
tain reasoning in other simple matrix games such as the Prisoner’s Dilemma,
Chicken, Matching Pennies, Paper–Rock–Scissors, etc. The framework also nat-
urally accommodates higher-order beliefs and, being based on fuzzy logic, also
various graded concepts in games (such as the strength of a player’s hand in
Poker).
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In Sect. 5 we assumed that the agents’ beliefs are governed by the axioms of
fuzzy probability (i.e., that νa,w are fuzzy probability measures). In future work,
we want to model also agents with incoherent probability assignments, in order
to formalize how to exploit their irrationality in games by Dutch-book strategies.

Acknowledgments. Supported by program NPU II project LQ1602 “IT4I XS” of
MŠMT ČR. Based on joint work in progress with Tommaso Flaminio and Llúıs Godo.
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