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Abstract. Influence maximization is a significant research problem that
requires the selection of influential users who are capable of spreading
information in the network such that it can reach to a large number of
people. Many real-world networks like Road Network, Email Networks
are weighted networks. Influence maximization on weighted networks
is more challenging than an unweighted network. Many methods, such
as weighted-degree rank, weighted-voteRank, weighted-eigenvalue rank,
and weighted-betweenness rank methods, have been used to rank the
nodes in weighted networks with certain limitations. In this manuscript,
we propose a Hooke’s law-based approach named HookeRank method
to identify spreaders in a weighted network. We model edge weights
as spring constants. The edges present in the network are modeled as
springs, which are connected in series and parallel. They elongate by
a distance under the effect of a given constant force following Hooke’s
law of elasticity, and this is the equivalent propagation distance between
nodes in the network. The proposed the model finds relevant influen-
tial nodes, that can propagate the information to other nodes. A higher
HookeRank score implies the greater influential capability of the node in
the network. We compared our proposed algorithm with state-of-the-art
models and found that it performs reasonably well on real-life data-sets
using epidemic spreading Susceptible-Infected-Recovered model.

Keywords: Influence maximization · Hooke’s law · Information
diffusion · Social networks · Weighted networks

1 Introduction

Many real-world networks, like online social networks, transportation networks,
email networks, collaboration networks, and many others are complex weighted
networks [1]. These networks can be modeled as graphs, G = (V,E,W ) where V
represents a set of nodes, E denotes edges between nodes, and W represents the
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edge weight. The weight of a connection between two nodes usually depends on
the exchange of services, intensity, or duration [2]. If two nodes are frequently
interacting or if they have high interactions, then information or diseases are
more likely to be transferred between them [3]. Complex networks have a large
number of nodes, and interaction between nodes is usually complicated. The evo-
lution of complex networks has led to the establishment of many useful applica-
tions like influence maximization, viral-marketing, and information propagation
[4]. Influence maximization [5] is a technique to select some constant number
of nodes as seed nodes which are capable of spreading information by “Word-
of-Mouth” analogy, after knowing the information source. Therefore, influence
maximization finds great value in the business. The influence maximization has
many applications, for example, controlling the proliferation of messages and
rumors, positioning influential researchers, and discovering social leaders. The
process of influence maximization consists of two activities, first, identifying the
seed spreaders and the second the information diffusion phase. In the study of
disease transmission, numerical models are helpful in understanding the spread
and control of epidemics. The circulation of the information in the complex net-
work is very similar to the epidemic spreading, and many popular methods for
modeling information diffusion are based on the epidemics spreading [6,7]. In
epidemiology, mathematical models play a role as a tool in analyzing the spread
and control of infectious diseases [8]. Many researchers have successfully applied
epidemic spreading models to information propagation in complex networks to
estimate the final spread of the information originating from the source nodes.

Most of the influence maximization models on weighted-networks are merely
extensions of the algorithms counterparts on unweighted networks by introducing
edge weight into the models. Numerous other models have considered standard
graph-theoretical features based approach for identifying the important spread-
ers. In this paper, we propose a Hooke’s law of elasticity based approach named
HookeRank method to identify spreaders in a weighted network. Our algorithm
considers the influence of nodes in a setting where edges are modelled as springs
and edge-weights are modelled as elasticity coefficients. We model edge weights
as spring constants. The edges present in the network are modeled as springs,
which are connected in series and parallel. They elongate by a distance under
the effect of an assumed constant force following Hooke’s law of elasticity, and
this is the equivalent propagation distance between nodes in the network. The
contributions of our work are as follows:

1. We propose a novel method based on Hooke’s Law of Elasticity in complex
weighted networks to find the influential spreaders.

2. We model the equivalent weight between indirectly connected nodes in a
weighted network.

3. The proposed algorithm is an improved method of selection of influential
nodes on real-world data-sets.

The rest of the paper is organized as follows: Sect. 2 consists of the related work
in this field. Section 3 presents the data-sets and the models for information
diffusion used in this paper. In Sect. 4, we describe the methodology of our novel
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method and simulation on a toy network. Section 5 discusses the simulation of
our algorithms on various real-world networks. Finally, Sect. 6 concludes our
paper.

