
Fault Injection, Detection and Treatment
in Simulated Autonomous Vehicles

Daniel Garrido(B), Leonardo Ferreira, João Jacob, and Daniel Castro Silva

Faculty of Engineering of the University of Porto, Portugal Artificial Intelligence
and Computer Science Laboratory (LIACC), Rua Dr. Roberto Frias s/n,

4200-465 Porto, Portugal
{up201403060,up201305980,joajac,dcs}@fe.up.pt

Abstract. In the last few years autonomous vehicles have been on the
rise. This increase in popularity lead by new technology advancements
and availability to the regular consumer has put them in a position where
safety must now be a top priority. With the objective of increasing the
reliability and safety of these vehicles, fault detection and treatment
modules for autonomous vehicles were developed for an existing multi-
agent platform that coordinates them to perform high-level missions.
Additionally, a fault injection tool was also developed to facilitate the
study of said modules alongside a fault categorization system to help the
treatment module select the best course of action. The results obtained
show the potential of the developed work, with it being able to detect
all the injected faults during the tests in a small enough time frame to
be able to adequately treat these faults.

Keywords: Autonomous vehicles · Unmanned aerial vehicles · Fault
injection · Fault detection · Fault treatment · Simulation · Safety

1 Introduction

Autonomous vehicles (AVs) have received a lot of attention in the last years
thanks to their ability to perform tasks in places humans can’t reach or are
too dangerous [12]. This increase in popularity drives the need to guarantee that
these systems are safe to operate both for operators and surrounding population.
To assure safety of operation, AVs must be resilient to failures that create dan-
gerous situations. Since an AV can’t rely on the judgement of a human, it must
detect and handle faults internally. The simplest way to achieve this is through
redundant systems that compare each other’s outputs and can take over in case
of a failure. However, this approach’s disadvantages are exacerbated in small
AVs as they can’t always accommodate the additional weight and space. The
alternative is to analyse the data generated from the vehicle’s sensors to detect
fault-related patterns and alter its behaviour to handle the fault [2].

Because research with real vehicles can be cumbersome and expensive, the solu-
tion to this problem is going to be developed inside a simulation platform capable of
coordinatingAVs toperformhigh-levelmissions,whichusesFSX(Flight Simulator
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12137, pp. 471–485, 2020.
https://doi.org/10.1007/978-3-030-50371-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50371-0_35&domain=pdf
https://doi.org/10.1007/978-3-030-50371-0_35


472 D. Garrido et al.

X) as the simulation engine [13]. This research is a continuation of the development
of this platform as it currently does not have a fault handling system, which is cru-
cial when dealing with this kind of vehicles. While the platform and the concept
of the project can be applied to any AV, it was primarily developed and tested for
large fixed-wing UAVs (Unnamed Aerial Vehicles).

The goal of this project is to develop and incorporate a fault diagnosis system
to the platform. This system must be easy to use and cover the most common
failures in UAVs. In the end, the vehicle should be able to detect and correct
fault scenarios on its own, while minimizing computational resources overhead.

To achieve this objective, several new modules were built to integrate in the
existing platform. The first is a fault injection tool that allows the user to control
fault injections during missions. Then, two modules were added to the vehicle
agent: one for fault detection and the other for treatment. In the end, tests to
these modules were conducted to assess fault detection rates and times, as well
as the quality of the treatment and computational impact on the platform.

The rest of this article is structured as follows. Section 2 quickly reviews the
state of the art and previous related work. Section 3 details the implementa-
tion process, starting with fault-related tests made to FSX, and the fault injec-
tion, detection and treatment modules. In Sect. 4, a description of the performed
experiments is presented alongside the results, with their discussion presented
in Sect. 5. Finally, Sect. 6 concludes the article and elaborates on future work.

2 State of the Art

In this section a literature review is presented in two parts. First a more general
view on fault detection methods is given, before exploring some related work
where these methods are applied to AVs.

2.1 Fault Detection Methods

There is a large amount of relevant literature on fault detection, which has been
a serious research topic at least since the 1970s. Throughout the years, several
surveys have been published which detail the advancements in fault diagnosis.

Usually, these surveys divide fault detection methods in categories to simplify
their classification. Different authors propose different but similar classifications.
The simplest one was proposed by Gertler, with methods divided in those that
make use of a model and those that don’t [6]. Miljković used three groups: data
methods and signal models; process model-based methods; and knowledge-based
methods [10]. The first two groups are identical to Gertler’s, with a new group
for the recently developed machine learning methods. Isermann’s classification
is the most complete and detailed, with several groups that relate to each other
[9]. The studied classification methods were labeled using Gertler’s approach.



