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Abstract. Recently, the explainability of Artificial Intelligence (AI)
models and algorithms is becoming an important requirement in real-
world applications. Indeed, although Al allows us to address and solve
very difficult and complicated problems, Al-based tools act as a black
box and, usually, do not explain how/why/when a specific decision has
been taken. Among Al models, Fuzzy Rule-Based Systems (FRBSs) are
recognized world-wide as transparent and interpretable tools: they can
provide explanations in terms of linguistic rules. Moreover, FRBSs may
achieve accuracy comparable to those achieved by less transparent mod-
els, such as neural networks and statistical models. In this work, we
introduce SK-MOEFS (acronym of SciKit-Multi Objective Evolution-
ary Fuzzy System), a new Python library that allows the user to eas-
ily and quickly design FRBSs, employing Multi-Objective Evolutionary
Algorithms. Indeed, a set of FRBSs, characterized by different trade-offs
between their accuracy and their explainability, can be generated by SK-
MOEFS. The user, then, will be able to select the most suitable model
for his/her specific application.
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1 Introduction

The proliferation of Artificial Intelligence (AI) has a significant impact on soci-
ety [1]. Indeed, AT has already become ubiquitous in personal life and the modern
industry. As regards the latter, we are experiencing the “Industry 4.0 Era”, and
Machine Learning (ML) and Al play a crucial role among its enabling technologies
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[12]. Models based on ML and Al are learnt from the input data and are gener-
ally very accurate. However, in most cases, they are highly non-transparent, ¢.e.,
it is not clear which information in the input data causes the generated output.
In the context of Industry 4.0, making decisions has a crucial impact, so modern
approaches are shifting towards Al models with understandable outcomes.

Recently, a new trend is gaining importance within Al, namely, eXplain-
able Artificial Intelligence (XAI). XAI methodologies and algorithms aim to
make Al-based models and methods more transparent while maintaining high-
performance levels of accuracy and precision [5]. Fuzzy Rule-Based Systems
(FRBSs) are a category of models strongly oriented towards explainability.
FRBSs are highly interpretable and transparent because of the linguistic def-
initions of fuzzy rules and fuzzy sets, which represent the knowledge base of
these models. Moreover, the simplicity of the reasoning method, adopted for
providing a decision based on input facts, ensures also a high explainability level
of FRBSs [10].

In the last decade, Multi-Objective Evolutionary Algorithms (MOEASs) have
been successfully adopted for designing FRBSs from data, leading to the so-
called Multi-Objective Evolutionary Fuzzy Systems (MOEFSs) [8,9]. MOEFSs
are designed to concurrently optimize the accuracy and explainability of FRBSs,
which are two conflicting objectives. Indeed, in general, very accurate models are
characterized by low explainability and vice-versa.

Regarding software tools to generate and evaluate XAI models, there are not
many options. For example, GUAJE [13] and ExpliClas [2] are examples of tools
for designing interpretable models. They also handle FRBSs, but without the
boost of MOEAs for optimizing their accuracy and explainability.

In this paper, we propose and discuss SK-MOEFS, a new Python library
that helps data scientists to define, build, evaluate, and use MOEFSs, under the
Scikit-Learn environment [14]. The latter is an Open Source toolbox that pro-
vides state-of-the-art implementations of many well-known ML algorithms. We
designed SK-MOEFS according to Scikit-Learn’s design principles. Indeed, we
exploited the available data structures and methods in the Scikit-Learn library.
As a result, the user is allowed, under the same framework, to easily and quickly
design, evaluate, and use several ML models, including MOEFSs. The current
version of SK-MOEFS includes an implementation of a specific MOEFS, namely
PAES-RCS, introduced in [3]. PAES-RCS selects a reduced number of rules and
conditions, from an initial set of rules, during the multi-objective evolutionary
learning process. Precisely, we implemented PAES-RCS-FDT, which adopts a
fuzzy decision tree (FDT) for generating the initial set of rules [7]. We also high-
light that SK-MOEFS is an extendable framework that allows easy integration
of different types of MOEFSs.