2 Traditional Centralities

The initial models in the field of influence maximization have majorly been inno-
vations in the field of unweighted networks where all edges are equally important.
In real-world networks, these edges are associated with weights that need to be
considered while analyzing the strength of these connections, during a cycle
of information diffusion. When we consider these aspects of topology, we can
gather insights into what is most beneficial for the maximization of informa-
tion diffusion. The early advances in weighted networks were through central-
ities like DegreeRank used for unweighted networks, by additional weighing of
these edges to achieve a weighted DegreeRank [9]. In a similar pattern, mul-
tiple centralities were eventually derived from unweighted networks, evolving
into a method for weighted graphs through mathematical adjustments lead-
ing to weighted algorithms. Betweenness centrality considers the shortest path
of a node in an unweighted graph, and it was extended for weighted version
giving the weighted-betweenness centrality [10,11]. Based on the notion of the
voting scheme, researchers have proposed influence maximization algorithm in
unweighted as well as weighted networks where the nodes getting the highest
votes in each round gets selected as spreader nodes [12–14]. The h-index is a
measure of the impact of researchers based on the number of citations received,
and by augmenting edge weight, Yu et al. proposed a weighted h-index centrality
[15]. Weighted-eigenvector centrality applicable in a weighted network is based
on the fact that a node is important if its neighbors are also famous and finds the
centrality for a node as a function of the centrality of its neighbors [16]. Eades
[17] suggested to model the edges of the network as springs to draw graphs by
minimizing potential energy. This method was later refined by Fruchterman et
al. [18], where they model nodes as electrical charges and edges as connecting
springs. The electrical charges make these nodes repel each other. One of the
most popular algorithms for drawing graphs is Kamada and Kawai’s method,
which models the edges of the graph as springs acting following Hooke’s Law
[19,20]. The method optimizes the length of the spring between any two nodes by
minimizing a global cost function. We argue the applicability of the spring-based
model to measure the centrality of the nodes and to find influential spreaders.

3 Datasets and Performance Metrics

3.1 Information Diffusion Model

SIR Model: In this paper, we utilize the susceptible-infected-recovered (SIR)
model as the data diffusion model [21]. This model divides nodes into three cat-
egories Susceptible (S), infected (I), and recovered (R). Susceptible nodes are
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supposed to receive data from their infected neighbor nodes. The information
starts from a subset of the network nodes with the spreading parameter (β), and
recovery rate (γ). In the SIR model, initially, all nodes, except seed nodes, are
in a susceptible state. After each progression, the infected nodes affect their sus-
ceptible neighbors with a likelihood of β. Infected nodes at the next timestamp
enter the recovered stage with a likelihood of γ. When arriving at the recovered
stage, they are no longer prone and can’t be infected again.

3.2 Performance Metrics

The final infected scale (f(tc)):- It is a measure of the final spread of the informa-
tion originating from the chosen seed nodes at the end of SIR simulations. The
final infected scale is the final number of recovered users that passed through
the chronological advancements from susceptible, infected, and finally, to recover
during the information diffusion process. There are two ways to measure this
criterion, first f(tc) is plotted against time t, which shows us the propagation
of the information on the network as time proceeds. Secondly, f(tc) is plotted
against the different fraction of spreaders, which shows us the propagation of the
information on the network as the number of spreaders taken by the algorithm
initially is changed.

3.3 Datasets Used

Table 1. Real world data-sets for simulation

Dataset Name Description Nodes Edges

PowerGrid [22] An undirected weighted
network containing
information about the power
grid of the Western States of
the United States of America

4941 6954

Facebook-like weighted network [23] This undirected weighted
dataset originates from an
online community for
students at the University of
California, Irvine

1899 20297

US Airports [24] An undirected weighted
network of the 500 busiest
commercial airports in the
United States

500 28237
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4 Methodologies

In this section, we present the mapping of the edges present in the network as
springs, which are connected in series and parallel, and describe the proposed
HookRank method. The discrete part of individual connections of springs is
discussed in detail. In a weighted network, weights generally mean that the higher
the weight, the stronger is the connection. The same is true for our network as
well since we know from Hooke’s law that more is the spring constant, less is
the displacement from the spring. Now this new unit of distance between any
two Nodes. This distance is the actual distance between these nodes when the
information diffusion is to be considered. By normalizing these distances, we can
model not only the approximate form but also the equivalent of all the different
paths that exist between any two pairs of nodes. When we model this, individual
graphs for each node are created, and these nodes can now be evaluated based on
the amount of information they can propagate. We will consider that a constant
force F0 = 1 continuously acts on the node that is chosen as a seed node. Now
the seed node is connected to every other node with a spring constant of k = wij

where k is the spring constant of a spring that connects node i and node j
with a weight of wij . Now using a breadth-first traversal (BFS), calculate the
new spring between the edges, if there exist, multiple edges between the springs,
on different levels, they must be added since they are definitely parallel. When
traversing from the node of one level to another, use the series combination
to generate equivalent springs and to calculate most probable distances and
finally propagating information through each of these nodes to find the maximum
amount of spreading that takes place (Fig. 1).

Fig. 1. Calculating the heuristic distance between two nodes based on weights of the
edges, being modeled using springs and evaluating to a single spring, following Hooke’s
Law of Elasticity

Parallel: When Springs are placed in parallel, they end up as a joint spring
with the total elasticity of a new spring of a spring constant that can be modeled
using the fact that the spring is definitely much stiffer.