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 473

Table 1. Summary of reviewed Fault Detection Methods

Complexity Computational cost

Model-free methods

Limit/trend checking Very low Very low

Change detection Low/Medium Low

Neural networks/clustering Medium/High Medium

Model-based methods

Parity equations High Medium/High

Parameter estimation Very high Very High

State observer High High

Output observer High High

Model-free methods, also called data-driven methods, use the input and out-
put data from the system under diagnosis to search for fault patterns. These
are usually less accurate than model-based methods but use less computational
resources as they don’t need to make model-related calculations. On the other
hand, model-based methods use a model of the system in conjunction with a
combination of inputs and outputs, depending on the method, resulting in more
accurate detection, but with a computing performance penalty [8].

For more information on the other studied methods, refer to the previous
work [5]. A collection and comparison of these methods regarding group, com-
plexity and computational cost can be seen in Table 1.

Since the developed work focused on creating the whole system, the simplest
method was used for fault detection, the limit and trend check methods. These
are similar methods that monitor the values of specific variables while comparing
them to predetermined upper and lowers bounds. When that variable is out of
these bounds, a fault trigger can be activated. In limit checking, only the current
value is taken into consideration, while in trend checking the rate of change of
said variable is used [9].

2.2 Fault Detection in Autonomous Vehicles

In existing literature detailing the implementation of fault detection methods
in autonomous vehicles, these can be either real or simulated, with some using
both. In this literature review only those that study UAVs and present significant
results are discussed.

Cork et al. applied the data collected from nominal flights to train Neural
Networks to predict the output of a specific sensor and compare it with the
measured values [3]. When a high difference between the two was detected, the
system knew something was not right. For a data-driven system it obtained good
results and could even train while being used.



474 D. Garrido et al.

Table 2. Summary of most relevant fault detection literature in AVs

Work System FD method Results

[3] Angular rate
sensors

Neural networks • Avg. detection rate: 84%

• False-positives rate: 10%

• Avg. detection time: 36 s

[7] Positioning
Sensors

Model based observer • Avg. detection time: 0.55 s

• #False-negatives: 6

•#False-positives: 9

[4] Aileron
actuators

Model-based observer
and change detection
with Z-test

• Model Based TIC avg.: 0.143

• Change Detection avg.
detection time: 0.8 s

[11] Pitot-static
systems

Clustering (K-means
and EM)

• Detection rate: 96%

• False-positive rate: 1.5%

• Detection time: “Almost
Instant”

While not as popular as fixed wing UAVs, single rotor UAVs also exist. One of
this kind of UAVs was used as a platform to create a model-based observer system
to detect faults in positioning sensors. This work concluded that detection was
possible but was more difficult in the case of additive and multiplicative faults,
when compared to faults that made the sensors reading freeze [7].

Freeman et al. monitored the aileron actuators of a light UAV by two dis-
tinct approaches: change detection (data-driven) and observers (model-based)
[4]. Both systems were tested with real flight data. It was found that the model-
based approach was better at detecting faults, but it was also noted that the
process of modelling the UAV was time-consuming. Meanwhile, the data-driven
method was easier to implement and could also detect most of the faults.

As for a fault detection system that utilizes a game/simulation engine like the
one used in this project, only one such case was found. Purvis et al. used the open-
source flight simulator FlightGear to create a system that could inject, detect
and treat faults related to the pitot-static system of a simulated commercial
airliner. Their solution used clustering methods to label the flight data as faulty
and not faulty, with very good results [11].

Table 2 summarizes the results of this small literature review, showing for
each work the type of faulty system, fault detection method and experimental
results. As expected, model-based methods worked better than data-driven ones,
with Clustering being the better method when no model is used.

3 Implementation

The implementation process was divided in three parts. First a classification sys-
tem for UAV faults was created. Next, a fault injection system was implemented
in the multi-agent platform; and lastly, the agent responsible for controlling the
vehicles was extended to include both a fault detection and treatment modules.



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 475

3.1 Fault Classification System

A classification system for UAV faults was created to categorize faults by severity
according to the affected system and extent of the fault, while also providing
recommended actions that the UAV should take in case of a fault. This system
will prove helpful when there is a need to assess the impact of a detected fault to
the UAV and what actions it can take to handle the situation. Table 3 presents a
summary of the system and Table 4 explains the severity scale used [1]. The same
failures were divided in several entries to accommodate different extents that
progressively increase in severity. The failure influence on the aircraft was also
included to help classify faults that are not included but cause similar problems.

Table 3. UAV Fault Classification Table

Failure Influence Severity Reaction

Engine (partial) Reduced lift and speed Medium Return to airport and

emergency landing

Engine (complete) Complete loss of lift High/Extreme Emergency

landing/crash where

possible

Communications Loss of comms with

ATC and potential

flyaway

Medium Return to airport and

emergency landing with

visual indication of

communications fault

Control surfaces (single,

free float)

Extra effort and care in

controlling aircraft

required

Medium Return to airport and

emergency landing

Control surfaces (single,

stuck)

Difficulty in controlling

aircraft

High Return to airport and

emergency landing

Control surfaces

(multiple)

Total loss of control Extreme Imminent crash

Sensors (single) None, remaining

sensors should be able

to compensate faulty

one

Low Procced mission

Sensors (multiple) Loss of spatial

awareness

Medium/High Return to airport if

possible, emergency

landing/crash where

possible otherwise

Sensors (complete) Complete loss of spatial

awareness

Extreme Imminent crash

Electrical Complete loss of

sensors, control surfaces

and electrical

propulsion

Extreme Imminent crash

Landing gear Harsh landing Low Nothing

Brakes Prolonged landing

distance

Low Abort landing and

retry in longest runway,

using all of the runway



476 D. Garrido et al.

3.2 Injecting Faults in Flight Simulator X

Working with FSX as a simulation platform is facilitated by using the inte-
grated SimConnect SDK1 which allows an external program to read and modify
simulation variables through a client-server interface. Additionally, FSX includes
fault injection in aircraft natively, but when the development began it was found
that this was mainly supported for the player aircraft, and support for the AI-
controlled aircraft that the platform uses was very limited. In spite of these
limitations, some faults were able to be reliably injected in the platform’s vehi-
cles, including engines, brakes and communications.

Table 4. Fault severity scale

Severity Flight control impact

Low No or very subtle alterations in control; could easily reach landing site
and have no problems touching down in the designated area

Medium Significant alterations in control; can reach landing site but might have
difficulty landing in the designated area

High Very compromised control; difficulty in reaching landing site

Extreme Very limited or no control at all

Before a fault can be injected, it first must be described. The user can create
several faults that can affect any number of aircraft at any given time or during a
number of special conditions. The fault itself is defined by a number of variables
that determine when it should be triggered, when it ends, how strong the fault
effect should be and what behaviour it should follow. Each fault contains a list
of vehicles it can affect and a list of faults that can be injected to these vehicles.
Different vehicles can be injected with different faults. The user can also define
to great detail what conditions will trigger the fault, which can be based on
the aircraft speed, altitude or location, elapsed time, weather conditions, ground
surface type, etc. The value of the fault determines how severe the impact of the
fault is or, in the case of control surfaces, the position at which they should be
kept for the duration of the fault. The user can also choose the time behaviour
that governs the fault injection, which can be set to permanent, intermittent,
transient or noise. To simulate drift-like faults a ramping variable was also added
that specifies how much time the fault should take to reach the desired strength.
To facilitate the creation and modification of faults to be injected in a mission, a
graphical interface was created to intuitively and quickly allow a user to specify
changes. Figure 1 shows an example of this interface during use.

Engine faults can be injected to individual engines or to all engines. Due to
the limitations of FSX, only the “all engines” fault can make use of the strength

1 More information available online at https://docs.microsoft.com/en-us/previous-
versions/microsoft-esp/cc526983(v=msdn.10).

https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526983(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/microsoft-esp/cc526983(v=msdn.10)


Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 477

value, with the single engine faults being restricted to being toggled, setting the
engine on or off. Brakes fault is another toggle-type fault that affects the aircraft
when it is trying to slow down after landing. The communications fault was
handled entirely through the platform messaging system and effectively blocks
all messages from reaching or leaving the affected vehicle.

3.3 Fault Detection and Treatment

Since no aircraft model was accessible from FSX, model-based methods could
not be used. Instead, data-driven methods were used to detect faults in the three
systems mentioned above. Due to FSX limitations on AI-controlled aircraft, not
much data was available to use in the detectors, which limited the available
methods to the simpler ones that don’t require much data to be effective.

Fig. 1. Fault configuration window

The engine fault detector uses a combination of limit and trend checkers on
the available engine variable: the propeller speed. The trend checker constantly
analyses the propeller speed rate of change and triggers when this value is higher
than a predefined value. For situations when the engine thrust descended slowly
over a long period of time, also called ramping, a limit checker was also imple-
mented that simply verifies if the engine RPM is too low (300 RPM in this case).



478 D. Garrido et al.

These two methods only trigger if the aircraft’s current altitude is lower than the
desired one, to prevent falsely detecting a fault when the aircraft is descending.

Faults related to brakes are detected with another trend checker. When the
aircraft touches down to land, it immediately starts analysing the rate at which
the aircraft slows. If this rate stays low for too long (above −2 m/s2 for over 5 s
in this case), a brake failure is detected.

The communications fault detector uses a very simple method to verify if
the communications are working. Every 10 s the vehicle pings the closest ATC
(Air Traffic Controller), who replies with an acknowledge. If the vehicle doesn’t
receive a response after 10 s of sending the ping, it knows the communications
are not working properly. This means that in a best case scenario a fault can be
detected in just 10 s, but in the worst it will take up to 20 s. The waiting time
between messages could be reduced, but this could present problems when an
ATC is responsible for several aircraft and can’t handle all messages in a timely
fashion.

: Takeoff and Climb Stage
: Cruise Stage
: Descent Stage
: Approach and Land Stage

Fig. 2. Test flight scenario (note the airport on the top-right corner)

Once a fault is detected, the fault treatment module gives it a classification
and follows the recommended action. In cases where several faults have been
detected it will perform the action associated with the fault with the highest
severity. In extreme cases, such as full engine failures, this module will track the
aircraft return course to the airport and deduce if the aircraft has enough altitude
to reach it. If this is not the case, a new landing site that the aircraft knows not
to be populated is chosen to prevent crashing into a building or humans.

4 Experimental Setup and Results

This section is organized in two main parts: first, an explanation of the tests is
given, followed by the presentation and analysis of the results.

4.1 Test Configuration and Scenarios

The tests to the developed work were conducted in the proximity of an airport
previously modelled in detail in the platform. It was chosen because it has an



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 479

interesting layout of two long and one short runway. The model of the aircraft
used in the simulation was the Beechcraft Baron 58. It was picked for its relatively
small size and engine configuration as it is the smallest and lightest aircraft with
a twin prop engine. The small size makes it comparable to the bigger UAVs like
the United States Air Force Predator, in terms of wingspan and weight, while
the dual engine configuration allows for more flexibility when testing.

For every test the aircraft was given a simple mission to perform, as seen
in Fig. 2, which includes taking off, making a right bank turn while ascending,
holding altitude for a few miles, performing another right bank turn while now
descending, approaching the smallest runway at the airport and finally landing.
The different colours represent the different flight phases. The tests were all
conducted with FSX running at a simulation rate of 4x to reduce test times.

The tests were separated in two phases: in the first phase only the fault detec-
tors are active and in the second phase both the fault detection and treatment
modules are operational. This way a benchmark of the outcomes of the faults
can first be recorded to then compare to the outcomes when the same test is run
with the fault treatment module enabled. Table 5 shows a summary of the test
with all settings used.

Test #0 is a control test, with no faults active. It serves as a baseline to
compare to the behaviour of the actual tests when faults are injected. Since
tests #1 and #2 are not dependant of the flight stage, ramping and fault value,
one test is enough to test if the module can correctly detect these faults. Test
#2 is run with intermittent time behaviour to effectively allow the test to run
several times to make sure the detection times don’t surpass the theoretical
maximum of 20 s. This is the only scenario where having an intermittent fault
type is advantageous, as this type of time behaviour uses random injection times
which are not ideal when the behaviour of the plane is being tested. This can
result in the fault being injected for too little time to be detected or even have
a meaningful effect on the aircraft.

Table 5. Tests to be performed to the fault detection module.

Test Fault Fault value Stage Ramping Time behaviour Duration

#0 – – – – – –

#1 Total Brakes – – – Permanent Unspecified

#2 Communications – Cruise – Intermittent 180 s

#3 Engine 1 – Cruise – Permanent Unspecified

#4 Engine 1 – Climb – Permanent Unspecified

#5 Engine 1 – Descent – Permanent Unspecified

#6 Engines 0 Cruise – Permanent Unspecified

#7 Engines 0 Climb – Permanent Unspecified

#8 Engines 0 Descent – Permanent Unspecified

#9, #10 Engines 0 Cruise 30, 60 Permanent Unspecified

#11, #12 Engines 0 Climb 30, 60 Permanent Unspecified

#13, #14 Engines 0 Descent 30, 60 Permanent Unspecified



480 D. Garrido et al.

Tests #3, #4 and #5 cover single engine full failure in all 3 flight phases,
while tests #6, #7 and #8 do the same but with 2 failing engines. Finally,
tests #9 to #14 test the effects of different ramping values in the different flight
stages. This effect will only be tested with engine faults since this is the only
one that supports continuous analog injection.

Finally, the fault treatment module is enabled, and tests #1, #2, #4 and
#6 are ran again to test the ability to treat the faults in the expected way and
comparing the outcome of the tests with the previous non-treated tests.

4.2 Fault Detection Test Results

In test #0 the fault detectors did not pick up any fault and as expected the
aircraft performed the complete mission without problems.

For test #1, the brake fault detector successfully activated after the aircraft
failed to slow down after landing, taking 12 s after touchdown to do so. However,
when comparing the aircraft speed over time during the landing it is revealed
that the aircraft only starts to slow down after 7 s in the control test, as can be
seen in Fig. 3. This means that the actual fault detection time for this test was
around 5 s. Because of the brake failure the aircraft ran out of asphalt and only
stopped in the grassy area surrounding the runways.

Fig. 3. Speed comparison after touchdown with and without brake fault

Since test #2 ran in an intermittent configuration where the fault was being
toggled on and off repeatedly for 3 min, the detector had to correctly determine
when the communications were off 3 times, as each on/off cycle takes about a
minute. The results of this test can be consulted in Table 6. It achieved an average
detection time of 15 s, with all detection times below the 20 s mark, as expected.
In this case the aircraft completed the mission normally since communications
don’t affect the physical behaviour of the aircraft.

The results of the engine faults can be seen in Table 7. All failures were
detected and no false positives were recorded. In general, failures that occurred
during takeoff were the fastest ones to be detected, followed by the ones during
cruising, the descending ones being the slowest overall. Regarding the outcome,
the only tests where the aircraft was able to complete the test flight were the



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 481

Table 6. Results of intermittent communications fault

Injection
timestamp (s)

Pause
timestamp (s)

Injection delta
(s)

Detection
timestamp (s)

Detection delta
(s)

96 125 29 114 18

152 187 35 165 13

235 270 35 250 12

ones with single engine failure. In the others the aircraft slowly descended until
it hit the ground, without first deploying the landing gear.

While conducting the tests a strange behaviour was detected in the engine
faults with ramping. It seemed that the thrust of the engines was not reducing
at the expected rate, only starting to decrease after the ramping time was past
the half point. This was then confirmed in the collected data when analysing the
propeller speed after injecting the fault in tests #11 and #12, as seen in Fig. 4.
As can be seen, the fault only starts taking effect after 2/3 of the ramping time
and from there it linearly decreases to zero. This is another limitation of FSX
that other tests confirm is only present in the AI-controlled vehicles and not in
the user-controlled one. This means that the detection times recorded for tests
that incorporate ramping are not accurate and the real detection times were
included between parentheses for these tests in Table 7.

Fig. 4. Propeller speed after ramping fault injection in tests #11 and #12

4.3 Fault Treatment Test Results

With the treatment module enabled, the outcomes of the tests should vary
to accommodate the injected faults. Starting with test #0, no changes were
detected to mission execution and again no faults were detected.

In test #1 the brake failure was correctly identified once more on landing,
but this time the aircraft aborts it, again taking off and making the necessary
manoeuvres to approach the longest runway in the airport and land, as suggested
in the categorization system. Even with the brake failure, the aircraft was able
to stop within the length of the runway. The influence of the treatment module
in this test can be seen in Fig. 5.



482 D. Garrido et al.

Table 7. Results of the various engine faults

Test Injection
timestamp (s)

Detection
timestamp (s)

Detection delta
(s)

Outcome

#3 35061.672 35160.782 99.11 Aircraft able to complete
test flight

#4 36666.778 36667.445 0.667 Aircraft able to complete
test flight

#5 38242.778 38361.663 118.885 Aircraft able to complete
test flight

#6 42241.875 42252.986 11.111 Aircraft crashed

#7 41275.433 41276.099 0.666 Aircraft crashed

#8 40097.436 40148.547 51.111 Aircraft crashed

#9 45742.754 45774.976 32.222 (12.222) Aircraft crashed

#10 46874.307 46929.862 55.555 (15.555) Aircraft crashed

#11 50975.629 50996.296 20.667 (0.667) Aircraft crashed

#12 49585.188 49625.855 40.667 (0.667) Aircraft crashed

#13 54417.398 54468.509 51.111 (31.111) Aircraft crashed

#14 56887.613 56944.058 56.445 (16.445) Aircraft crashed

For test #2 the fault was detected the first time it was triggered, just like in
the first test, and immediately the aircraft started changing its course to perform
the recommended action of flying over the desired runway, as shown in Fig. 6.
This maneuver is intended to inform the ATC that the aircraft has encountered
an emergency situation and cannot communicate, so the ATC should clear the
runways and airspace for the vehicle to land.

Fig. 5. Test #1 fault treatment path Fig. 6. Test #2 fault treatment path

The fault injected in test #4 was also detected just like in the first test. The
aircraft started the emergency landing protocol immediately by redirecting to
the closest runway available to land as depicted in Fig. 7. Compared to the first
test, where the aircraft was able to finish the mission in a safe manner, diverting



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 483

to the airport immediately decreases the chances of an accident in case the fault
propagates to the other engine.

Finally, in test #6 the fault was correctly identified, and the same emergency
landing protocol was activated as in test #4. However, this time with both
engines producing no thrust, the aircraft had no way of making it back to the
airport. This was quickly detected and as a consequence the aircraft landed in
a close field it knew was uninhabited, as can be seen in Fig. 8. In a real-world
scenario this behaviour has the potential to decrease the number of accidents
involving bystanders and decrease the probability of losing the aircraft in a crash.

Performance benchmarks were also conducted to test the impact of the new
modules on the platform. The test measured the CPU (Central Processing Unit)
load, memory allocated and CPU time for the platform in three scenarios: Just
the Control Panel open; The Control Panel and Vehicle Agent running without
the detection module; and all the modules active. Table 8 displays the results.

Since Flight Simulator is the one that controls the autonomous vehicles, a
change in the performance of the platform is not detected from test #1 to test
#2. Contrarily, when the detection module is being used, a small increase in
CPU load and CPU time is detected but is very small to be significant to affect
the overall performance of the platform.

Fig. 7. Test #4 fault treatment path Fig. 8. Test #6 fault treatment path

Table 8. Resources used by the platform with different active modules (test were
performed on a Laptop with an Intel Core i7-4710HQ processor @3.30 GHz)

Active modules Max CPU load (%) Max. memory (MB) CPU time per minute (s)

Control Panel
(CP)

0.4 35.5 ∼ 0

CP + Vehicle
Agent (VA)

0.4 45.6 ∼ 0

CP + VA +
Detection
Module

0.9 46.1 ∼ 0.7



484 D. Garrido et al.

5 Discussion

The achieved results are promising, with all faults being detected, and no false
positives. This shows that the current implementation is robust, accurate and
resilient to false triggers. On the other hand, detection times were overall good
but not great. This was to be expected since simple fault detection methods were
used, while other authors use more advanced ones. This could be improved by
using more advanced methods, such as those used in the literature mentioned in
Sect. 2. Despite the slow reaction time, it was fast enough to allow the treatment
module to intervene in a positive way in otherwise dangerous scenarios.

With some detection times below one second, this simple approach managed
to match the detection times in other works that used model-based approaches
such as Freeman et al. [4] and Heredia et al. [7], but can’t keep up in more
demanding scenarios. On another note, this solution managed to achieve an
average detection time similar to that of Cork et al. [3]. The work of Purvis et
al. [11] is the most similar to this one due to also using a flight simulator as a
testbed and using a data-driven method. The use of clustering methods allowed
for better results in reaction time with similar detection performance.

6 Conclusion and Future Work

A fault injection tool was successfully implemented in an existing simulation
platform, alongside a fault categorization system. Both these components proved
useful in the development of a simple but capable fault detection and treatment
system for the aircraft controller. The fault detection module managed to per-
form above expectations, with good detection performance during testing, with
comparable results to the works mentioned above, while using much simpler
detection methods. The fault detection times were generally good, with time-
sensitive faults like brakes and engines being detected quickly enough for the
fault treatment module to act. This module also proved to perform well, being
able to determine the best action to take when a fault occurred and maintaining
the safety of bystanders always in first place by taking into consideration the
surroundings of the vehicle. All of this was achieved while keeping the CPU and
memory loads very minimal.

The developed work sets a solid base to continue fault-related research in
this platform. The fault injection tool in particular is very useful for this kind of
research as it helps create detailed fault scenarios for the detection and treatment
algorithms that while being tested only with one aircraft, can handle concurrent
fault injection in teams of multiple vehicles. The implementation of all the stages
of a fault diagnosis system with a modular architecture also facilitates future
development of new algorithms without having to redesign the system.

While the results were satisfactory, they could be improved in the future
by increasing the number of failures to detect, and using different and/or more
sophisticated data-driven methods that analyse more data. To do this it would
likely be necessary to base the platform in another similar but more advanced



Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles 485

simulator that can offer more data for AI-controlled vehicles and supports more
fault injection options than FSX. Detection times could also be improved by
using the mission details to know what should be normal and abnormal behaviour
for the aircraft at a certain location or time.

References

1. Belcastro, C.M., et al.: Preliminary risk assessment for small unmanned aircraft. In:
Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations
Conference, June 2017, Denver, Colorado, USA (2017)

2. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems,
1st edn. Springer, New York (1999). https://doi.org/10.1007/978-1-4615-5149-2

3. Cork, L.R., Walker, R., Dunn, S.: Fault detection, identification and accommodation
techniques for unmanned airborne vehicle. In: Proceedings of the 11th Australian
International Aerospace Congress (AIAC 2005), 14–17 March 2005, Melbourne,
Australia (2005)

4. Freeman, P., Pandita, R., Srivastava, N., Balas, G.J.: Model-based and data-driven
fault detection performance for a small UAV. IEEE/ASME Trans. Mechatron.
18(4), 1300–1309 (2013)

5. Garrido, D.: Fault injection, detection and handling in autonomous vehicles. Math-
esis, Faculty of Engineering of the University of Porto (2019)

6. Gertler, J.J.: Survey of model-based failure detection and isolation in complex
plants. IEEE Control Syst. Mag. 8(6), 3–11 (1988)

7. Heredia, G., Ollero, A., Bejar, M., Mahtani, R.: Sensor and actuator fault detection
in small autonomous helicopters. Mechatronics 18(2), 90–99 (2008)

8. Isermann, R.: Model-based fault-detection and diagnosis - status and applications.
Ann. Rev. Control 29(1), 71–85 (2005)

9. Isermann, R.: Fault-Diagnosis Systems. Springer, Heidelberg (2006). https://doi.
org/10.1007/3-540-30368-5

10. Miljković, D.: Fault detection methods: a literature survey. In: Proceedings of the
34th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO 2011), 23–27 May 2011, Opatija, Croa-
tia, pp. 750–755 (2011)

11. Purvis, A., Morris, B., McWilliam, R.: FlightGear as a tool for real time fault-
injection, detection self-repair. Proc. CIRP 38, 283–288 (2015)

12. Schoenwald, D.A.: AUVs: in space, air, water, and on the ground. IEEE Control
Syst. Mag. 20(6), 15–18 (2000)

13. Silva, D.C.: Cooperative multi-robot missions: development of a platform and a
specification language. Ph.D. thesis, Faculty of Engineering, University of Porto
(2011)

https://doi.org/10.1007/978-1-4615-5149-2
https://doi.org/10.1007/3-540-30368-5
https://doi.org/10.1007/3-540-30368-5

	Fault Injection, Detection and Treatment in Simulated Autonomous Vehicles
	1 Introduction
	2 State of the Art
	2.1 Fault Detection Methods
	2.2 Fault Detection in Autonomous Vehicles

	3 Implementation
	3.1 Fault Classification System
	3.2 Injecting Faults in Flight Simulator X
	3.3 Fault Detection and Treatment

	4 Experimental Setup and Results
	4.1 Test Configuration and Scenarios
	4.2 Fault Detection Test Results
	4.3 Fault Treatment Test Results

	5 Discussion
	6 Conclusion and Future Work
	References