The paper is organized as follows. Section 2 introduces FRBSs and the gen-
eral multi-objective evolutionary learning scheme for designing them. Afterward,
Sect. 3 illustrates the design of SK-MOEFS, focusing on the functionalities pro-
vided. Then, we describe in detail the implementation of a specific MOEFS
for classification problems in Sect.4. Section ) is devoted to show an example
of building and evaluating a MOEFS tested with a real-world dataset. Finally,
Sect. 6 draws some conclusions.
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2 Multi-objective Evolutionary Fuzzy Systems

2.1 Fuzzy Rule-Based Systems

A Fuzzy Rule-Based System (FRBS) is characterized by two main components,
namely the Knowledge Base (KB) and the fuzzy inference engine. The KB is
composed by a set of linguistic rules and by a set of parameters which describe
the fuzzy sets on which the rules are defined. The fuzzy inference engine is
in charge of generating a prediction, given a new input pattern, based on the
content of the KB.

Let X = {X3,..., XF} be the set of input attributes and X g1 be the output
attribute. Let Uy, with f = 1,..., F 4 1, be the universe of the f" attribute Xy.
Let Py = {Af1,...,As 1, } be a fuzzy partition of Ty fuzzy sets on attribute X.
Finally, we define the training set {(x1, ZF4+1,1),- - ., (XN, Zr+1,8)} as a collection
of N input-output pairs, with x; = [z41...,2.,p] € RF, t=1,...,N.

In regression problems, Xg,1 is a continuous attribute and, therefore, V¢ €
[0..N], zp41+ € R. With the aim of estimating the output value corresponding
to a given input vector, we can adopt a Fuzzy Rule-Based Regressor (FRBR)
with a rule base (RB) composed of M linguistic fuzzy rules expressed as:

Ry, :IF X, is Ay, , AND...AND X;is A;; , AND
...AND X is Ap;, , THEN Xpyiis Api1j, o0 (1)

where j,, ; € [1,Ty], f =1, ..., F+1, identifies the index of the fuzzy set (among
the T linguistic terms of partition Py), which has been selected for X in rule
Ry,.

In classification problems, Xpy; is categorical and zpy;+ € C, where C =
{C1,...,Ck} is the set of K possible classes. With the aim of determining the
class of a given input vector, we can adopt a Fuzzy Rule-Based Classifier (FRBC)
with an RB composed of M rules expressed as:

Ry, :IF X, is Ay, , AND...AND X;is A;; , AND

...AND Xr is Apj,, , THEN Xp,, is C;,, with RW,, (2)
where Cj,, is the class label associated with the m!" rule, and RW,, is the
rule weight, i.e., a certainty degree of the classification in the class C;  for a
pattern belonging to the fuzzy subspace delimited by the antecedent of the rule
R,,. Different definitions of the rule weight RW,, are commonly found in the
literature [4]:

Given a new input pattern X € RF, the estimated output value or class label
is provided by the FRBR or by the FRBC, respectively, adopting a specific
inference engine. In both cases, the output depends on the strength of activation
of each rule with the input. Details on the different inference engines can be
found in [4].

In the current version of SK-MOEFS, we adopt strong triangular fuzzy parti-
tions. As shown in Fig. 1, each partition is made up of triangular fuzzy sets Ay j,
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whose membership function can be represented by the tuples (ay ;, br, ¢f.5),
where ay j and cy j correspond to the left and right extremes of the support of Ay ;,
and by ; to its core. Other typologies of FRBSs, such as TSK-FRBSs, FRBSs with
DNF rules and FRBSs based on multiple granularities, have also been considered
in the MOEFS specialized literature [9]. For the sake of brevity, in this Section
we have described only the two types of FRBSs which have been mostly discussed
and experimented in the last years, mainly due to their high explainability level.
However, the SK-MOEFS toolbox has been designed for allowing the programmer
to easily implement multi-objective evolutionary learning schemes for any kind of
FRBS, both for regression and classification problems.

Arr Apz Az

bﬁ1=aﬁ2 Cﬁ2=bﬁ2=aﬁ3 Cﬁ2=bf‘3

Fig. 1. An example of a strong triangular fuzzy partition with three fuzzy sets.

2.2 Multi-objective Evolutionary Learning Schemes

The FRBS design process aims: i) to determine the optimal set of rules for
managing regression or classification problems, and ii) to find the appropriate
number of fuzzy sets for each attribute and their parameters. The objective of
the design process is to concurrently maximize the system accuracy and, possi-
bly, the model explainability. The accuracy of an FRBR is usually maximized
by means of a minimization process of the estimation error of the output values.
On the other hand, the accuracy of an FRBC is usually calculated in terms of
percentage of correctly classified patterns. As regards the explainability, when
dealing with FRBS we usually talk about their intepretability, namely the capa-
bility of explaining how predictions have been done, using terms understandable
to humans. Thus, the simplicity of the fuzzy inference engine, adopted to deduce
conclusions from facts and rules, assumes a special importance. Moreover, the
intepretability is strictly related to the transparency of the model, namely to
the capability of understanding the structure of the model itself. FRBSs can be
characterized by a high transparency level, whenever the linguistic RB is com-
posed of a reduced number of rules and conditions and the fuzzy partitions have
a good integrity. The integrity of fuzzy partitions depends on some properties,
such as order, coverage, distinguishability and normality [4]. The work in [11]
discusses several measures for evaluating the interpretability of an FRBS, taking
into consideration semantic and complexity aspects of both the RB and of the
fuzzy partitions.

As stated in the Introduction, in the last decade, MOEAs have been success-
fully adopted for designing FRBSs by concurrently optimizing both their accu-
racy and explainability, leading to the so-called MOEFSs [9]. Indeed, MOEAs
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allow us to approach an optimization process in which two or more conflicting
objectives should be optimized at the same time, such as accuracy and explain-
ability of FRBSs. MOEASs return a set of non-dominated solutions, characterized
by different trade-offs between the objectives, which represents an approximation
of Pareto front [6]. Adopting a Multi-Objective Learning Scheme (MOEL) it is
possible to learn the structure of FRBSs using different strategies, such as learn-
ing only the RB considering pre-defined fuzzy partitions, optimizing only the
fuzzy set parameters, selecting rules and conditions, from an initial set of rules,
and learning/selecting rules concurrently with the optimization of the fuzzy set
parameters. A complete taxonomy of MOEFSs can be found in [8].

In general, an MOEL scheme includes a chromosome coding, which is related
to the type of FRBS and to the specific learning strategy, and a set of mating
operators, namely mutation and crossover, appropriately defined for acting on
the chromosome and generating offsprings. Obviously, an MOEL scheme must
use a specific MOEA for handling the multi-objective evolutionary optimization
process. During this process, a candidate solution is evaluated decoding its chro-
mosome for building the actual FRBS. Specifically, its accuracy is calculated
adopting a training set provided as an input. The explainability is evaluated on
the basis of a pre-defined measure, such as the number of rules or the total num-
ber of conditions in the RB (also called Total Rule Length (TRL)). At the end
of the optimization, a set of FRBSs, characterized by different trade-off between
accuracy and intepretability, is returned. In the following sections, we show how
to design and implement an MOEL scheme in our SK-MOEFS toolbox.

3 SK-MOEFS Design

Previously, we argued about the importance of MOEFSs in the context of XAl In
this Section, we discuss the design of SK-MOEFS, a Python library for generat-
ing explainable FRBSs. SK-MOEFS extends the functionalities of Scikit-Learn',
a popular Open Source tool for predictive data analysis [14]. Data scientists
and researchers deeply adopt Scikit-Learn due to its ease-of-use. Moreover, it is
highly efficient both in terms of memory occupancy and computational costs.
Indeed, Scikit-Learn takes advantage of other Python libraries, such as NumPy,
SciPy, and MatplotLib, largely employed in the data analysis field.

