Skip to main content

Identification Issues Associated with the Use of Wearable Accelerometers in Lifelogging

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12207))

Abstract

Personal lifelogging builds upon the pervasive and continuous acquisition of sensor measurements and signals in time, and this may expose the subject, and eventually bystanders, to privacy violations. While the issue is easy to understand for image and video data, the risks associated to the use of wearable accelerometers is less clear and may be underestimated. This work addresses the problem of understanding if acceleration measurements collected from the wrist, by subjects performing different types of Activities of Daily Living (ADLs), may release personal details, for example about their gender or age. A positive outcome would motivate the need for de-identification algorithms to be applied to acceleration signals, embedded into wearable devices, in order to limit the unintentional release of personal details and ensure the necessary privacy by design and by default requirements.

Authors gratefully acknowledge the support of the More Years Better Lives JPI and the Italian Ministero dell’Istruzione, Università e Ricerca (CUP: I36G17000380001), for this research activity carried out within the project PAAL - Privacy-Aware and Acceptable Lifelogging services for older and frail people (JPI MYBL award number: PAAL_JTC2017).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15, 31314–31338 (2015)

    Article  Google Scholar 

  2. Campos, R.S., Lovisolo, L.: Person identification based on smartphones inertial sensors. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July 2018

    Google Scholar 

  3. Chin, Z.H., Ng, H., Yap, T.T.V., Tong, H.L., Ho, C.C., Goh, V.T.: Daily activities classification on human motion primitives detection dataset. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 481, pp. 117–125. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2622-6_12

    Chapter  Google Scholar 

  4. Cleland, I., Donnelly, M.P., Nugent, C.D., Hallberg, J., Espinilla, M., Garcia-Constantino, M.: Collection of a diverse, realistic and annotated dataset for wearable activity recognition. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 555–560. IEEE (2018). https://doi.org/10.1109/PERCOMW.2018.8480322

  5. Climent-Pérez, P., Spinsante, S., Mihailidis, A., Flórez-Revuelta, F.: A review on video-based active and assisted living technologies for automated lifelogging. Expert Syst. Appl. 139, 112847 (2020)

    Article  Google Scholar 

  6. Cola, G., Avvenuti, M., Musso, F., Vecchio, A.: Gait-based authentication using a wrist-worn device. In: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MOBIQUITOUS 2016, pp. 208–217. Association for Computing Machinery, New York (2016)

    Google Scholar 

  7. Connor, P., Ross, A.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)

    Article  Google Scholar 

  8. Cook, D.J., Krishnan, N.C.: Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, Hoboken (2015). https://doi.org/10.1002/9781119010258.ch3

    Book  Google Scholar 

  9. EC: Complete guide to GDPR compliance. https://gdpr.eu/. Accessed Feb 2020

  10. Empatica: E4 Wrist Band from Empatica User’s Manual (2018)

    Google Scholar 

  11. Ferdous, M.S., Chowdhury, S., Jose, J.M.: Analysing privacy in visual lifelogging. Pervasive Mob. Comput. 40, 430–449 (2017)

    Article  Google Scholar 

  12. Flórez-Revuelta, F., Mihailidis, A., Ziefle, M., Colonna, L., Spinsante, S.: Privacy-aware and acceptable lifelogging services for older and frail people: the PAAL project. In: 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), pp. 1–4, September 2018

    Google Scholar 

  13. Gabell, A., Nayak, U.: The effect of age on variability in gait. J. Gerontol. 39(6), 662–666 (1984). https://doi.org/10.1093/geronj/39.6.662

    Article  Google Scholar 

  14. Galluzzi, V., Herman, T., Polgreen, P.: Hand hygiene duration and technique recognition using wrist-worn sensors. In: Proceedings of the 14th International Conference on Information Processing in Sensor Networks, pp. 106–117. ACM (2015). https://doi.org/10.1145/2737095.2737106

  15. Hassan, M.M., Huda, M.S., Uddin, M.Z., Almogren, A., AlRubaian, M.A.: Human activity recognition from body sensor data using deep learning. J. Med. Syst. 42, 1–8 (2018)

    Article  Google Scholar 

  16. Huang, H., Lin, S.: Toothbrushing monitoring using wrist watch. In: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pp. 202–215. ACM (2016). https://doi.org/10.1145/2994551.2994563

  17. Empatica Inc.: Empatica e4. http://support.empatica.com/hc/en-us/categories/200023126-E4-wristband. Accessed 4 Nov 2019

  18. Jain, A., Kanhangad, V.: Gender classification in smartphones using gait information. Expert Syst. Appl. 93, 257–266 (2018)

    Article  Google Scholar 

  19. Kaufmann, M.: Data mining: practical machine learning tools and techniques. https://www.cs.waikato.ac.nz/ml/weka. Accessed 27 Dec 2019

  20. Ni, Q., Cleland, I., Nugent, C., Hernando, A.B.G., de la Cruz, I.P.: Design and assessment of the data analysis process for a wrist-worn smart object to detect atomic activities in the smart home. Pervasive Mob. Comput. 56, 57–70 (2019)

    Article  Google Scholar 

  21. Pires, I.M., Garcia, N.M., Pombo, N., Flórez-Revuelta, F., Spinsante, S., Teixeira, M.C.: Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices. Pervasive Mob. Comput. 47, 78–93 (2018)

    Article  Google Scholar 

  22. Poli, A., Spinsante, S., Nugent, C., Cleland, I.: Improving the collection and understanding the quality of datasets for the aim of human activity recognition. In: Chen, F., García-Betances, R.I., Chen, L., Cabrera-Umpiérrez, M.F., Nugent, C. (eds.) Smart Assisted Living. CCN, pp. 147–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25590-9_7

    Chapter  Google Scholar 

  23. Riaz, Q., Vögele, A., Krüger, B., Weber, A.: One small step for a man: estimation of gender, age and height from recordings of one step by a single inertial sensor. Sensors 15(12), 31999–32019 (2015). https://doi.org/10.3390/s151229907

    Article  Google Scholar 

  24. Singha, T.B., Nath, R.K., Narsimhadhan, A.V.: Person recognition using smartphones’ accelerometer data. arXiv abs/1711.04689 (2017)

    Google Scholar 

  25. Sun, F., Zang, W., Gravina, R., Fortino, G., Li, Y.: Gait-based identification for elderly users in wearable healthcare systems. Inf. Fusion 53, 134–144 (2020)

    Article  Google Scholar 

  26. Sun, Y., Lo, F.P., Lo, B.: A deep learning approach on gender and age recognition using a single inertial sensor. In: 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–4, May 2019

    Google Scholar 

  27. Terrier, P., Reynard, F.: Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 41(1), 170–174 (2015)

    Article  Google Scholar 

  28. Van hamme, T., Garofalo, G., Argones Rúa, E., Preuveneers, D., Joosen, W.: A systematic comparison of age and gender prediction on IMU sensor-based gait traces. Sensors 19(13) (2019). https://doi.org/10.3390/s19132945. https://www.mdpi.com/1424-8220/19/13/2945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Spinsante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poli, A., Strazza, A., Cecchi, S., Spinsante, S. (2020). Identification Issues Associated with the Use of Wearable Accelerometers in Lifelogging. In: Gao, Q., Zhou, J. (eds) Human Aspects of IT for the Aged Population. Technologies, Design and User Experience. HCII 2020. Lecture Notes in Computer Science(), vol 12207. Springer, Cham. https://doi.org/10.1007/978-3-030-50252-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50252-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50251-5

  • Online ISBN: 978-3-030-50252-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics