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Abstract. In the present paper, a novel approach for solving the com-
putationally costly multicriteria optimization problems is considered.
Within the framework of the developed approach, the obtaining of the
efficient decisions is ensured by means of several different methods for the
scalarization of the efficiency criteria. The proposed approach provides
an opportunity to alter the scalarization methods and the parameters
of these ones in the course of computations that results in the necessity
of multiple solving the time-consuming global optimization problems.
Overcoming the computational complexity is provided by reusing the
computed search information and efficient parallel computing on high-
performance computing systems. The performed numerical experiments
confirmed the developed approach to allow reducing the amount and
time of computations for solving the time-consuming multicriteria opti-
mization problems.
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1 Introduction

The paper discusses a novel approach for solving the time-consuming multicri-
teria optimization (MCO) problems. Such problems arise in many applications
that is confirmed by a wide spectrum of research on this subject – see, for exam-
ple, monographs [1–5] and reviews of scientific and practical results [6–8].

The solving of the MCO problems is usually reduced to finding the efficient
(non-dominated) decisions1. In the limiting case, it may appear to be neces-
sary to obtain the whole set of the efficient decisions (the Pareto set) that may
1 The solutions, which cannot be improved with respect to any criteria without wors-

ening of the efficiency values with respect to other criteria are understood as the
efficient (non-dominated) decisions.
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require a large amount of computations. Another approach used widely con-
sists in finding a relatively small set of efficient decisions only. As a rule, to
find particular efficient decisions, the vector criterion is transformed to a sin-
gle (scalar) criterion, which can be optimized by some algorithms of nonlinear
programming. Among such approaches, one can outline various types of crite-
ria convolutions, the lexicographic optimization methods, the reference point
algorithms, etc. [1–3].

In the present paper it is supposed that the efficiency criteria can be mul-
tiextremal and computing the values of criteria and constraints can be time-
consuming. But the computational complexity is even higher as it is supposed
that the applied scalarization method can be varied in the course of compu-
tations that leads to a necessity of multiple solving of the global optimization
problems [9–11]. In the framework of developed approach efficient global opti-
mization methods are proposed for solving such computationally expensive MCO
problems and different multilevel parallel computation schemes are investigated
for executing these methods on high-performance supercomputer systems.

Further structure of the paper is organized as follows. In Sect. 2, the state-
ment of the multicriteria optimization problem is given and a general scheme
for the criteria scalarization is proposed. In Sect. 3, efficient global optimization
methods utilizing the computed search information are considered. In Sect. 4,
the multilevel schemes of parallel computations for the multistage solving of the
computational-costly MCO problems are given. Section 5 presents the results of
numerical experiments confirming the developed approach to be promising. In
Conclusion, the obtained results are summarized and main directions of further
investigations are outlined.

2 Multicriteria Optimization Problem Statement

Multicriteria optimization (MCO) problem can be formulated as follows [1–5]

f(y) → min, y ∈ D, (1)

where y = (y1, y2, . . . , yN ) is a vector of varied parameters,
f(y) = (f1(y), f2(y), . . . , fs(y)) is a vector efficiency criterion, and D ⊂ RN

is a search domain

D = {y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N}, (2)

for the given vectors a and b. Without loss of generality, in further consideration
the criteria fi(y), 1 ≤ i ≤ s are suggested to be non-negative and the decrease
of these ones corresponds to the increase of the decision efficiency.

In the most general case, the criteria fi(y), 1 ≤ i ≤ s can be multiextremal,
and the procedure of computing the values of these ones can appear to be time
consuming. Also, the criteria fi(y), 1 ≤ i ≤ s are supposed to satisfy the Lips-
chitz condition

|fi(y1) − fi(y2)| ≤ Li‖y1 − y2‖, 1 ≤ i ≤ s, (3)
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where Li, 1 ≤ j ≤ s are the Lipschitz constants for the criteria fj(y), 1 ≤ j ≤ s
and ‖ ∗ ‖ denotes the Euclidean norm in RN .

The efficiency criteria of the MCO problems are usually contradictory, and
the decisions y∗ ∈ D with the best values with respect to all criteria simultane-
ously may be absent. In such situations, for the MCO problems it is appropriate
to find the efficient (non-dominated) decisions, for which the improvement of the
values with respect to any criterion results in worsening the efficiency values with
respect to other criteria. Obtaining of the whole set of efficient decisions (the
Pareto set) may require to perform a large amount of computations. As a result,
another approach is applied for solving the MCO problems often – finding only
a relatively small set of efficient decisions defined according to the requirements
of the decision maker.

An approach to obtaining particular efficient decisions used widely consists
in the transformation of a vector criterion into some general scalar criterion of
efficiency2 [1–5]

min ϕ(y) = F (α, y), y ∈ D, (4)

where F is the objective function generated as a result of scalarization of the
criteria fi, 1 ≤ i ≤ s, α is a vector of parameters of the criteria convolution
applied, and D is the search domain from (2). Because of (3), the function
F (α, y) also satisfies the Lipschitz condition with some constant L i.e.

|F (α, y′) − F (α, y′′)| ≤ L‖y1 − y2‖. (5)

To construct a general scalar efficiency function F (α, y) from (4), one can
use, in particular, the following methods of the criteria scalarization.

1. One of the scalarization methods used often consists in the use of the minmax
convolution of criteria [1–3]:

F1(λ, y) = max (λifi(y), 1 ≤ i ≤ s),
λ = (λ1, λ2, . . . , λs) ∈ Λ ⊂ Rs :

∑s
i=1 λi = 1, λi ≥ 0, 1 ≤ i ≤ s.

(6)

2. Another approach used widely is applied if there are some a priori estimates
of the criteria values for the required decision (for example, based on some
ideal decision or any existing prototype). In such cases, the solving of a MCO
problem may consist in finding an efficient decision corresponding to given
criteria values most completely. The scalar criterion F2(λ, y) can be presented
as root-mean-square deviation of a point y ∈ D from the ideal decision y∗ [3]:

F2(θ, y) =
1
s

s∑

i=1

θi(fi(y) − fi(y∗))2, y ∈ D, (7)

where the parameters 0 ≤ θi ≤ 1, 1 ≤ i < s are the indicators of importance
of the approximation precision with respect to each varied parameter yi, 1 ≤
i ≤ N separately.

2 It is worth noting that such an approach provides an opportunity to use a wide set
of already existing global optimization methods for solving the MCO problems.
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3. In the case when the criteria can be arranged in the importance, the method
of successive concessions (MSC) [2–4] is applied often, according to which the
solving of a MCO problem is reduced to a multistage solving of the global
optimization problems with nonlinear constraints:

f∗
1 = miny∈D f1(y),

f∗
i = miny∈D fi(y), fj(y) ≤ f∗

j + δj , 1 ≤ j < i, 1 < i ≤ s,
P δ

lex(f, δ,D) = Arg miny∈D fs(y), fj(y) ≤ f∗
j + δj , 1 ≤ j < s,

(8)

where the notation Arg means the set of all points y ∈ D, at which the
minimum value of the optimized criterion is achieved and δi, 1 ≤ i ≤ s are
the feasible concessions from the minimum values of the efficiency criteria. At
that, the multi-step computations in the scheme (8) may be reduced to the
minimization of the general scalar criterion F3(λ, y) [11]:

F3(δ, y) = fs(y), fi(y) ≤ fmin
i + δi(fmax

i − fmin
i ), 1 ≤ i < s, y ∈ D, (9)

where fmin
i , fmax

i , 1 ≤ i < s are the minimum and maximum values of
the criteria3 in the domain D from (2) and 0 ≤ δi ≤ 1, 1 ≤ i < s are the
concessions normalized to the interval [0, 1].

It is worth noting that due to the possibility of the changing of the require-
ments to the optimality in the course of computations, the form of the scalar
criterion F (α, y) from (4) may vary. Thus, it may turn to be necessary to alter
the scalarization method used (6)–(9) and/or to change the convolution param-
eters λ, θ, and δ [9–11]. Such variations form a set of scalar global optimization
problems (4)

FT = {Fk(αi, y) : 1 ≤ i ≤ T, k = 1, 2, 3}. (10)

This set of problems may be formed progressively in the course of computa-
tions; the problems from the set may be solved strictly sequentially or simulta-
neously in the time-share mode. Besides, the problems from the set FT may be
solved in parallel using high-performance computer systems. An opportunity of
forming the set FT allows to formulate a new approach to the multistage solving
of the multicriteria optimization problems (MMCO).

3 Methods of Multistage Solving of Multicriteria
Optimization Problems

In the general case, the problems of the set FT from (10) are the global opti-
mization problems, the solving of which implies constructing some grids covering
the search domain D – see, for example, [12–17]. The necessity to construct the
coverage of the search domain D leads to the “curse of dimensionality” – the

3 Since the magnitudes fmin
i , fmax

i , 1 ≤ i < s, may be unknown a priori, the values
of these ones may be replaced by some numerical estimates, which may be obtained
using the available search information.
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computational complexity of solving the global optimization problems increases
exponentially with increasing dimensionality. This computational complexity can
be decreased by reducing the dimensionality of the optimization problems being
solved with the use of Peano space-filling curves or evolvents y(x) mapping
the interval [0, 1] onto a N -dimensional hypercube D unambiguously and con-
tinuously – see, for example, [12,15]. As a result of such a reduction, initial
multidimensional problem of multicriteria optimization (4) is reduced to a one-
dimensional problem:

f(y(x)) = (f1(y(x)), f2(y(x)), . . . , fs(y(x))) → min, x ∈ [0, 1]. (11)

It is worth noting that the one-dimensional functions obtained as a result of
the reduction satisfy the uniform Hölder condition (see [12,15]) i. e.

|fi(y(x′)) − fi(y(x′′))| ≤ Hi|x′ − x′′|1/N , x′, x′′ ∈ [0, 1], 1 ≤ i < s (12)

where the constants Hi are defined by the relation Hi = 2Li

√
N + 3, 1 ≤ i ≤

m, Li are the Lipschitz constants from (4) and N is the dimensionality of the
optimization problem (1).

As a result of the dimensionality reduction, the search information obtained
in the course of computations can be represented in the form

Ak = {(xi, zi, fi = f(y(xi)) : 1 ≤ i ≤ k}, (13)

where xi, 1 ≤ i ≤ k are the points of performed global search iterations, zi,
fi, 1 ≤ i ≤ k are the values of scalar criterion F (α, y(x)) from (4) and of the
criteria fi(y) from (11), 1 ≤ i ≤ s computed in the points xi, 1 ≤ i ≤ k. Note
that the data in the set Ak are arranged in the order4 of increasing of the point
coordinates xi, 1 ≤ i ≤ k i.e.

x1 < x2 < · · · < xk (14)

for more efficient execution of the global search algorithm.
The availability of the set Ak from (13) allows recalculating the results of all

computations of the criteria values performed earlier to the values of the current
optimization problem F (α, y(x)) from (4) being solved without repeating the
time-consuming computations of the criteria values i.e.

(xi, fi) → zi = F (α, y(xi)), 1 ≤ i ≤ k. (15)

In this way, the search information Ak from (13) recalculated according to
(15) can be reused to continue the solving of the MCO problem. Such an opportu-
nity can provide an essential decrease of the amount of computations performed
to solve every next problem of the set FT from (10) down to performing some
limited set of the global search iterations.

In the proposed approach, the Multidimensional Algorithm of Global Search
(MAGS) developed within the framework of the information-statistical theory
4 The arrangement of the data is reflected by the use of the lower index in (14).
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of global search [12,15,18,19] is applied to solve the multiextremal optimization
problems of the FT from (10). The general computational scheme of MAGS can
be presented as follows.

At the initial iteration of MAGS, a minimized function value ϕ(y(x0)) from
(4) is computed in some arbitrary point x0 from the interval (0, 1) (the computing
of the function value will further be called a trial). Then, let us assume k, k > 1
global search iterations to be completed. The choice of the trial point of the next
(k + 1)th iteration is determined by the following rules.

Rule 1. For each interval (xi−1, xi), 1 < i ≤ k compute a magnitude R(i)
called further a characteristic of the interval.

Rule 2. Determine the interval (xt−1, xt), which the maximum characteristic
corresponds to5

R(t) = max {R(i) : 1 < i ≤ k}. (16)

Rule 3. Perform the new trial in the interval with the maximum characteristic

xk+1 ∈ (xt−1, xt). (17)

The stopping condition, according to which the trials are terminated, is
defined by the condition

(xt − xt−1)1/N ≤ ε, (18)

where t is from (15), N is the dimensionality of the problem being solved from
(1), and ε > 0 is the predefined accuracy of the problem solution. If the stopping
condition is not fulfilled, the number of iterations k is incremented by unity, and
new global search iteration is performed.

The convergence conditions for the algorithms developed within the frame-
work of the information-statistical theory of global search were considered in [12].
Thus, at appropriate numerical estimates of the Hölder constants Hi, 1 ≤ i ≤ m
from (12), MAGS converges to all available global minima points of the mini-
mized function ϕ(y(x)).

It is worth noting also that the application of the MAGS algorithm after
solving the current problem F (α, y) from (4) to solving the next problems from
the set FT from (10) allows reusing the search information Ak from (13) obtained
in the course of all preceding computations.

4 Multilevel Parallel Computations for Solving
Multistage Multicriteria Optimization Problems

The applied general approach to parallel solving the global optimization prob-
lems is the following – parallel computations is provided by simultaneous com-
puting the minimized function values F (α, y) from (4) in several different points
of the search domain D – see, for example, [12,20]. Such an approach provides

5 The characteristics R(i), 1 < i ≤ k may be interpreted as some measures of impor-
tance of the intervals with respect to the probability to find the global minimum
point in respective intervals.



Multilevel Parallel Computations 23

the parallelization of the most time-consuming part of the global search process
and is a general one – it can be applied to almost all global search methods for
a variety of global optimization problems [18,19,21,22].

This approach can be applied at different computation levels – either at the
level of solving of one of the problems of the set FT from (10) or at the level
of parallel solving of several problems of this set. These methods of parallel
computations will be considered below in relation to multiprocessor computer
systems with shared memory.

4.1 Parallel Computations in Solving Single Multicriteria
Optimization Problem

Since the characteristics R(i), 1 < i ≤ k of the search intervals (xi−1, xi), 1 <
i ≤ k play the role of the measures of importance of the intervals with respect to
the probability to find the global minimum points, the MAGS algorithm can be
extended for the parallel execution at the following generalization of the rules
(16)–(17) [12,18,20,23]:

Rule 2 ′. Arrange the characteristics of the intervals in the decreasing order

R(t1) ≥ R(t2) ≥ · · · ≥ R(tk−2) ≥ R(tk−1) (19)

and select p intervals with the indices tj , 1 ≤ j ≤ p having the maximum values
of the characteristics (p is the number of processors (cores) employed in the
parallel computations).

Rule 3 ′. Perform new trials (computing of the minimized function values
F (α, y(x)) in the points xk+j , 1 ≤ j ≤ p placed in the intervals with the maxi-
mum characteristics from (19) in parallel.

The stopping condition for the algorithm (18) should be checked for all inter-
vals, in which the scheduled trials are performed

(xtj − xtj−1)1/N ≤ ε, 1 ≤ tj ≤ p. (20)

As before, if the stopping condition is not satisfied, the number of iterations
k is incremented by p, and new global search iteration is performed.

This extended version of the MAGS algorithm will further called Parallel
Multidimensional Algorithm of Global Search for solving Single MCO problems
(PMAGS-S).

4.2 Parallel Computations in Solving Several Multicriteria
Optimization Problems

Another possible method of parallel computations consists in simultaneous solv-
ing several problems F (α, y) of the set FT from (10). In this approach, the num-
ber of problems being solved simultaneously is determined by the number of
processors (computational cores) available. The solving of each particular prob-
lem F (α, y) is performed using the MAGS algorithm. Then, taking into account
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that all the problems of the set FT are generated from the same MCO problem
(the values of the scalar criterion F (α, y) are computed on the basis of the crite-
ria values fi(y), 1 ≤ i ≤ s from (1)), it is possible to provide the interchange of
the computed search information. For this purpose, the computational scheme
of the MAGS algorithm should be appended by the following rule:

Rule 4. After completing a trial (computing the values of the function F (α, y)
and criteria fi(y), 1 ≤ i ≤ s) by a processor, the point of current trial yk+1 ∈ D
and the values of criteria f(yk+1)) are transferred to all processors. Then the
availability of the data transferred from other processors is checked, and new
received data is included into the search information Ak from (13).

Such a mutual use of the search information Ak from (13) obtained when
solving particular problems of the set FT from (10) allows to reduce significantly
the number of global search iterations performed for each problem F (α, y) – see
Sect. 5 for the results of the numerical experiments.

This version of the MAGS algorithm will be further called Parallel Mul-
tidimensional Algorithm of Global Search for solving Multiple MCO problems
(PMAGS-M).

4.3 Parallel Computations in Joint Solving of Several Multicriteria
Optimization Problems

The computational scheme of the PMAGS-S algorithm can be applied for the
parallel solving of several problems of the set FT as well. In this case, the choice
of the intervals with the maximum characteristics R(i), 1 < i ≤ k from (16) must
be performed taking into account all simultaneously solved problems F (α, y):

Rl1(t1) ≥ Rl2(t2) ≥ · · · ≥ RlK−2(tK−2) ≥ RlK−1(tK−1), 1 ≤ li ≤ p, 1 ≤ i ≤ K−1,
(21)

where li, 1 ≤ i ≤ K − 1 is the index of the problem, which the characteristic
Rli belongs to and K is the total number of trials for all problems being solved
simultaneously.

In this approach, the problems, for which the trials are performed, are deter-
mined dynamically in accordance with (21) – at each current global search iter-
ation for a problem F (α, y), the trials may be absent or all p trials may be
performed.

This version of the MAGS algorithms will further be called Parallel Mul-
tidimensional Algorithm of Global Search for Joint solving of Multiple MCO
problems (PMAGS-JM).

5 Results of Numerical Experiments

The numerical experiments were carried out using the “Lobachevsky” supercom-
puter at University of Nizhny Novgorod (operating system – CentOS 6.4, man-
aging system – SLURM). Each supercomputer node had 2 Intel Sandy Bridge
E5-2660 processors 2.2 GHz, 64 GB RAM. Each processor had 8 cores (i.e. total
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16 CPU cores per node were available). To obtain the executable program code,
Intel C++ 17.0 compiler was used. The numerical experiments were performed
using the Globalizer system [24].

The comparison of the efficiency of the sequential version of the developed
approach with other approaches to solving the MCO problems was performed in
[10,11]. This paper presents the results of numerical experiments for the evalua-
tion of the efficiency of the parallel generalization of the developed approach.
Each experiment consisted of the solving of 100 two-dimensional bi-criterial
test MCO problems, in which the criteria were defined as the multiextremal
functions [12]

f(y1, y2) = −(AB + CD)1/2

AB =
(∑7

i=1

∑7
j=1[Aijaij(y1, y2) + Bijbij(y1, y2)]

)2

CD =
(∑7

i=1

∑7
j=1[Cijaij(y1, y2) − Dijbij(y1, y2)]

)2
(22)

where

aij(y1, y2) = sin(πiy1) sin(πjy2), bij(y1, y2) = cos(πiy1) cos(πjy2)

were defined in the ranges and the parameters −1 ≤ Aij , Bij , Cij ,Dij ≤ 1 were
independent random numbers distributed uniformly. The functions of this kind
are multiextremal essentially and are used often in the evaluation of the efficiency
of the global optimization algorithms [10–12,18,19,21].

When performing the numerical experiments, the construction of a numerical
approximation of the Pareto domain was understood as a solution of a MCO
problem. To construct an approximation of a Pareto domain for each MCO
problem with the criteria from (22), 64 scalar global optimization subproblems
F (α, y) from (4) were solved with different values of the criteria convolution
coefficients (i.e. total 6400 global optimization problems were solved in each
experiment). The obtained results of experiments were averaged over the number
of solved MCO problems. It should be noted that since the developed approach is
oriented onto the MCO problems, in which computing the criteria values requires
a large amount of computations, in all tables presented below the computational
costs of solving the MCO problems is measured in the numbers of global search
iterations performed.

In carrying out the numerical experiments, the following values of parame-
ters of the applied algorithms were used: the required accuracy of the problem
solutions ε = 0.01 from (18) and (20), the reliability parameter6 r = 2.3. The
experiments were carried out using a single supercomputer node (two proces-
sors, 16 computational cores with shared memory). In Table 1, the indicators of
the computational costs (the numbers of the performed global search iterations)
for all considered schemes of parallel computations (see Sect. 4) are presented
(Fig. 1).
6 The reliability parameter is used in the construction of the numerical estimate of

the constants Lj , 1 ≤ j ≤ s from (3), L from (5) and H from (12).
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Fig. 1. Comparison of the averaged numbers of iterations executed for solving the
MCO problems using various efficiency criteria convolutions

The results of experiments demonstrate the lowest computational costs (the
number of performed global search iterations) to be achieved when using 16
cores for the PMAGS-S algorithm and the convolution F2 from (7). Also, one
can see from Table 1 that almost all computational schemes have a high efficiency
from the viewpoint of parallelization. When using 16 cores, all algorithms except
PMAGS-M with the convolutions F1 from (6) and F2 from (7) have demonstrated
the speedup greater than 9.9.
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Table 1. Comparison of performance of various schemes of parallel computations (the
second column indicates the criteria convolution schemes F1 from (6), F2 from (7), F3

from (9))

Method\Cores Conv. Average number of iterations Speedup

1 2 4 8 16 2 4 8 16

Method F1 1238.3 625.7 324.5 186.7 115.3 2.0 3.8 6.6 10.7

PMAGS-S F2 1018.6 512 264.2 158.5 102.9 2.0 3.9 6.4 9.9

(Section 4.1) F3 1657.6 868.3 443.6 245.4 143.4 1.9 3.7 6.8 11.6

Method F1 1257.2 868.4 408.6 231.9 143.4 1.4 3.1 5.4 8.8

PMAGS-M F2 1035.9 811.2 532.1 407.6 284.3 1.3 1.9 2.5 3.6

(Section 4.2) F3 1653.3 1102.3 509.8 282.4 150.2 1.5 3.2 5.9 11.0

Method F1 1552.1 762.4 390.5 214 130.7 2.0 4.0 7.3 11.9

PMAGS-JM F2 1387.9 721.9 362.8 209.8 135.9 1.9 3.8 6.6 10.2

(Section 4.3) F3 2760.3 1371.7 652 421.4 227.6 2.0 4.2 6.6 12.1

Table 2. Comparison of the efficiency of the developed methods in solving the applied
problem (the second row indicates the criteria convolution schemes F1 from (6), F2

from (7), F3 from (9))

Parallel scheme 4.1 Parallel scheme 4.2 Parallel scheme 4.3

Convolution F1 F2 F3 F1 F2 F3 F1 F2 F3

Iterations 125 145 118 168 138 149 81 82 79

In order to demonstrate the efficiency of the proposed approach, a problem
of vibration isolation for a system with several degrees of freedom consisting of
an isolated base and an elastic body has been solved. In the considered prob-
lem statement, the protected object was represented as multi-mass mechanical
system consisting of several material points connected by vibration damping ele-
ments. As the criteria, the maximum deformation and maximum displacement
of the object relative to the base were minimized (for details, see [25]). The
dimensionality of the space of the optimized parameters was selected to be 3.

The problem was solved by all considered methods using the Globalizer sys-
tem. When solving the problem, the parameter r = 3 and the number of cores
16 were used. The number of convolutions was selected to be 16, and the accu-
racy of the method was set to ε = 0.05. The comparison of the efficiency of the
methods by solving the applied problem is presented in Table 2.

The results of the numerical experiments demonstrate that all methods have
found the sufficient approximation of the Pareto domain. The lowest number of
iterations performed the PMAGS-JM method. In Fig. 2, the computed approx-
imation of the Pareto domain obtained by the PMAGS-JM method with the
convolution F2 from (7) is presented.
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Fig. 2. Approximation of the Pareto domain for the problem of vibration isolation
using PMAGS-JM method with the convolution F2 from (7)

6 Conclusion

In the present paper, a novel approach for solving the time-consuming multicri-
teria optimization problems has been considered. Within the framework of the
developed approach, obtaining the efficient decisions is provided by using several
different efficiency criteria scalarization methods. The proposed approach allows
altering the scalarization methods used and the parameters of these ones in the
course of computations. In turn, such a variation of the problem statement leads
to the need for solving multiple time-consuming global optimization problems.
Overcoming the computational complexity is provided by means of the reuse of
the whole search information obtained in the course of computations and effi-
cient parallel computations on high-performance computational systems. The
proposed methods of parallel computations can be used both for solving single
MCO problems and for joint solving several ones.

The performed numerical experiments (total 6400 global optimization prob-
lems have been solved) and the example of solving the applied problem of vibra-
tion isolation confirm the developed approach to allow reducing the amount
and time of computations for solving time-consuming MCO problems. In order
to obtain more reliable evaluation of efficiency of the parallel computations, it
is intended to continue carrying out the numerical experiments on solving the
MCO problems with more efficiency criteria and for larger dimensionality.

Future research will also include investigations how to select the best par-
allel method automatically by using different computational platforms. Finally
problems how to generalize the proposed approach for applying on multi-node
cluster with GPU processors will be considered.
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