Similarly to Scikit-Learn, SK-MOEFS allows us also to adopt the generated
models for making predictions and evaluating the models in terms of different
metrics. However, since SK-MOEFS creates a collection of different FRBSs, we
had to appropriately design data structures and methods for handling more
than one model. Indeed, classically, Scikit-Learn algorithms allow the user to
define, train, evaluate, and use just one model. Finally, we have also designed
the methods for extracting explainability metrics, such as TRL, number of rules,
and partition integrity indices [11].

! https://scikit-learn.org/.
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3.1 Class Hierarchy

To design and implement SK-MOEFS, we followed the official Scikit-Learn guide-
lines for developers?.

| ABC | BaseEstimator

RegressorMixin

I MOELScheme |

| ClassifierMixin

MOEL_FRBC MOEL_FRBR

IMOEFC,I IMOEFC2| IMOEFCNI IMOEFR, I IMOEFR2| IMOEFRNl

Fig. 2. UML class diagram describing the class hierarchy of SK-MOEFS.

As depicted in Fig. 2, the principal abstract class of SK-MOEFS, that we
labeled as MOELScheme, derives from the BaseEstimator class of Scikit-Learn
library. Moreover, to define the infrastructure of an abstract class, MOELScheme
must extend the ABC class. A MOELScheme represents a general multi-objective
evolutionary learning scheme for generating a set of FRBSs characterized by dif-
ferent trade-offs between accuracy and explainability. We recall that the chromo-
some coding and the mating operators depend on the selected learning scheme.
As regards the fitness functions, the accuracy measure depends on the type of
problems to be approached (classification or regression), and the explainability
measure can be defined in several ways, as discussed in the previous section.

In general, a classifier or a regressor is an instance of a specific class derived
by the BaseEstimator and by a ClassifierMixin or RegressorMixin classes: it is
an object that fits a model based on some training data and is capable of making
predictions on new data.

Since we aim to provide a general scheme for approaching both classification
and regression problems by using MOEFSs, we derive two abstract classes from
the MOELScheme one, namely MOEL_FRBC and MOEL_FRBR. They define,
respectively, the MOEL scheme for Fuzzy Rule-based Classifiers (FRBCs) and
the one for Fuzzy Rule-based Regressors (FRBRs). The former includes methods
from the ClassifierMixin class and the latter from RegressorMixin class.

Finally, from the MOEL_FRBC and the MOEL_FRBR classes, actual MOEL
schemes (we labeled them as Multi-objective Evolutionary Fuzzy Classifier
(MOEFC) or Regressor (MOEFR)) can be derived, such as the PAES-RCS that
has been implemented and experimented, as discussed in the following sections.

2 https://scikit-learn.org/stable/developers.
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3.2 Description of the Main Methods

Each MOEL scheme must provide the typical Scikit-Learn methods, for both
classifiers and regressors adapted explicitly for handling multiple models. In

Fig. 3 we show another UML class diagram that describes the main features of
MOELScheme, MOEL_FRBC, and MOEL_FRBS classes.

Sklearn
BaseEstimator

ClassifierMixin RegressorMixin

+ get_params(self, deep=True)
+ score(self, X, y) + set_params(self, **params) + score(self, X, y)

I 7 JA
1
MOELScheme

+ fit(self, X, y)

+ show_pareto(self, X, y)

+ show_model(self, position)

+ cross_val_score(self, X, y, folds)

A N
MOEL_FRBC MOEL_FRBR
+ predict(self, X, position) + predict(self, X, position)
+ score(self, X, y, position) + score(self, X, y, position)

Fig. 3. UML class diagrams describing the main methods of SK-MOEFS

In Scikit-Learn, the methods fit, predict, and score are typically implemented
on each classifier or regressor. They allow, respectively, creating a model, using
the model for making predictions, and extracting some metrics for evaluating
the model. In the following, we describe these and other specific methods that
must be implemented for each new MOEL scheme:

— fit: this method estimates the model parameters, namely the RB and the
fuzzy partitions, exploiting the provided training set. We recall that in Scikit-
Learn a training set must be provided in terms of an N x F' NumPy matrix X,
describing the input patterns in terms of F' features, and a vector y with IV
elements representing the actual label or value associated with a specific input
pattern. In the beginning, the method initializes a MOEL scheme according
to a specific learning strategy and to the type of problem to be handled,
namely classification or regression. Then, an MOEA is in charge of carrying
out the learning process, which stops when a specific condition is reached (for
example, when the algorithm reaches the maximum number of fitness func-
tion evaluations). Finally, it returns an approximated Pareto front of FRBSs,
which are sorted by an ascending order per accuracy. The first model, labeled
as the FIRST solution, is the one characterized by the highest accuracy and
by the lowest explainability. On the contrary, we marked the model with
the highest explainability but the lowest accuracy as the LAST solution.
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Finally, the MEDIAN model is the middle ground between the two. Indeed,
its accuracy is the median among the solutions.

— predict: this method is in charge of predicting the class labels or the val-
ues associated with a new set of input patterns. It returns a vector of esti-
mated labels or values. Since the MOEL scheme generates multiple mod-
els, the method takes as input also an index for selecting the model into
the Pareto front. By default, the function adopts the most accurate model
(FIRST) for making predictions. Notice that all the learning schemes that
extend from MOEL_FRBC or MOEL_FRBR, must implement the predict
method to define different and specific behaviors.

— score: this method takes as inputs a matrix X, which contains data described
in the feature space of F values, and the vector y of the r labels or values asso-
ciated with each input. Moreover, it takes the position of a model belonging
to the Pareto front, and it generates the values of the accuracy and explain-
ability measures for that selected model. Also in this case, the FIRST solution
is selected by default.

— show_pareto: this method extracts and plots the values of the accuracy and
the explainability. By default, for each model of the Pareto front generated
by an MOEL scheme, it runs the fit method on the training set. SK-MOEFS
allows the user to provide also a test set; in this case, show_pareto calculates
the accuracies considering the additional data. As a result, it returns a plot
of the approximated Pareto front, both on the training and the test sets.

— show_model: given the position of a model in the Pareto front, this method
shows the set of fuzzy linguistic rules and the fuzzy partitions associated
with each linguistic attribute. The predefined model of choice is, as always,
the FIRST solution.

Finally, since Scikit-Learn provides methods for performing a k-fold cross-
validation analysis, we re-designed these methods for handling the fact that
a MOEL scheme generates a set of solutions. Specifically, we redefined the
cross_val_score which usually returns an array of k scores, one for each fold.
Here, the method returns a k x 6 matrix, where each row contains the accuracy,
calculated on the test set, and the explainability of the FIRST, MEDIAN, and
LAST solutions. Moreover, when performing cross-validation with MOEFSs [4],
we decided to act as follows: first, we compute the mean values of the accuracy
and the explainability of the FIRST, MEDIAN and LAST solutions, then we
plot them on a graph.

4 An Example of an MOEL Scheme Implementation:
PAES-RCS-FDT for Classification Problems

In this Section, we describe the actual implementation of an MOEL scheme for
classification problems in SK-MOEFS, namely PAES-RCS-FDT [7]. The imple-
mented algorithm adopts the rule and condition selection (RCS) learning scheme
[3] for classification problems. The multi-objective evolutionary learning scheme
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is based on the (2 + 2)M-PAES, which is an MOEA successfully employed in the
context of MOEFSs during the last years. The algorithm concurrently optimizes
two objectives: the first objective considers the TRL as explainability measure;
the second objective takes into account the accuracy, assessed in terms of clas-
sification rate.