Series: It is possible to add the contributions of the springs in series. The
Springs in series make a more flexible spring that tends to elongate more than
the springs that are previously involved in the complete connection.
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4.1 Distance Calculation

When two springs of different spring constants, k1 and k2 respectively are placed
in series with each other, we get (Fig. 2):

1/keq = 1/k1 + 1/k2 (1)

Fig. 2. Demonstration of serial springs following Hooke’s law. Series edges occur when
more than one node occurs in the path.

When two springs of different spring constants, k1 and k2 respectively are
placed in parallel with each other, we get (Fig. 3):

keq = k1 + k2 (2)

Fig. 3. Demonstration of parallel springs following Hooke’s law. Parallel edges occur
when more than one path of reaching the same node exists.

This means in an actual network is that springs in series are stiffer if the
strength of ties in the individual connections is strong. It also implies that more
connections from one node to another, add up a single connection, as seen in
case of parallel connections. Now the equivalent distance between any of these
nodes, under a constant force is given as:

x = f/k (3)

Assuming f = 1, without loss of generality, we can easily see that the full
measure of distance in this network is relative. A breadth-first search similar
method is used for the nodes to find the equivalent value of k between all indirect
neighbors.
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4.2 Proposed Algorithm

Based on the notion of modeling edges as springs, we compute the centrality of
the nodes in the network. Edge weights in the network are the spring-constants
of these modeled springs. The proposed HookeRank method uses the following
steps:

1. For each node, we perform a breadth-first search to all other nodes and cal-
culate the distance of each node in series from the nearest neighbor.

2. In the BFS traversal, when a new node is encountered, we add its distance
from its parent using a series combination as in Eq. 2 and add this neighbor
to the queue.

3. All the nodes that occur again in the BFS traversal are assumed to be in a
parallel connections and add up to the spring constant according to Eq. 1.

4. When for a given node, the queue is completely processed, we get its equiva-
lent tree.

5. Calculate the HookeRank value for the node by finding the weighted average
degree of the given node in the equivalent tree.

6. This procedure gives us the HookeRank value for each node, and the result
is stored in a dictionary containing the node and its HookeRank value.

7. As, the objective of influence maximization is to select top c nodes, where
c is a constant. Here, the top c nodes are the nodes having the maximum
HookeRank score values in the ranking, and such nodes can be chosen as the
influential spreaders.

4.3 Time Complexity of the Proposed Algorithm

The time complexity of the HookeRank method consists of initialization of spring
constants and selection of the node with the highest number of the closest neigh-
bor score and finding the level order traversal with respect to all the nodes (Step 1
to Step 4). Overall this makes the complete algorithm bounded by O(V (E+V )).
This time complexity, however, reduces because we know that if an equivalent
spring from A to B has the constant k, then spring from B to A has the same
spring constant (Step 6).

5 Results and Analysis

We perform the experiment of the proposed HookeRank method along with the
contemporary centrality measures like weighted- degree, weighted betweenness
centrality, weighted eigenvector centrality, and weighted voteRank. The investi-
gation has been performed on a toy network and three real-world networks of
different nature, application, and size that are listed in Table 1. We use the SIR
model to compute the final infected scale, f(tc), as a function of spreaders frac-
tion and final infected scale in terms of increasing timestamps. The results were
averaged over SIR 100 simulations. For simplicity and to maintain consistency
in the analysis for all data-sets, we chose infection rate (β ) as 0.01, meaning
that when a node is infected, then it can infect 1% of its neighbors randomly.



616 S. Kumar et al.

5.1 Simulation of the Proposed Algorithm On a Toy Network

Here, we simulate the working of the proposed HookeRank method using a toy
network, as depicted in Fig. 6. The network is a weighted graph with edge weights
representing the stiffness constant of the spring (Fig. 4).

Fig. 4. A sample Weighted Network where the edges are modelled as springs and the
spring constant is analogous to the weight of the edge

Fig. 5. The run of a breadth-first search with respect to A as the starting node

Let us consider the steps of the algorithm for a sample node A to understand
the working of this algorithm. We take a FIFO queue and put A inside the
queue. Now, the distance to A is 0. Now let’s compute the spring constant for
the first neighbors B, C, D, E using the direct connection of the spring. These are
then popped out, and their neighbors are pushed into the queue. The equivalent
spring constant is found through a series connection through the parent. In the
case of multiple parents at the same level, the constant is found using a parallel
combination, as in the case of node H. For the node A, the simulation and
calculation of the equivalent distances of all the other nodes by using a breadth-
first search are performed. Its immediate neighbors are processed first, and so
on, the different layers are highlighted in a level order fashion, as shown in Fig. 5.
We can now compute the value of all the neighbors of A, as performed in the
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Fig. 6. The final network with respect to node A. Notice that certain indirect neighbors
became direct neighbors under the action of both series and parallel connections.

above section. The computation will result in a graph similar to Fig. 6. Notice
the connections and the spring constants. Thus, the average spring constant for
A becomes, 12.57 / 8 = 1.52, and thus, an elongation averaging 1.57 are taken,
giving us a HookeRank value of 1.57 for the node A.

Table 2. Results of HookeRank Score of various nodes in the toy Network

Node A B C D E F G H HookeRank-value

A 0.0 2.0 2.0 1.0 3.0 1.2 0.67 2.7 1.57

B 2.0 0.0 3.2 0.67 1.2 0.75 1.0 4.0 1.60

C 2.0 3.2 0.0 0.67 1.2 0.75 0.76 5.0 1.69

D 1.0 0.67 0.67 0 0.75 0.69 0.4 0.52 0.58

E 3.0 1.2 1.2 0.75 0.0 2.0 0.55 1.4 1.26

F 1.2 0.75 0.75 0.69 2.0 0.0 0.4 0.82 0.83

G 0.67 1.0 0.76 0.4 0.55 0.4 0.0 0.8 0.57

H 2.7 4 5 0.52 1.4 0.82 0.8 0.0 1.90

A similar calculation can be performed for each of the nodes, and their equiv-
alent HookeRank value is calculated, as given in Table 2. Based on the value of
the HookRank score, node H is elected as the top spreader in the toy network.

5.2 Simulation of the Proposed Algorithm on Real-Life Networks

Figure 7, Fig. 8, and Fig. 9 depicts the final infection scale (f(tc)) with respect
to the percentage of spreaders for three real-life data-sets with infection rate (β)
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as 0.01. We consider the percentage of influential spreaders as the seed nodes
in the range of 2%, 4%, 6%, 8%, and 10% to plot the final infection scale. In
Fig. 7, note that the number of nodes affected by the infection is maximum for
HookeRank on the US-Airports Network for most percentages of spreaders. In
Fig. 8, HookeRank greatly exceeds the performance of other algorithms towards
increasing the count of the spreader fraction. In the weighted PowerGrid data,
shown in Fig. 9, HookeRank performs better than most other algorithms from
an early stage. In the weighted PowerGrid data, shown in Fig. 10, the increase
in the number of spreaders results in WVoteRank becoming marginally close to
HookeRank, but our algorithm still performs better than all other algorithms in
the simulation.

Fig. 7. The infection scale with respect to the percentage of spreaders on US-Airports
network with β = 0.01.

Fig. 8. The infection scale with respect to the percentage of spreaders on Facebook-like
weighted network with β = 0.01.
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Fig. 9. The infection scale with respect to the percentage of spreaders on US PowerGrid
network with β = 0.01.

Figure 10 presents the final infection scale (f(tc)) with respect to the increas-
ing timestamps with infection rate (β) as 0.01 and top 7% influential as seed
nodes on US PowerGrid network. Figure 11 shows the final infection scale (f(tc))
with respect to the increasing timestamps with infection rate (β) as 0.01 and
top 5% influential as seed nodes on US PowerGrid network. Figure 12 displays
the final infection scale (f(tc)) with respect to the increasing timestamps with
infection rate (β) as 0.01 and top 5% influential as seed nodes on Facebook-like
weighted network.

Fig. 10. The final infection scale with respect to the time on US PowerGrid Network
with β = 0.01 and ρ = 7%.

From above results on three real-life networks, it is evident that HookeRank
performs better than state-of-the-art methods like weighted-degree centrality,
weighted-betweenness centrality, weighted-eigenvector centrality, and weighted-
voteRank, and also consistently outperforms recent methods like WVoteRank in
terms of final infected scale with respect to time t and spreader fraction p on
real-world networks as depicted in Table 1.
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Fig. 11. The final infection scale with respect to the time on US-Airports Network
with β = 0.01 and ρ = 5%.

Fig. 12. The final infection scale with respect to the time on Facebook-like weighted
Network with β = 0.01 and ρ = 5%.

6 Conclusion

In this paper, we proposed the HookeRank method for finding influential nodes in
weighted networks by modeling edges of the network as springs and edge weights
as spring constants. Initially, we found a measure of the distance between indirect
neighbors through the series and parallel combination of edges, by modeling
them as springs. The HookeRank method and the HookeRank distance can be
used to gain a better understanding of the topology in a complex weighted
network. By finding the Hookerank value of the nodes, our method locates the
top spreaders in the given real-world network to reach a large number of people in
the network to maximize the spread of the information. The proposed algorithm
incorporates both the local and global properties of a node in the measurement
of its spreading capability. We performed the simulation of the proposed method
along with contemporary methods on three real-life data-sets taking the basis
of evaluation as the final infected scale. The proposed influence maximization
algorithm performs considerably well and is effective in real-life scenarios.
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