In the learning scheme, an initial set of candidate rules must be generated
through a heuristic or provided by an expert. In our implementation, the set
of candidate rules is generated exploiting the fuzzy multi-way decision trees
(FMDT) [15]: each path from the root to a leaf node translates into a rule. Before
learning the FMDT, we need to define an initial strong fuzzy partition for each
attribute. The adopted FMDT algorithm embeds a discretization algorithm that
is in charge of generating such partitions.

During the evolutionary process, the most relevant rules and their conditions
are selected. Moreover, each triangular strong fuzzy partition Py is concurrently
tuned, by adapting the positions of the cores by ;.

In PAES-RCS, a chromosome C' codifies a solution for the problem. The
former is composed of two parts (Cr,Cr), which define, respectively, the RB
and the positions of the representatives of the fuzzy sets, namely the cores.

Let Jpr be the initial set of Mpr rules generated from the decision tree.
Compact and interpretable RBs are desirable, so we allow that the RB of a
solution contains at most M, rules. The C'r part, which codifies the RB, is a
vector of Myy,q. pairs p,,, = (km, Vi), where k,,, € [0, Mpr] identifies the selected
rule of Jpr and vy, = [V 1, - - ., U, F| is & binary vector which indicates, for each
attribute Xy, if the condition is present or not in the selected rule. In particular,
if k,, = 0 the m*" rule is not included in the RB. Thus, we can generate RBs
with a lower number of rules than M,,q,. Further if v, y = 0 the ft condition
of the mt" rule can be replaced by a “don’t care” condition.

Cr is a vector containing F vectors of Ty — 2 real numbers: the f* vector
[bﬁg, ceey bf7Tf_1] determines the positions of the cores of the partition Py. We
recall that using strong fuzzy partitions ensures the partition integrity. Indeed,
order, coverage, distinguishability and normality are always ensured. In order to
increase the integrity level, we can define constrains on the intervals on which
cores can assume valid values. For more details check [3].

In order to generate the offspring populations, we exploit both crossover and
mutation. We apply separately the one-point crossover to Cr and the BLX-a-
crossover, with a = 0.5, to Cp. As regards the mutation, we apply two distinct
operators for Cr and an operator for Cr. More details regarding the mating
operators and the steps of PAES-RCS can be found in [3]. In the next Section,
we will briefly introduce the main parameters that must be set for running
PAES-RCS-FDT.

In Fig. 4, we show a detailed UML class diagram describing the main classes
and methods that we implemented. First of all, we have derived from the
MOEL_FRBC the class MPAES_RCS, which is in charge of handling the rule
and condition selection multi-objective learning scheme, by means of (2 + 2)M-
PAES algorithm. This class needs the RCSProblem, which is a class derived



SK-MOEFS: A Library in Python 7

MOEL_FRBC 1 RC!
+ predict(self, X, position) "
" + get_splits(self)
+ score(self, X, y, position) Fse”” +getrules(self) |- Use- -,
Zﬁ v :
FMDT FuzzyDiscretizer
MPAES_RCS
1 + fit(self, X, y) + run(self, data)
1 + buildtree(self, rows, scoref) + find_best_splits(self, data)
—®] + fit(self, X, . ) - "
4 sh(ow_pargt)o(self, X, y) + predict(self, X) + find_candidate_splits(self, data)
+ show_model(self, position)
+ cross_val_score(self, X, y, folds) Platypus
+ predict(self, X, position)
+ score(self, X, y, position) RCSProblem
1
! 0 ! + evaluate(self, solution) Problem
+ check(self, solution)
1 1 + show(self, solution) ~—{> + evaluate(self, solution)
+ encode(self, solution)
+ decode(self, classifier)
MPAES2_2 B + random(self)
+ initialize(self) :
+ iterate(self) ! RCSVariator Variator
+ step(self) H
1
+ evolve(self, parents) + evolve(self, parents)
fomrmmmmmmonoeoed AbstractGeneticAlgorithm
FRBC : : + initialize(self)
N U:e e --- > + iterate(self)
—>1. predict(self, X) f + step(self)
+ show_RB(self) SCREEEy
+ show_DB(self)

Fig. 4. UML class diagram of PAES-RCS-FDT in SK-MOEFS.

from the Problem class of the Package Platypus, a Python framework for multi-
objective evolutionary optimization. It defines operations on a possible solution
(a chromosome) such as its encoding, feasibility checks, evaluation of objectives,
and generation of a random solution. Moreover, the MPAES_RCS class adopts
an RCS_Variator, a particular implementation of the Platypus Variator, which
includes all the mating operators that we discussed before. Two additional classes
are adopted as compositions by the MPAES_RCS class, namely the MPAES2_2
and the RCSInitializer. Specifically, the MPAES2_2 class extends the Abstract-
GeneticAlgorithm class of Platypus and implements (2 + 2)M-PAES. Finally,
the RCSInitializer implements the methods for the definition of the initial strong
fuzzy partitions and for generating the initial set of rules. To this aim, this class
uses the fuzzy discretizer (implemented by the FuzzyDiscretizer class) and the
Multi-way Fuzzy Decision Tree (implemented by the MEDT class), respectively.
Both the discretizer and the algorithm for generating the fuzzy decision tree are
described in detail in [15]. More information on the organization of the Platypus
framework can be found in the official guide® and github repository*. The code
of SK-MOEFS, including the implementation of PAES-RCS-FDT as a standard
Python program, is available on a GitHub repository®, along with a detailed
documentation describing all the classes and its methods.

3 https://platypus.readthedocs.io/en/latest /.
* https://github.com/Project-Platypus/Platypus.
5 https://github.com/GionatanG /skmoefs.
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5 Examples of Usage of SK-MOEFS

In this Section, we show some examples of usage of SK-MOEFS. Specifically,
we show how to generate a set of FRBCs, characterized by different trade-offs
between accuracy and explainability, using our PAES-RCS-FDT implementa-
tion. To this aim, we have selected the NewThyroid dataset®: the classification
task associated with this dataset is to detect if a given patient is normal (Class
1), suffers from hyperthyroidism (Class 2) or hypothyroidism (Class 3). We recall
that the objective of this work is not to assess the goodness of the PAES-RCS-
FDT. Indeed, as stated before, PAES-RCS was introduced in 2014 in [3], where a
wide experimental analysis was conducted, adopting its original implementation
in C++ (the initial set of rules was generated using the C4.5 algorithm). More-
over, additional experimentation, carried out utilizing the FDT for generating
the initial set of rules, has also been discussed in [7]. However, we have verified
that the results obtained using PAES-RCS-FDT implemented in SK-MOEFS
are in line with those discussed in [3] and in [7].

Table 1 shows the parameters of (2 + 2)M-PAES-FDT used in the examples.
These values have been set also as default parameters of our PAES-RCS-FDT
implementation.

Table 1. Values of the parameters used in the examples

Nyal Total number of fitness evaluations 30000
AS (2 + 2)M-PAES archive size 32
Mmaz | Maximum number of rules for each RB 50
Pcp Probability of applying crossover operator to Cr 0.1
Pc.,, Probability of applying crossover operator to Cp 0.5

PyrrrB, | Probability of applying first mutation operator to Cr 0.1

PrrrB, | Probability of applying second mutation operator to C'r | 0.7
Py

Tmazx Maximum number of fuzzy sets for each attribute 5

- Probability of applying mutation operator to Cp 0.2

from skmoefs.rcs import MPAES_RCS, RCSInitializer, RCSVariator
from sklearn.model_selection import train_test_split

X, v = load_dataset(’newthyroid’)

Xtr, ytr, Xte, yte = train_test_split(X, y, test_size=0.3)

my_moefs = MPAES_RCS(variator=RCSVariator(), initializer=
RCSInitializer())

my_moefs.fit(Xtr, ytr, max_evals=30000)

my_moefs.show_pareto(Xte, yte)

my_moefs.show_model ("median’)

Listing 1.1: Example for generating and plotting a Pareto front approximation
of FRBCs

5 https://sci2s.ugr.es/keel /dataset.php?cod=66.


https://sci2s.ugr.es/keel/dataset.php?cod=66

SK-MOEFS: A Library in Python 79

In code Listing 1.1, we show an example of usage, in which we first load a
dataset from a file and then we divide it into training and test sets. Second, we
instantiate an MPAES-RCS object passing to its constructor the RCSVariator
and an RCSInitializer. The latter will partition each input attributes into a pre-
defined number of fuzzy sets and will generate the matrix Jpr. Afterward, we call
the fit method, which returns the fitted model having now a list of the FRBCs
characterized by different trade-offs between accuracy and explainability. Then,
we call the method for showing the Pareto front approximation (in Fig.5(a)),
both on the training and test sets. Finally, we show the RB and the fuzzy
partitions (in Fig. 6) of the MEDIAN solution in the Pareto Front approximation.
In this example, we labeled the five fuzzy sets of each partition as Very Low (VL),
Low (L), Medium (M), High (H), and Very High (VH). As we can see, the set of
linguistic rules allows the user to understand the motivation of a decision: simply
speaking, based on the levels of each input attribute describing a new patient,
a specific class is associated with him/her. As regards the fuzzy partitions, it
is worth noting, especially for the last two, that they moved from the initial
uniform shape. However, they are still strong fuzzy partitions, thus ensuring a
good integrity level, in terms of order, distinguishability, coverage and normality.

100.0 100.0
@+ Training set X FIRST
97.51 -3%- Testing set Y 97.5 ® MEDIAN
T T
95.0 = 95.0 "W
> 925 L > 925
g © °
5 90.0 5 90.0 ™
g g X
© 875 © 875
85.0 85.0
825 825
80.0 80.0
0 2 4 6 8 0 1 2 3 4 5 6
TRL TRL
Pareto front approximation Cross-validation scores

Fig. 5. Two examples of plots

from skmoefs.rcs import MPAES_RCS, RCSInitializer, RCSVariator

X, v = load_dataset (' newthyroid’)

my_moefs = MPAES_RCS(variator=RCSVariator(), initializer=
RCSInitializer())

my_moefs.cross_val_score(X, y, folds=5)

Listing 1.2: Example for performing the cross validation
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1: 1IF Thyroxin is VL THEN Class is 3

2: IF Thyroxin is M AND Thyroidstimulating is L THEN Class is 1
3: IF Thyroxin is VH THEN Class is 2

Fig. 6. Fuzzy partitions and rule base of the MEDIAN solution

Finally, in the code Listing 1.2, we also show how to perform a 5-fold cross-
validation. As a result, we draw a graph with the average values of accuracy and
explainability of the FIRST, MEDIAN, and LAST solutions on the test set, as
shown in Fig. 5(b).

6 Conclusions

In this paper, we have introduced a new Python library for generating, evalu-
ating and using both accurate, and explainable Al-based models, namely fuzzy
rule-based systems (FRBSs). The library, called SK-MOEFS, allows the users
to adopt multi-objective evolutionary learning (MOEL) schemes for identifying,
from data, the structure of a set of FRBSs, characterized by different trade-
offs between accuracy and explainability. Specifically, we designed the overall
software infrastructure, i.e. all the class hierarchy, for handling a generic multi-
objective evolutionary learning scheme. Moreover, we show an example of an
actual implementation of a well known MOEL scheme, namely PAES-RCS-FDT.
This scheme, during the evolutionary process, selects rules and conditions from
an initial set of candidate classification rules, generated using a fuzzy decision
tree. Additionally, the parameters of the fuzzy partitions can be learned concur-
rently with the set of rules. Finally, we have shown a simple example on how our
SK-MOEFS can be used in Python for generating and evaluating a set of fuzzy
classifiers on a benchmark dataset.
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